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Abstract

We propose a fully-automatic deep learning-based algorithm for segmentation of ocular structures 

and microbial keratitis (MK) biomarkers on slit-lamp photography (SLP) images. The dataset 

consisted of SLP images from 133 eyes with manual annotations by a physician, P1. A modified 

region-based convolutional neural network, SLIT-Net, was developed and trained using P1’s 

annotations to identify and segment four pathological regions of interest (ROIs) on diffuse white 

light images (stromal infiltrate (SI), hypopyon, white blood cell (WBC) border, corneal edema 

border), one pathological ROI on diffuse blue light images (epithelial defect (ED)), and two non-

pathological ROIs on all images (corneal limbus, light reflexes). To assess inter-reader variability, 
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75 eyes were manually annotated for pathological ROIs by a second physician, P2. Performance 

was evaluated using the Dice similarity coefficient (DSC) and Hausdorff distance (HD). Using 

seven-fold cross-validation, the DSC of the algorithm (as compared to P1) for all ROIs was good 

(range: 0.62 – 0.95) on all 133 eyes. For the subset of 75 eyes with manual annotations by P2, the 

DSC for pathological ROIs ranged from 0.69 – 0.85 (SLIT-Net) vs. 0.37 – 0.92 (P2). DSCs for 

SLIT-Net were not significantly different than P2 for segmenting hypopyons (p > 0.05) and higher 

than P2 for WBCs (p < 0.001) and edema (p < 0.001). DSCs were higher for P2 for segmenting 

SIs (p < 0.001) and EDs (p < 0.001). HDs were lower for P2 for segmenting SIs (p = 0.005) and 

EDs (p < 0.001) and not significantly different for hypopyons (p > 0.05), WBCs (p > 0.05), and 

edema (p > 0.05). This prototype fully-automatic algorithm to segment MK biomarkers on SLP 

images performed to expectations on an exploratory dataset and holds promise for quantification 

of corneal physiology and pathology.
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I. Introduction

Microbial keratitis (MK) is an infectious corneal disease and one of the main causes of 

blindness worldwide [1–5]. Risk factors include ocular trauma and contact lens overwear, as 

well as geography and climate [6–10]. Ophthalmologists recommend different treatments for 

MK based on key morphological biomarkers, including stromal infiltrate (SI) and epithelial 

defect (ED) sizes [11–15]. Other biomarkers are highly indicative of severe MK, such as an 

intraocular hypopyon, the accumulation of white blood cells (WBCs), and corneal swelling 

(corneal edema). As they are tightly associated with clinical outcomes, clinicians evaluate 

biomarkers when diagnosing disease severity, monitoring disease progression, and making 

treatment decisions [15, 16]. However, the subjective use of biomarkers can be inaccurate 

and lead to suboptimal outcomes including treatment delays, poor vision outcomes, and even 

blindness [17].

Slit-lamp photography (SLP) images are a low-cost technology available in all eye clinics. 

SLP images are high-resolution external views of the anterior structures of the eye, including 

the cornea [18, 19]. Different illuminations using color filters, in conjunction with the 

application of topical stains to the eye such as fluorescein, lissamine green, or rose bengal, 

may be used to enhance the visibility of certain biomarkers, such as EDs [19–22]. However, 

SLP is not used on all patients. Instead, clinicians typically rely on subjective assessment of 

biomarkers and manually record their findings in the electronic health records (EHR). 

Subjective techniques include manual slit-lamp caliper measurements, drawings in the EHR, 

and free-text descriptions [23–27]. There are no standardized, distributed strategies to 

quantify specific MK biomarkers based on SLP images.

Prior research shows that (1) using a standardized method to capture information of corneal 

MK biomarkers and (2) employing a computer-aided strategy to quantify biomarkers 

improves reliability of measurements compared to the clinical exam gold standard while 
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simultaneously creating improved data fidelity with stored SLP images [28, 29]. Prior 

approaches have been developed for SIs and EDs based on k-means clustering [30], 

superpixels [31], Gaussian mixture models [32], random forests [29], and patch-based 

convolutional neural networks (CNNs) [33]. However, most of these algorithms require 

manual user input in the form of selecting landmarks to identify the corneal surface area [30, 

31, 33] or seed regions to distinguish between the background and biomarker of interest 

[29]. Additionally, these algorithms do not segment other important biomarkers such as 

hypopyons, WBCs, or edema. Building upon prior approaches, a fully-automatic 

computerized tool can deliver a robust and objective assessment of MK biomarkers on SLP 

images.

