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Abstract

The application of data-driven deep learning to identify sex differences in developing brain 

structures of pre-adolescents has heretofore not been accomplished. Here, the approach identifies 

sex differences by analyzing the minimally processed MRIs of the first 8144 participants (age 9 

and 10 years) recruited by the Adolescent Brain Cognitive Development (ABCD) study. The 

identified pattern accounted for confounding factors (i.e., head size, age, puberty development, 

socioeconomic status) and comprised cerebellar (corpus medullare, lobules III, IV/V, and VI) and 

subcortical (pallidum, amygdala, hippocampus, parahippocampus, insula, putamen) structures. 

While these have been individually linked to expressing sex differences, a novel discovery was 

that their grouping accurately predicted the sex in individual pre-adolescents. Another novelty was 

relating differences specific to the cerebellum to pubertal development. Finally, we found that 

reducing the pattern to a single score not only accurately predicted sex but also correlated with 

cognitive behavior linked to working memory. The predictive power of this score and the 

constellation of identified brain structures provide evidence for sex differences in pre-adolescent 

neurodevelopment and may augment understanding of sex-specific vulnerability or resilience to 

psychiatric disorders and presage sex-linked learning disabilities.
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1. Introduction

The concept of sex differences is based on biology and genetics. Since the 1930s (e.g., 

Pfeiffer, 1936), identifying sex differences in the Central Nervous System (CNS) has been 

explored in animal models (Becker and Koob, 2016; Galea et al., 2006; Goldstein et al., 

2001; McEwen, 1983; Woodson and Gorski, 2000) and histology of postmortem human 

brain samples (Vogeley et al., 2000; Witelson et al., 2005; Witelson, 1989). More recently, in 

vivo neuroimaging (Fan et al., 2010; Filipek et al., 1994; Flaum et al., 1995; Goldstein et al., 

2001; Hänggi et al., 2010; Sacher et al., 2013; Wang et al., 2012) and computer-based 

learning tools (Breslau et al., 2017; Feis et al., 2013; Nieuwenhuis et al., 2017; Van Putten et 

al., 2018; Xin et al., 2019) have been implemented in the search for a CNS basis of sexual 

differentiation. Beyond sex-linked risks for disease (Brie et al., 2019; Egloff et al., 2018; 

Jahanshad and Thompson, 2017; Lind et al., 2017; Retico et al., 2016; Vogeley et al., 2000), 

this search is motivated by adolescence being a period of particular vulnerability to the 

emergence of sex-linked neuropsychiatric disorders such as schizophrenia (Vogeley et al., 

2000; Womer et al., 2016) and autism (Golarai et al., 2006; Liu et al., 2016; Pierce et al., 

2019; Retico et al., 2016; Strickler et al., 2020), which have a higher prevalence in boys than 

girls, and depression, which girls by age 15 develop twice as likely as boys (Breslau et al., 

2017; Cyranowski et al., 2000).

In vivo structural magnetic resonance imaging (MRI) studies characterize brain development 

as following heterogeneous growth trajectories (Giedd, 2004; Petrican et al., 2017) during 

which sex-specific behaviors emerge (Johnson and Meade, 1987). While physical signs of 

sex differences are present at birth (Gilmore et al., 2007), brain structural and functional 

differences between the sexes continue to develop over childhood through late adolescence 

(Giedd et al., 2015; Mankiw et al., 2017; Pfefferbaum et al., 2016, 2018; Tamnes et al., 

2017). For example, both cortical and subcortical gray matter volumes exhibit inverted U-

shaped trajectories reflecting growth followed by synaptic pruning, with boys showing a 

slightly larger rate of change throughout childhood and adolescence than girls (Lenroot et 

al., 2007b). With respect to white matter, the volume increases with age in both sexes, but 

boys generally show a more rapid increase during adolescence (Lenroot et al., 2007b). These 

sex specific changes in brain structure during adolescence (Wierenga et al., 2018a) are 

accompanied with asexual developments, such as structural volume (Aubert-Broche et al., 

2013; Ducharme et al., 2015; Herting et al., 2018; Mills et al., 2012; Narvacan et al., 2017; 

Vijayakumar et al., 2016), cortical thickness (Vijayakumar et al., 2016), cortical surface area 

(Ducharme et al., 2015; Vijayakumar et al., 2016), individual’s behavior (Wierenga et al., 

2014), and testosterone effects (Wierenga et al., 2018a).

Many of the differences in brain development between the sexes are actually linked to head 

size (Ruigrok et al., 2014; Sanchis Segura et al., 2018). As boys on average have larger 

brains than girls, identifying sex differences in the brain beyond head size is challenging and 

might explain the inconsistent findings in the literature. For example, whether sex 

differences are present within the corpus callosum has been a matter of debate (Etchell et al., 

2018; Jahanshad and Thompson, 2017; Luders et al., 2014; Sawyer et al., 2018; Sullivan et 

al., 2001). Beyond properly accounting for head size (Luders et al., 2014; Perlaki et al., 

2014; Pfefferbaum et al., 2016; Sanchis Segura et al., 2018), discrepancies in findings may 
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be due to small sample sizes (Button et al., 2013; Filipek et al., 1994; Lenroot et al., 2007a), 

wide age distributions (sometimes across several decades so age-specific sex differences are 

obscured) (Etchell et al., 2018; Kim et al., 2012), or a priori assumptions that reduce the rich 

information encoded in MRIs to a few brain measurements (e.g., volumes of a limited 

number of brain regions of interest (ROIs)) (Etchell et al., 2018; Xin et al., 2019). The study 

presented herein accounts for these issues by building on recent advancements in the field of 

deep learning (Esmaeilzadeh et al., 2018; Krizhevsky et al., 2012; Van Putten et al., 2018) to 

identify patterns not driven by study confounders, which are extraneous variables (such as 

age) that may induce undesired class differences if not properly controlled.

Specifically, we present a deep learning framework (see Fig. 1) predicting sex from the 

minimally processed T1-weighted (T1w) MRIs (Hagler et al., 2019) of 8144 pre-adolescents 

(ages 9 and 10 years) of the ABCD study (http://abcdstudy.org). The variance in the 

prediction scores is related to the cognition test scores of the National Institutes of Health 

(NIH) Toolbox® (Luciana et al., 2018). Finally, we qualitatively assess the average saliency 
map (Simonyan et al., 2014) across all MRIs, which encodes the contribution of each voxel 

of the MRI in predicting sex while removing the effects driven by the confounders, i.e., age 

and pubertal and socioeconomic status.

2. Materials and methods

2.1. ABCD participants and study design

The model was evaluated on data collected by the ABCD study (http://abcdstudy.org). 

Demographic information (Table 1), cognitive test scores from the NIH toolbox (Table 2, 

details are explained in Appendix A), and T1-weighted (T1w) MR images (Hagler et al., 

2019) from 8670 participants were distributed by the ABCD-Neurocognitive Prediction 

Challenge (ABCD-NP-Challenge 2019) (Pohl et al., 2019) via the National Database for 

Autism Research (NDAR) portal (Release 2.0), of which 8144 subjects contained the data 

needed for this analysis. Socioeconomic status (SES) was estimated by identifying the 

maximum level of education across parents/guardians as done elsewhere (Sullivan et al., 

2016). Pubertal status was determined by self-assessment with the Pubertal Development 

Scale (PDS) (Carskadon and Acebo, 1993; Petersen et al., 1988), a validated measure of 

pubertal stage that shows modest concordance with a physical exam and that correlates with 

basal gonadal hormone levels. An average PDS was calculated for each participant by 

adding up scales on five self-reports obtained from parents’ responses to a questionnaire, 

where each scale ranged from 1 to 4. Based on this computation, PDS categorized ABCD 

youth as either (1) pre-pubertal, (2) early-pubertal, (3) mid-pubertal, (4) late-pubertal (5) 

post-pubertal. Participants of multiple ethnicities were categorized according to their 

minority ethnicity (e.g., a report of Asian and Caucasian was classified as Asian) 

(Pfefferbaum et al., 2016). Body Mass Index (BMI) was calculated based on published 

methods (Freedman et al., 2017). Observed Sex for all the participants was defined as the 

sex at birth.

Recruitment for the ABCD study closely represented the general U.S. population of 9 and 

10 year-old children with respect to key demographic variables including sex, ethnicity, 

household income, parental education, and parental marital status (Thompson et al., 2019). 

Adeli et al. Page 3

Neuroimage. Author manuscript; available in PMC 2021 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://abcdstudy.org
http://abcdstudy.org


Parents provided informed consent and were fluent in either English or Spanish; children 

had to be fluent in English and provide assent for participation. Exclusionary criteria 

included poor English-language proficiency; the presence of severe sensory, intellectual, 

medical, or neurological issues that would affect the validity of data or ability to comply 

with the protocol; and contraindications to MRI (see Garavan et al., 2018) for complete 

description of details regarding recruitment and inclusion/exclusion criteria).

2.2. MRI data acquisition and processing

Details on T1w-MRI acquisition are provided by https://abcdstudy.org/images/

Protocol_Imaging_Sequences.pdf Processing of T1w-MRI were subjected to the ABCD 

minimal-processing pipeline (Hagler et al., 2019) followed by noise removal (Coupe et al., 

2008) and field-inhomogeneity correction via N4ITK (Version 2.1.0) (Tustison et al., 2010). 

Brain masks were determined via majority voting (Rohlfing et al., 2004) over the 

segmentations generated by applying the following tools to both bias and non-bias corrected 

T1w-images: FSL BET (Version 5.0.6) (Smith, 2002), AFNI 3dSkullStrip (Version 

AFNI_2011_12_21_1014) (Cox, 1996), FreeSurfer mri-gcut (Version 5.3.0) (Sadananthan et 

al., 2010), and Robust Brain Extraction (ROBEX) (Version 1.2) (Iglesias et al., 2011). The 

resulting brain mask was used to refine correction for image-inhomogeneity and skull 

stripping. MRIs were then affinely registered to the SRI24 template (Rohlfing et al., 2010), 

down-sampled to 2 mm isotropic voxel size, and re-scaled to 64 × 64 × 64 volumes. The 

affine registrations ensured that all MRIs of the ABCD study had similar head size as 

measured by supratentorium volume (svol) (see also Table 1 for the resulting insignificant 

difference in head size between boys and girls).