We developed and tested a fully-automatic algorithm, Slit-Lamp Imaging Technology 

(SLIT)-Net, for segmentation of ocular structures and multiple MK biomarkers on SLP 

images under two different illuminations. The algorithm is based on deep learning, a sub-

field of machine learning that has demonstrated excellent performance using CNNs for 

many image recognition and segmentation tasks [34–43] including in ophthalmic imaging 

[44–54]. A CNN is made up of several layers of filters that extract features from images and 

map them to an output. The values of the filters, commonly referred to as the weights of the 

network, are learned via optimization on annotated training data. We developed and 

evaluated SLIT-Net using SLP images collected in the USA and India. To the best of our 

knowledge, this is the first fully-automatic segmentation algorithm for MK. The goal is to 

help clinicians quantify measurements of MK biomarkers and therefore improve medical 

decision-making at the time of diagnosis and over the course of disease management. A 

preliminary version of this work has been reported [55, 56].

II. Material and methods

We developed and trained a deep learning network, SLIT-Net, to identify and segment four 

MK biomarkers on diffuse white light SLP images and one biomarker on diffuse blue light 

SLP images. Additionally, the network segments the corneal limbus and ocular surface light 

reflexes. We evaluated the performance of the network using the Dice similarity coefficient 

(DSC) and the general Hausdorff distance (HD).

A. Dataset

The dataset consisted of SLP images of 133 eyes taken at two eye centers - the University of 

Michigan Kellogg Eye Center (MI, USA) and Aravind Eye Care System (Madurai, India) - 

from 2016 to 2018. The University of Michigan Institutional Review Board and Aravind 

ethics committee reviewed the proposal and granted permission for this prospective 

investigation.

Patients were photographed under an SLP imaging setting described in prior work [29]. At 

both eye centers, two types of images were taken of each eye - one with diffuse white light 

illumination and one with diffuse blue light illumination after topical fluorescein staining. 

All images had an aspect ratio of 3:2. The dimensions of the images were 3888 × 2592 

pixels or 3648 × 2432 pixels at the University of Michigan and 5184 × 3456 pixels at 

Aravind Eye Care System. For each image, the regions of interest (ROIs) were manually 
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annotated by a physician, P1 (MFK, MD, final year ophthalmology training), at the 

University of Michigan using ImageJ software (NIH, MD, USA) [57]. Pathological ROIs 

included the following MK biomarkers - the SI, hypopyon, WBC border, and corneal edema 

border on diffuse white light SLP images. EDs were annotated on diffuse blue light SLP 

images. Non-pathological ROIs included the corneal limbus and ocular surface light 

reflexes. The corneal limbus size is known and can provide a reference for the true size of 

the MK biomarkers. Light reflexes can indicate the health of the corneal surface and can be 

confused for other biomarkers (e.g. SIs) if not separately identified.

Not all biomarkers were present in each eye. Additionally, in some images the superior 

corneal limbus border was partially occluded by the eyelid or outside the imaging field of 

view. In these cases, the eyelid or image boundary were annotated to create an enclosed area 

of the visible corneal surface. Figure 1 shows examples of the manual annotations by P1.

For 75 of the 133 eyes, the pathological ROIs were manually annotated by a second 

physician, P2 (MMT, MD, final year ophthalmology training, for diffuse white light images; 

KHK, MD, corneal specialist, for diffuse blue light images), at the University of Michigan.

The manual annotations by P1 were used for the development, training, and testing of the 

network. The manual annotations by P2 were used only for an inter-reader variability 

analysis.

B. Network

The proposed SLIT-Net is based on a modified version of Mask R-CNN [41, 58]. Figure 2 

shows the details of SLIT-Net. The backbone architecture is a CNN, specifically ResNet-50 

[36] with a feature pyramid network (FPN) [59], which extracts multi-scale features from 

the image.

From the multi-scale features and a set of anchors, a second CNN called a regional proposal 

network (RPN) [40] predicts the probability of each anchor being a positive or negative 

class. The set of anchors correspond to the size and location of pre-determined rectangular 

regions on the image. We use anchors of five sizes (16, 32, 64, 128, and 256 pixels) and 

three aspect ratios (0.5, 1, and 2) at every pixel. An anchor is classified as positive if it 

overlaps with any manual annotation’s bounding box with an intersection-over-union (IoU) 

[60] ≥ 0.7; otherwise, it is classified as negative. The manual annotation’s bounding box is 

defined as the smallest rectangular region within which the manual annotation lies, by four 

parameters - the x-coordinate, x, and y-coordinate, y, of the top-left corner, width, w, and 

height, h, of the bounding box.