Fig. 1 outlines the deep learning framework used to predict sex from minimally processed 

MRI data. The framework was composed of a Predictor/Extractor and a Classifier 

(Esmaeilzadeh et al., 2018; Nie et al., 2016). The Predictor/Extractor identified a set of 

Predictor variables P = {P1, P2, …, PM} from MR images based on a deep convolutional 

network (Krizhevsky et al., 2012). The Classifier was a set of fully connected layers 

reducing P into a continuous Prediction Score S, which was the probability π computed by 

the classifier of an MRI being associated with a girl (i.e., π(girl) = S) or a boy (i.e., π(boy) = 

1 − S). Appendix B provides a more in-depth description of the deep learning architecture.

The prediction accuracy of the model was determined in two steps. Assuming that sex 

affects the brain bilateral (Hill et al., 2014; Hirnstein et al., 2019; Phinyomark et al., 2014; 

Román et al., 1989; Weinhandl et al., 2010) and to simplify the interpretation of the findings, 

the left hemisphere was first flipped to create a 2nd “right ” hemisphere. Then, 5-fold cross-

validation (Kohavi, 1995) was performed by splitting the data based on subjects. At each 

iteration of the cross-validation, the four folds of the data used for training were first 

augmented to ensure that the learning was based on a balanced and sufficient number of 

boys and girls (Oksuz et al., 2019), i.e, 5000 for each group. Data augmentation consisted of 

applying random rigid transformations (within one voxel shifting and 1° rotation along the 

three axes) to the minimally processed (and flipped) MRIs. On this augmented data set, the 

entire deep model, which included the predictor extractor and the classifier, was trained from 

scratch in an end-to-end manner (Esmaeilzadeh et al., 2018). Next, the prediction of the 
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individual’s sex was recorded on the fifth fold (which was not augmented) by computing the 

average prediction score (S) across both hemispheres. The training and testing processes 

were repeated until the prediction score was reported for each subject. The average accuracy 

of the method on all folds was then computed by first binarizing S of each participant to 1 

(girl) or 0 (boy) and then comparing the predictions to their observed sex via commonly 

used metrics: balanced classification accuracy (Park et al., 2018) (a.k.a. accuracy), true 

positive rate, false positive rate, and the area under the receiving operating characteristic 

curve.

To put the prediction accuracy in perspective and compare with widely used machine 

learning methods, the cross-validation was repeated with respect to logistic regression (Adeli 

et al., 2020; Kleinbaum and Klein, 2002), support vector machines (Chang and Lin, 2011) 

and random forest (Liaw and Wiener, 2002) applied to the volumes of 116 brain ROIs 

defined according to the SRI24 atlas (Rohlfing et al., 2010). Measuring the volumes of ROIs 

consisted of non-rigidly registering the SRI24 atlas to each brain-size corrected MRI via 

ANTS (Version: 2.1.0) (Avants et al., 2008) and overlaying parcellations with the tissue 

segmentations from Atropos (Avants et al., 2011). The experiment was repeated using the 

906 regional scores generated by Freesurfer based on the Destrieux atlas (Destrieux et al., 

2010), which were provided by the ABCD Study Release 2.0 (http://abcdstudy.org). These 

regional scores consisted of cortical thickness, sulcal depth, surface area, and volume of 

cortical ROIs and the average T1 intensities within the white and gray matter.

In addition to the comparison to other methods, a sex-agnostic test correlated the prediction 

score S of the individuals with the test scores of the age-corrected NIH toolbox (significant 

p-value < 0.05 according to Pearson’s R). Identifying variance in the prediction score 

partially induced by an NIH toolbox score (Fig. 2) was done via the partial mediation model 

(Baron and Kenny, 1986). Partial mediation required that (1) observed sex significantly 

correlated with the NIH toolbox score; (2) the NIH toolbox score significantly correlated 

with the prediction score when accounting for observed sex as an additional covariate; and 

(3) the correlation between observed sex and the prediction score was significantly reduced 

(p-value inferred from a permutation test of 10,000 permutations) when accounting for the 

NIH toolbox score as an additional covariate.

Finally, we performed bootstrapping (5 runs) to determine the effects of PDS (the most 

significant confounder of this study according to Table 1) on the sex predictions of our 

approach. Each of the 5 runs was defined by 5-fold cross-validation consisting of a unique 

random split of the data into 5-folds. The correctly classified subjects in all 5 runs were 

assigned to one group, and the ones that were incorrectly classified in all 5 runs were 

assigned to a second group. For each sex separately, differences in the PDS between the two 

groups were defined by the p-value of the χ2 test (Pearson, 1900). Across the two groups, 

the prediction accuracy (for both boys and girls) was determined for cohorts confined to the 

same PDS. We then reported on the cohorts with a sufficient number of samples for each 

sex, which were the cohorts for PDS 1, 2, and 3.

All methods were implemented using Python 3.7.0 and its libraries including SciPy 1.1.0, 

NumPy 1.15.1, Scikit-Learn 0.19.2, pygrowup 0.8.2 toolbox (pygrowup, 2017), Tensorflow 
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1.7.0 (Abadi et al., 2016), and Keras 2.2.2 (Gulli and Pal, 2017). The codes of our deep 

learning implementation are publicly available at https://github.com/QingyuZhao/

Confounder-Aware-CNN-Visualization and the tests at https://github.com/eadeli/

ABCD_SexDiff.

2.3. Identifying confounder-free patterns and ROIs relevant to sex

To derive a single pattern informative for identifying sex differences, we re-trained our 

proposed approach on the entire dataset. For each participant, the discriminative power of 

each voxel to predict sex was recorded using a saliency map (Simonyan et al., 2014). The 

initial salience map was computed by applying the minimally processed and flipped MRI to 

the trained prediction model and then performing back-propagation (Kotikalapudi and 

contributors, 2017). Note, saliency computation did not require data augmentation nor 

estimating prediction accuracy.

Next, the map was further corrected for the effects of potential confounders on the decision 

process of the model. Confounders were demographic factors significantly different between 

sexes according to Table 1, i.e., age (zage), PDS (zpds), and SES (zses). To determine if a 

confounder significantly influenced the decision process of S, a general linear model (GLM) 

(Madsen and Thyregod, 2010) was fit across all samples with respect to each predictor 

variable Pj of P :

Pj = β0 + β1S + β2zpds + β3zage + β4zses . (1)

If the predictor variable Pj of the GLM significantly correlated (p ≤ 0.05) with one of the 

demographic variables, the predictor was considered confounded and omitted from 

computing the saliency maps. The lenient p-value threshold of 0.05 was not corrected for 

multiple comparison as we wanted our analysis to be sensitive towards identifying 

confounded predictors so that the resulting pattern accurately represented sex differences. 

The pattern encoding the relevance of each voxel in predicting sex was defined by the 

average across the confounder-free saliency maps of all participants. Conversely, a pattern 

encoding the effect of a specific confounder was created by computing the saliency maps 

based on confounded predictors.

To relate the identified voxels to previously defined brain ROIs (using SRI24 atlas, Rohlfing 

et al., 2010), we computed the average saliency value of each ROI from the confounder-free 

saliency map of each participant. For each ROI, follow-up t-tests evaluated whether the 

average saliency value within that region was significantly different between groups (p-value 

< 0.05 with Bonferroni multiple comparison correction Shaffer, 1995).

3. Results

The accuracy of the prediction score in correctly assigning MRIs to either sex was 89.6% 

(Receiver operating characteristic curve in Appendix C), which was significantly better than 

chance (p < 0.001 according to a Fisher exact test, Fisher, 1935). The prediction accuracy 

was stable across 5 runs of 5-fold cross-validation based on random splitting of folds (89.6% 
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± 0.13%) but was slightly lower (87.3%) on a subset of 2464 boys and 2464 girls matched 

on head size (matched according to Adeli et al., 2018). Furthermore, the True Positive Rate 

(TPR) of the deep learning model was 87.4% and True Negative Rate (TNR) was 91.5% 

(girls = 1, boys = 0). Compared with the correctly classified pre-adolescents, misclassified 

boys had significantly higher PDS while misclassified girls had significantly lower PDS (p-

value < 10−6 according to χ2 test). The prediction confined to individuals with the same 

PDS was 88.9% for participants with PDS = 1, 89.5% for PDS = 2, and 90.1% for PDS = 3.

The prediction of our approach was significantly more accurate (Delong test, DeLong et al., 

1988, p-value < 0.001) than the results reported by Logistic Regression, Support Vector 

Machine, and Random Forest applied to the 116 ROI volume measures or the 906 Destrieux 

parcellation measures (see Table 3). To gain a better understanding of this improvement, we 

recomputed the accuracy of our model across 5 runs of 5-fold cross-validation with respect 

to the number of predictors. The average accuracy remained relatively high (86.5%) even 

when extracting only 128 predictors from each MRI (see Fig. 3 (a)). Furthermore, similarly 

high accuracy was achieved by the other approaches when trained on the predictors 

extracted by our deep model (Fig. 3 (b)).

A visual confirmation of the significant prediction accuracy of our model were the two 

distinct distributions shown in Fig. 4 (a), which plotted the Prediction Score (S) of each 

participant as a function of their observed sex. Furthermore, projecting the high dimensional 

Predictors (P) learned from one training run into 2D via the t-distributed Stochastic 

Neighbor Embedding (tSNE) (Maaten and Hinton, 2008) also resulted in a cluster for boys 

and a separate one for girls (Fig. 4 (b)).