The RPN is trained with a focal loss [61] defined as

ℒRPN class = 1
nA ∑

A = 1

nA
− 1 − pA 2log pA ,

where nA is the number of anchors and pA is the predicted probability of the correct class of 

anchor A.
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The RPN also predicts adjustments for the anchor to be closer to the manual annotation’s 

bounding box. The adjustments are defined as

txA =
x − xA

wA
, tyA =

y − yA
ℎA

, twA = log w
wA

, tℎ
A = log ℎ

ℎA
,

where xA and yA are the x-coordinate and y-coordinate of the top-left corner and wA and hA 

are the width and height of anchor A. The RPN is trained with a smooth L1 loss [39] defined 

as

ℒRPN box = 1
nA ∑

A = 1

nA
∑

i ∈ x, y, w, ℎ
fsmootℎ tiA − uiA ,

where uiA is the predicted adjustment value for anchor A and

fsmootℎ(x) = 0.5x2, x < 1
x − 0.5, otherwise

.

The anchors are sorted from highest to lowest by the probability of being a positive class, 

and the top 2000 anchors are retained. The predicted adjustments are made to the anchors 

and non-maximum suppression is applied to prune them; that is, any anchor that overlaps 

another with IoU > 0.7 but has a lower probability is discarded. The final set of adjusted 

anchors are the proposed regions.

Next, a ROIAlign layer [41] is used to extract from the multi-scale feature maps a N×N 

feature patch corresponding to the spatial location of each proposed region. The feature 

patch is used by two separate branches, each comprised of a CNN. The classification branch 

uses 7×7 patches to classify and predict further adjustments to the proposed region. The 

segmentation branch uses 14×14 patches to segment the ROI within the proposed region.

For training, any proposed region overlapping a manual annotation’s bounding box with an 

IoU < 0.5 is classified as a background region; otherwise, it is assigned the same class as the 

highest overlapping manual annotation’s bounding box and considered a positive region. All 

positive regions are retained, while background regions are randomly sampled such that the 

ratio of positive to background regions is 0.33 to avoid an overwhelming number of 

background regions.

Similar to the RPN, the classification branch is trained with a focal loss defined as

ℒclass = 1
nR ∑

R = 1

nR
− 1 − pR 2log pR ,

where nR is the number of proposed regions and pR is the predicted probability of the correct 

class of the proposed region R.

Loo et al. Page 5

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The adjustments with respect to the manual annotation’s bounding box are now defined as

txR =
x − xR

wR
, tyR =

y − yR
ℎR

, twR = log w
wR

, tℎ
R = log ℎ

ℎR
,

where xR and yR are the x-coordinate and y-coordinate of the top-left corner and wR and hR 

are the width and height of proposed region R. The smooth L1 loss is defined as

ℒbox = 1
nR ∑

R = 1

nR
∑

i ∈ x, y, w, ℎ
fsmootℎ tiR − uiR ,

where uiR is the predicted adjustment value for proposed region R.

The segmentation branch predicts segmentation probability maps for the positive regions 

only, as background regions do not have segmentation maps. It is trained with a Hausdorff-

Dice loss [62] to reduce large segmentation errors in the boundary [62] as well as balance 

the background and foreground pixels in the segmentation maps [63]. The Hausdorff-Dice 

loss is defined as

ℒmask = ℒhausdorff + λℒdice,

where λ is a weight factor which is calculated as the ratio of ℒℎausdorff to ℒdice to equalize 

the contribution from both terms.

ℒdice [63] is defined as

ℒdice = 1 − 2Σ(m ∘ q)
∑m2 + ∑q2,

where ∘ is an element-wise multiplication.