Fig. 5 (a) visualizes the initial saliency map with voxel values above 0.1 before correcting 

for confounders. The highlighted area significantly contributed to predicting sex, which 

partly consisted of the temporal lobes, subcortical regions, cerebellum, and corresponding 

white matter. Fig. 5 (b) shows the area of sexual differentiation according to the confounder-

free saliency map (i.e., with age, PDS, and SES removed), which is more spatially 

concentrated than the initial saliency map (Fig. 5 (a)). According to the confounder-free 

saliency values, the 10 ROIs most relevant for predicting sex were insula, pallidum, para 

hippocampus, and putamen (larger in boys than girls); hippocampus, corpus medullare, and 

cerebellum VI (larger in girls than boys) (Fig. 6). Although deep learning identified insula, 

amygdala, and cerebellar lobules III and IV/V as significant predictors of sex, their volume 

differences by sex were not forthcoming. The cerebellum was also the region mostly 

confounded by PDS (Fig. 5 (c)), the most significant confounder in the model.

Table 4 lists the correlation and mediation effect of NIH toolbox scores with respect to the 

prediction score S Significant correlations (p-value < 0.05) between S and NIH toolbox 

scores were confined to the List Sorting Working Memory Test, Pattern Comparison 

Processing Speed, Picture Sequence Memory Test, and Picture Vocabulary Test. Further, a 

partial mediation model examined whether the NIH toolbox scores could partially explain 

the variance in S in addition to the observed sex (Fig. 2). Only the List Sorting Working 

Memory Test score met the 3 significance conditions of the mediation model (p-value < 
0.05): (1) observed sex significantly correlated with the NIH toolbox score; (2) the NIH 
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toolbox score significantly correlated with S when accounting for observed sex as an 

additional covariate; and (3) the correlation between observed sex and S was significantly 

reduced when accounting for the NIH toolbox score as an additional covariate.

4. Discussion

The deep learning model presented herein not only successfully predicted the sex of 8144 

pre-adolescents from (head-size normalized) T1w MRI but also was more accurate than 

several other commonly used machine learning approaches, e.g., logistic regression, support 

vector machine, and random forest. While these machine learning approaches relied on a 
priori defined regional measurements (as is commonly used for neuroscience studies, Adeli 

et al., 2018; Aubert-Broche et al., 2013; Chung et al., 2005; Green et al., 2016; Kim et al., 

2012), the improved accuracy of the deep learning model was mostly due to its ability to 

simultaneously extract predictors directly from the MRIs and perform classification (see Fig. 

3). A novel discovery of that search for discriminative information was that sex could be 

accurately predicted in individual pre-adolescents through a pattern composed of subcortical 

and cerebellar regions. Also unknown for pre-adolescence was that the cerebellum was most 

strongly affected by PDS, the most significant confounder of the study. Finally, reducing the 

pattern to a single score revealed that its variance was not only explained by sex but also by 

cognitive behavior linked to working memory.

Critical for interpreting the pattern was the notion that sex differences on brain structure are 

bilateral (Hirnstein et al., 2019; Phinyomark et al., 2014; Román et al., 1989; Weinhandl et 

al., 2010). We modeled that by ‘flipping’ the left hemisphere and then training the algorithm 

on two ‘right’ hemispheres for each subject. When omitting flipping, the prediction accuracy 

was 89.1% when just trained on the left hemisphere, 88.5% when only trained on the right 

hemisphere, and 90.1% when trained on both hemispheres (omitting flipping). These 

accuracy scores were insignificantly different (p > 0.1; DeLong’s test) from those of the 

‘flipped’ approach confirming the bilateral nature of sex differences.

Another critical aspect in analyzing the pattern was computing a saliency map that displayed 

brain areas exhibiting sex differences while accounting for confounders; something that had 

not been attempted by prior data-driven analyses (Feis et al., 2013; Nieuwenhuis et al., 2017; 

Ruigrok et al., 2014; Van Putten et al., 2018; Xin et al., 2019). Removing confounding 

effects after training a machine learning model is potentially a more conservative approach 

compared with removing effects through preprocessing (e.g., matching), i.e., before the 

training. Unlike removing confounding effects after training, preprocessing generally cannot 

completely remove those effects so that learning approaches can still leverage the remaining 

confounding effects to ‘improve’ predictions (Park et al., 2018). Of the three confounders 

considered, PDS was the most significant one, which was generally larger in girls than in 

boys within the pre-adolescent age range (Table 1). While misclassified boys had 

significantly higher PDS and misclassified girls had significantly lower PDS than correctly 

classified individuals of the same sex, the prediction accuracy of our deep learning model 

was not affected by PDS as the overall accuracy of 89.6% remained stable when confining 

the evaluation to individuals with the same PDS. The region most confounded by PDS was 

the cerebellum (Fig. 5 (c)) suggesting that pubertal status may be specifically associated 
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with cerebellum development at this young age. This hypothesis is difficult to test on the 

baseline data of ABCD as the majority (~ 73%) of individuals were categorized as pre- or 

early pubescent. However, as the ABCD cohort ages, the variability in PDS will be 

considerably greater, and as such, will allow us to explore in more detail the potential 

interaction between sex and puberty in terms of cerebellar development.

In addition to the relationship to PDS, structures of the cerebellum were critical to predicting 

sex in individual, which is inline with a number of adult studies (Chung et al., 2005; Fan et 

al., 2010; Raz et al., 2001; Tiemeier et al., 2010). However, sex differences in cerebellar 

volume became generally negligible once studies corrected for intracranial volume (e.g., 

Nopoulos et al., 2000; Sullivan et al., 2020; Szabo et al., 2003). More specifically, the corpus 

medullare of the cerebellum in this study was significantly larger in girls than boys. By 

contrast, the longitudinal study by Tiemeier et al., 2010 did not detect significant sex 

differences in the corpus medullare but reported that total cerebellar volume was larger in 

boys than girls, and that this total volume peaked at age 15.6 years in boys and at age 11.8 

years in girls. The discrepancy in age range of the participants between that study (spanning 

pre-adolescents to young adults) and our analysis (ages 9 and 10 years) might reflect 

variance in cerebellar developmental trajectories during critical developmental years. Indeed, 

a recent review of the literature on language and brain development concluded that sex 

differences were most often found in studies limited to tight age ranges (Etchell et al., 2018). 

Sex differences in regional brain volumes may be apparent in some but negligible in other 

developmental stages, likely due to different rates of brain maturation between girls and 

boys (Luna et al., 2004).

Of the predictive regions within the subcortex, the hippocampus was larger in girls than boys 

after correcting for head size (see Fig. 6). The hippocampus has often been associated with 

sex-specific differences in memory and learning in adolescence (Aggleton et al., 2010; Pilly 

et al., 2018). This observation comports with the finding that girls participating in the ABCD 

study had significantly higher scores on the NIH Toolbox Picture Sequence Memory Test, 

which is a validated measure of episodic memory (Dikmen et al., 2014a). The finding that 

girls had relatively larger hippocampi than boys is also supported by MRI studies of young 

adults (Filipek et al., 1994; Frodl et al., 2002; Szabo et al., 2003) that linked sex differences 

in hippocampal volume to hormonal responsivity (Giedd et al., 1996; Teicher et al., 2003) 

and memory performance (Hill et al., 2014; Trenerry et al., 1995; Young et al., 2013). Other 

studies noted relations between hippocampal volumes and clinical characteristics of 

psychiatric disorders (Egloff et al., 2018; Frodl et al., 2002; Yang et al., 2017), where sleep 

disturbances are more severe (Yang et al., 2017), depressive episodes are more frequent and 

longer, and higher frequency of migraines occurs in depressed female compared to 

depressed male patients (Saunders et al., 2014).

Other regions relevant for predicting sex included putamen, pallidum, and amygdala. These 

regions are frequently noted with reference to sex differences in brain maturation. An early 

imaging study of children aged 4–18 years suggested that while the caudate is relatively 

larger in girls, the pallidum is larger in boys (Giedd et al., 1997). A more recent study based 

on data from the Pediatric Imaging, Neurocognition, and Genetics (PING) study with 1234 

participants (ages 3 to 21 years) (Wierenga et al., 2018b) showed that volumes of putamen 
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and pallidum had greater variance in boys than girls: these differences may contribute to the 

variability in cognition and general intelligence in developing boys (Arden and Plomin, 

2006; Baye and Monseur, 2016). Likewise, the amygdala has been linked to sex differences 

in animal and human studies across the lifespan (Blume et al., 2017; Green et al., 2016). A 

surface-based modeling approach showed that men had a larger mean radius of amygdala 

subregions than women (Kim et al., 2012). Further, sex differences in amygdala volume may 

contribute to the expression of selective psychotic disorders occurring more commonly in 

men than women (Blume et al., 2017) and depressive disorders, which are more common in 

women (Breslau et al., 2017; Cyranowski et al., 2000).

Like the amygadala, the insula was important for predicting sex but its volume was 

insignificantly different between the two cohorts. Functional studies have frequently shown 

the significant role of these two regions in working memory performance (Menon and 

Uddin, 2010). Interestingly in our study, sex prediction by the deep learning model was 

mediated by the List Sorting Working Memory test score, which was higher for boys than 

girls (see Table 4). These results suggest that the deep learning approach of directly 

analyzing intensity values at a voxel level is potentially more powerful in extracting 

morphological characteristics linked to cognitive differences between the sexes than 

traditional approaches that focus on specific measurements.

In addition to the mediation analysis, the predictive score was significantly correlated to 

most of the cognitive scores by the NIH Toolbox. These early and pervasive sex differences 

in neurocognitive measures echoed those identified on the 10,000 youth of the Philadelphia 

Neurodevelopmental Cohort (PNC) (Gur and Gur, 2016), in which girls performed better 

than boys on tasks assessing verbal memory and social cognition, whereas boys excelled on 

spatial processing and motor speed (Gur and Gur, 2017; 2016). Similar results were reported 

with the National Consortium on Alcohol and Neurodevelopment in Adolescence 

(NCANDA) data, whose cognitive test battery included those of the PNC study (Sullivan et 

al., 2016). Further consistency in sex differences on performance is forthcoming between 

our results and those published by the PING study, which, like the ABCD study, used the 

NIH Toolbox Battery. The PING study found that girls performed better than boys on tests 

assessing cognitive flexibility, problem solving, and episodic memory, whereas boys 

performed better on a list sorting task, assessing working memory for sorting and 

sequencing information (Akshoomoff et al., 2014). Taken together, the consistency of sex 

differences in the development of component processes of selective cognitive skills 

transcended cohort differences and specific testing materials, which provide evidence for 

generalization of these identified sex differences.