ℒℎausdorff can be efficiently implemented using convolutions with circular kernels [62] and 

is defined as

ℒhausdorff = 1
nI ∑

r ∈ 3, 6, 9, 12, 15, 18
r2

fsoft Br * mC ∘ fq ∖ m +
fsoft Br * m ∘ fm ∖ q +

fsoft Br * qc ∘ fm ∖ q +
fsoft Br * q ∘ fq ∖ m

,

where nI is the number of pixels in the image. r is the radius of the circular kernel Br and the 

elements of Br are normalized such that they sum to 1. m, q and q are the manual 

annotations, predicted segmentation probability maps, and predicted binary segmentation 

maps (obtained by thresholding q at 0.5), respectively. The superscript C indicates the 

complement while * denotes convolution. fsoft is a soft-thresholding operation defined as
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fsoft(x) = sign(x) ⋅ ( x − 0.5)+,

where

(x)+ = 0, x < 0
x, x ≥ 0 .

fm ∖ q is an estimation of the part of m that does not overlap with q defined as

fm ∖ q = (q − m)2m,

and vice versa for fq ∖ m.

The final loss, ℒtotal for training the network is the summation of the individual losses such 

that

ℒtotal = ℒRPN_class + ℒRPN_box + ℒclass + ℒbox + ℒmask .

C. Training

For training, the images were resized using bilinear interpolation such that the longer side 

was 512 pixels while retaining the aspect ratio. As the images were of different sizes, they 

were zero-padded to a standard size of 512×512 pixels.

Two forms of data augmentation were applied to the images on the fly during training to 

artificially increase the dataset size. For each image, one of four geometric transformations - 

horizontal flipping, cropping, applying an affine transformation, or no transformation - was 

randomly selected. Then, one of five intensity transformations - adding a random scalar, 

multiplying by a random scalar, adding Gaussian noise, applying contrast normalization, or 

no transformation - was randomly selected. The images were normalized by subtracting the 

per-channel mean across the entire dataset.

The network weights were initialized with pre-trained weights on the COCO dataset [64] 

except for the final layers of each branch, which were randomly initialized using Xavier 

initialization [65]. The weights were further optimized on our dataset using Nesterov’s 

accelerated stochastic gradient descent [66] with a learning rate of 0.001, momentum of 0.9, 

and learning rate decay of 10−6 to minimize ℒtotal.

The network was trained with a batch-size of five images for 100 epochs until convergence. 

Performance was monitored on a hold-out validation set for the last 20 epochs and the 

weights of the best-performing network were retained as the final weights of the network. 

Performance evaluation is detailed in Section II.F.
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D. Testing

For testing, the images were resized and zero-padded to 512×512 pixels and normalized as 

described in Section II.C. No data augmentation was applied. The trained network was then 

used to identify and segment the ROIs on the images. The same anchors as described in 

Section II.C were used for the RPN and the top 1000 adjusted anchors were retained as 

proposed regions. Each proposed region was assigned to the class with the highest predicted 

probability by the classification branch. The predicted segmentation probability maps from 

the segmentation branch were resized using bilinear interpolation and thresholded at 0.5 to 

obtain predicted binary segmentation maps at the original image resolution.

E. Post-processing

Additional post-processing was applied to the output of SLIT-Net to adhere to certain 

pathological and anatomical constraints.

For diffuse white light images, the following constraints were applied:

i. For the limbus, only the ROI with the highest probability was retained as only 

one limbus can exist for any eye.

ii. Any instances of pathological ROIs which occurred outside the limbus were 

deleted as these ROIs can only exist within the limbus.

iii. All holes within the binary segmentation maps were filled using a morphological 

operation [67] to improve the quality of the segmentation maps.

iv. For any overlapping ROIs of the same class with IoU > 0.7, only the ROI with 

the highest probability was retained to avoid multiple instances of the same ROI.

v. For the hypopyon, only the ROI with the highest probability was retained as only 

one hypopyon can exist for any eye.

vi. All instances of WBCs and edema which did not co-occur or overlap with an SI 

were deleted as these ROIs can only exist in the presence of an SI.

vii. For light reflexes with a high probability > 0.8, any overlapping SIs were deleted 

as they were most likely false positives due to the similarity of their appearances 

(bright white regions) on the image.

For diffuse blue light images, only constraints i – iv were applied as the hypopyon, WBCs, 

edema, and SIs are not detected on diffuse blue light images.

F. Quantitative analysis

To evaluate performance, the DSC [68] was calculated for each ROI class as

DSC = 2TP
2TP + FP + FN ,

where TP was the number of true positive, FP was the number of false positive, and FN was 

the number of false negative pixels in the binary segmentation maps as compared to the 

manual annotations of P1 as the gold standard.
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The HD [69] was calculated for each ROI class as

HD = max(hd(X, Y ), hd(Y , X)),

where

hd(X, Y ) = max
x ∈ X

min
y ∈ Y

∥ x − y ∥2

is the directed Hausdorff distance between X and Y, which are the boundaries of the 

predicted segmentations and the gold standard, respectively, and vice versa for hd(Y, X).

The DSC provides a measure of the proportion of overlap between the predicted 

segmentations and the gold standard, whereby a higher DSC indicates better performance. 

On the other hand, the HD provides a measure of the largest segmentation error and 

therefore, the scale of the error between the predicted segmentations and the gold standard, 

whereby a lower HD indicates better performance. Both measures are complementary and 

together provide a more complete performance evaluation.

As described in Section II.A, not all biomarkers were present in each eye. However, it is still 

important that the algorithm be able to correctly identify the absence of biomarkers. 

Therefore, if an absent biomarker is correctly identified as being absent by the algorithm, 

this is still considered a perfect overlap and results in a DSC of 1.00 and an HD of 0. 

However, if a biomarker is absent and the algorithm erroneously identifies its presence, this 

results in a DSC of 0.00. In this case, however, the HD is undefined and thus excluded 

following [70]. Similarly, if a biomarker is present and the algorithm erroneously identifies it 

as being absent, this also results in a DSC of 0.00. In this case, the HD is also undefined and 

thus excluded.

To assess inter-reader variability, we calculated the performance of P2. To compare the 

performance between SLIT-Net and P2, we used the p-value of the Wilcoxon signed-rank 

test to determine the statistical significance of the difference in performance in which a p-

value < 0.05 was considered statistically significant.

G. Implementation

SLIT-Net was implemented in Python using the TensorFlow [71] (Version 1.5.1) and Keras 

[72] (Version 2.0.8) libraries on a desktop computer equipped with an Intel® Core™ i7–

6850K CPU and four NVIDIA® GeForce® GTX 1080Ti GPUs.

The dataset and automatic software introduced in this study is available on GitHub at https://

github.com/jessicaloohw/SLIT-Net

III. Results

We report the quantitative and qualitative results of the proposed SLIT-Net and compare it to 

alternative methods. As there are no fully-automatic algorithms for this particular task 

available for comparison, we used a U-Net [38], one of the most popular deep learning-
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based methods for medical segmentation that is often used as a baseline [73–87]. We also 

used the more recently developed nnU-Net [88] that automatically adapts the U-Net to 

achieve performance gains for a specific medical segmentation task by determining the ideal 

architecture and training strategy based on the training data. Additionally, we made 

comparisons with the original Mask R-CNN [41].

A. Comparison to alternative methods

We used seven-fold cross-validation to evaluate performance on all available images while 

ensuring independence of the training and testing sets. The 133 eyes were randomly divided 

into seven groups, each consisting of 19 eyes. Images from six groups were used as the 

training set while the remaining group was used as the testing set. From the training set, one 

group was used as the hold-out validation set. The groups were then rotated such that each 

group was used once for testing.

We trained and tested the proposed SLIT-Net as described in Sections II.C, II.D, and II.E.

For the baseline U-Net, we used the same network architecture and loss as described in the 

original publication [38]. For training, we used the same procedure as described in Section 

II.C. However, in our experiments, we noticed that 100 epochs were not sufficient for 

convergence; therefore, we trained the network for 1000 epochs until convergence. Besides 

the extended training, the pre-processing, initialization, data augmentation, optimization, 

and validation were otherwise kept the same. The nnU-Net [88] automatically determines 

the architecture, training, and validation procedures, and we followed all the provided 

specifications. For Mask R-CNN [41], we removed the modifications that were introduced 

into SLIT-Net. For testing, as described in Sections II.D and II.E, we resized the predicted 

segmentation probability maps using bilinear interpolation, thresholded at 0.5 to obtain 

predicted binary segmentation maps at the original image resolution, and applied the same 

post-processing constraints for all methods.

Note that separate networks were trained for diffuse white light and diffuse blue light 

images.

B. Quantitative analysis

Tables 1 and 2 show the average performance of the proposed SLIT-Net and alternative 

methods on all 133 eyes for diffuse white light and diffuse blue light images, respectively. 

We also report the performance for the subset of 75 eyes and the p-value of the Wilcoxon 

signed rank test between SLIT-Net and P2 in Table 3.

Overall, SLIT-Net achieved good performance with relatively high average DSCs and 

relatively low average HDs, although there was high variability.