Limitation.

Our analysis did not detect significant sex differences in the cortex possibly because the 

MRIs were affinely aligned to a template, thereby minimizing headsize differences. While a 

common practice in end-to-end training (Bäckström et al., 2018; Esmaeilzadeh et al., 2018), 

affine registration might poorly align the cortical gyri and sulci given their high inter-subject 

variability (Llera et al., 2019). Non-rigid registration achieves better voxel-wise 

correspondence across MRIs enabling learning algorithms to focus on fine-grained regional 
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cues (Lin et al., 2018; Liu et al., 2018). Now identifying cues differentiating between groups 

highly depends on the ‘stiffness’ of the deformation field (Murphy et al., 2016; Wittek et al., 

2010), which can substantially modify the shape and appearance of brain structures. One 

possible data driven approach for setting the stiffness with respect to the cortex is to first 

parcellate the structure (via a surface based segmentation tool, Dale et al., 1999; Onofrey et 

al., 2018; Zhao et al., 2019) and then perform an ROI-based registration for the whole brain 

(such as Lopez-Garcia et al., 2006; Yi et al., 2006). As any of these registration can 

negatively affect analysis, their effect on our deep learning findings needs to be further 

investigated.

5. Conclusion

The voxel-level analysis on the large number (N = 8144) of pre-adolescents (age 9 and 10) 

confirmed and extended the common finding of smaller neuroimaging studies that 

cerebellum and subcortical structures (including hippocampus, amygdala, pallidum, and 

putamen) differed in size between boys and girls. Not known before, however, was that the 

constellation of those brain structures accurately predicted the sex of individual pre-

adolescents. The predictive power of the pattern provides evidence for sex differences in pre-

adolescent, pubertal development, which may show even greater differentiation as the cohort 

ages. Tracking these disparities is a normative process that could augment understanding of 

sex-specific vulnerability or resilience to psychiatric disorders and presage sex-linked 

learning disabilities.
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Appendix A.: Descriptions of the NIH Toolbox® Cognitive Tests

The NIH Toolbox® cognition measures were developed as part of the NIH Blueprint for 

Neuroscience Research (http://www.nihtoolbox.org). The tests assess episodic memory, 

executive function, attention, working memory, processing speed, and language abilities, 

enabling generation of composite scores (Gershon et al., 2013b; Hodes et al., 2013). Use of 

a common tool for cognitive assessment valid for ages spanning the ABCD cohort’s current 

and future range allows for longitudinal tracking of the developmental trajectories of this 

cohort in addition to harmonization and comparison of cognitive performance with 

numerous other studies. The tasks were selected based on a consensus building process and 

developed and validated using assessment methods that included item response theory (IRT) 

and computerized adaptive testing (CAT) where appropriate and feasible. Each Toolbox® 

task produces a number of scores, some of which are adjusted for age, sex, and ethnicity. All 

tasks provide raw scores, uncorrected standard scores, and age-corrected standard scores 

based on a normative sample of 2917 children and adolescents (Casaletto et al., 2015). This 

study used age-corrected measures to compare the two cohorts of boys and girls, as there 

was a significant difference between our two cohorts. These tests are comprehensively 

described elsewhere (Luciana et al., 2018) and briefly below.
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1. Language/Vocabulary Comprehension: The Toolbox Picture Vocabulary Task® 

(TPVT) is a variant of the Peabody Picture Vocabulary Test (PPTV) (Gershon et 

al., 2014; 2013a; Mungas et al., 2014).

2. Language/Reading Decoding: The Toolbox Oral Reading Recognition Task® 

(TORRT) asks individuals to pronounce single letters or words presented in the 

middle of the iPad screen (Gershon et al., 2014; 2013a) and measures exposure 

to language materials and cognitive skills involved in reading.

3. Processing Speed: The Toolbox Pattern Comparison Processing Speed Test® 

(TPCPST) (Carlozzi et al., 2015; 2014; 2013) was modeled on the Pattern 

Comparison Task developed by Salthouse (Salthouse et al., 1991) and is a 

measure of rapid visual processing.

4. Working Memory: The Toolbox List Sorting Working Memory Test® 

(TLSWMT) is a variant of the letter-number sequencing test (Gold et al., 1997) 

that uses pictures rather than words or letters (Tulsky et al., 2013, 2014).

5. Episodic Memory: The Toolbox Picture Sequence Memory Test® (TPSMT) was 

modeled after memory tests asking children to imitate a sequence of actions with 

props developed by Bauer et al. (2013) and Dikmen et al. (2014b)

6. Executive Function/Attention/Inhibition: The Toolbox Flanker Task® (TFT), a 

variant of the Eriksen Flanker task (Eriksen and Eriksen, 1974), was adapted 

from the Attention Network Task (Fan et al., 2002; Rueda et al., 2004) and 

assessed response inhibition.

7. Executive Function/Cognitive Flexibility: The Toolbox Dimensional Change 

Card Sort Task®(TDCCS) was based on the work of Zelazo and colleagues 

(Zelazo, 2006) and measures problem solving and cognitive flexibility.

Appendix B.: Deep learning model architecture and hyperparameters

Input to the deep learning model was the 3D MRI of one hemisphere of size 64 × 64 × 32. 

The predictor extraction network contained 4 stacks of 3 × 3 × 3 convolutional layers, ReLu 

activation, batch normalization, and 2 × 2 × 2 max-pooling layers. The size of feature 

channel for the 4 convolution layers was (16,32,64,128). Then the resulting 4096 features 

were fed into a set of fully connected layers (Multi-Layer Perceptron) classifier composed of 

three Fully Connected (FC) layers of dimension (64,32,1). tanh activation was used for the 

first two FC layers, and sigmoid activation was used for the last FC layer resulting in the 

final prediction score S ∈ [0, 1]. An L2 regularization of weight 0.1 was applied to the FC 

layers (see Fig. 7).
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Fig. 7. 
Architecture of our deep learning model.

Fig. C.1. 
Receiver Operating Characteristics (ROC) curve of the classifier differentiating boys and 

girls based on MR images. The blue curve shows the results of the model based on ABCD 

data.

Appendix C.: Receiver operating characteristic curve

As included in the main paper, our deep learning framework led to an accuracy of nearly 

90% for predicting the sex of individuals based their structural MRI data. The receiver 
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operating characteristic (ROC) curve of this classification model is depicted in Appendix 

Fig. C.1, which shows an area under the curve (AUC) of 0.96.
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Fig. 1. 
Overview of the proposed analysis. The convolutional neural network (CNN) automatically 

extracts predictors (P) from the minimally processed MRI. Based on P, the classifier 

computes a prediction score (S) that assigns the MRI to either sex. This deep learning 

analysis operates directly on voxel-level data omitting any hypothesis or assumption related 

to brain regions or tissue measurements (like regional volumes). Statistical analysis relates 

obtained results to NIH Toolbox cognitive test scores, creates confounder-free visualization 

of the patterns predicting sex (a.k.a. saliency map), and examines volume scores of those 

regions that contribute significantly to the prediction according to the saliency map.
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Fig. 2. 
Mediation analysis to observe how much of the variance in the prediction score was 

explained by the observed sex and how much was influenced by the NIH toolbox score.
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Fig. 3. 
Results of the deep learning model predicting sex with different numbers of predictors (a), 

and different classifiers (b).
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Fig. 4. 
Visualization of Predictors and the Prediction Score as determined by the deep learning 

model. (a) Prediction Score (S) of each participant as a function of their observed sex. These 

two figures show that our deep learning model can effectively reduce the MRIs to a vector of 

predictors (P) and then to a scalar value (S) that distinguishes girls from boys. (b) t-
Distributed Stochastic Neighbor Embedding (tSNE) (Maaten and Hinton, 2008) projection 

of extracted Predictors (P) in 2D space. Each point indicates one adolescent; color represents 

sex. The axes show the relative location of each individual with respect to their neighbors in 

2D with neighborhoods reflecting those of the high dimensional space (according to Maaten 

and Hinton, 2008).
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Fig. 5. 
Saliency maps defining predictive brain areas for distinguishing boys from girls in the 

ABCD study; (a) original and (b) corrected for confounding factors. In the developing brain 

of 9 and 10-year-olds, the factors distinguishing boys from girls mainly lie in the subcortical 

and cerebellar regions. (c) Regional brain pattern of sex differences confounded by PDS. 

Note, computing saliency maps requires scaling of the maps so that the resulting importance 

values are only meaningful within one saliency map but cannot be directly compared across 

maps.
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Fig. 6. 
Top 10 regions relevant for distinguishing sex as determined by the deep learning 

framework. Some of these regions are smaller in girls (cerebellar lobules III and IV/V, 

amygdala; and insula, pallidum, para hippocampus, and putamen), while hippocampus, 

corpus medullare, and cerebellar lobule VI are smaller in boys. p-Values of group 

differences of ROI volumes were calculated using two sample t-test. NS denotes not 
significant
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Table 3

Accuracy (Acc), true positive rate (TPR), true negative rate (TNR), area under the ROC curve (AUC) of 

different methods for predicting sex from MRIs.

Method Acc TPR TNR AUC

Ours (end-to-end deep learning) 89.6% 87.4% 91.5% 0.96

116 SRI24 volume scores

 Logistic Regression 74.2% 74.3% 74.0% 0.80

 Support Vector Machine 74.2% 73.0% 75.5% 0.81

 Random Forest 70.9% 66.7% 74.5% 0.75

906 Destrieux Parcellation Measures

 Logistic Regression 80.0% 80.8% 79.2% 0.88

 Support Vector Machine 79.1% 78.1% 79.9% 0.84

 Random Forest 74.2% 72.2% 76.0% 0.79
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