Compared to U-Net, SLIT-Net achieved a higher average DSC for all ROIs and a lower 

average HD for all pathological ROIs on both diffuse white light and diffuse blue light 

images. Compared to nnU-Net, SLIT-Net achieved a higher average DSC and a lower 

average HD for all ROIs on both diffuse white light and diffuse blue light images, except the 

corneal limbus. While the average DSCs were rather similar for Mask R-CNN and SLIT-
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Net, the advantage of SLIT-Net was mainly reflected in the average HDs, whereby SLIT-Net 

achieved a lower average HD for all pathological ROIs on both diffuse white light and 

diffuse blue light images.

For identification and segmentation of WBCs and edema, SLIT-Net achieved significantly 

higher average DSCs than P2, and statistically similar average HDs. For hypopyons, the 

average DSC and HD were statistically similar for SLIT-Net and P2. On the other hand, P2 

achieved significantly higher average DSCs and lower average HDs than SLIT-Net for both 

SIs and EDs. However, the average DSC for SLIT-Net in these cases was ≥ 0.70, a threshold 

considered highly correlated [89].

C. Qualitative analysis

Figure 3 shows the comparison between the manual annotations by P1 and the fully-

automatic segmentations by the baseline U-Net, nnU-Net, Mask R-CNN, and the proposed 

SLIT-Net.

Figures 4–7 show the comparison between the manual annotations by P1 and P2 and the 

fully-automatic segmentations by SLIT-Net. Figure 4 shows examples of good agreement 

between the methods. Some biomarkers, such as WBCs, edema, and EDs, were difficult to 

identify and segment with precision due to ambiguous or “fuzzy” borders as shown in 

Figures 5 and 6. The heterogeneity of MK phenotypes and image quality can also worsen 

the ability to accurately identify and segment the ROIs as shown in Figure 7.

D. Ablation study

The proposed SLIT-Net uses a ResNet-50 with FPN backbone. The FPN generates multi-

scale features which are ideal for identification and segmentation of the ROIs on SLP images 

as they are of very different scales, ranging from small light reflexes to the corneal limbus. 

We investigated the performance of SLIT-Net with and without the FPN in the backbone. 

We made the corresponding architectural changes when the FPN is removed from the 

backbone as described in [41]. Tables 4 and 5 show the average performance of SLIT-Net 

with the different backbone architectures. The overall performance of SLIT-Net drops 

drastically without the FPN, demonstrating that the features from ResNet-50 alone were not 

sufficient for identification and segmentation of the diverse range of ROIs on SLP images. 

Some ROIs were simply not identified, resulting in undefined HD values. Therefore, while 

some biomarkers such as hypopyons, WBCs, and EDs have lower average HDs, this is not 

necessarily an indication of better performance and the lower average DSCs need to be 

considered as well. An alternative HD may also be considered, using the maximum 

diameters of the unidentified biomarkers as a proxy for the undefined HD values. The 

average alternative HDs for SIs, hypopyons, WBCs, edema, and EDs were 787 ± 484, 483 ± 

740, 867 ± 643, 295 ± 628, and 621 ± 517 using the ResNet-50 backbone and 297 ± 326, 

273 ± 462, 422 ± 458, 422 ± 703, and 164 ± 222 using the ResNet-50 with FPN backbone. 

Furthermore, without the multi-scale features, distinguishing the subtle transitions between 

ROIs, such as SIs and WBCs, would be nearly impossible. The effectiveness of 

incorporating the FPN into the backbone of SLIT-Net was confirmed with the ablation study.
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IV. Discussion

SLIT-Net is a fully-automatic algorithm for segmentation of ocular structures and 

biomarkers of MK on SLP images under two different illuminations. The performance of 

this first-of-a-kind automatic algorithm is considered good according to conventional 

standards [89]. SLIT-Net outperforms several other popular deep learning-based 

segmentation methods, namely U-Net, nnU-Net, and Mask R-CNN. However, there is still 

room for improvement until SLIT-Net matches the performance of expert clinicians. The 

difficulty of this task, and consequently the difficulty of automating this task, is also 

reflected in some relatively low agreements between clinicians on the manual annotations of 

certain biomarkers.

Upon further evaluation, key elements were identified. First, some biomarkers have similar 

characteristics. Figure 5 shows that WBCs and edema can be difficult to distinguish due to 

similar appearances on the diffuse white light images. Additionally, there may be a gradual 

transition from one to the other, lacking a definitive border. This difficulty is reflected in 

Table 3 by the low average DSC for P2, indicating that the physicians also had difficulty 

annotating these biomarkers and did not always agree on where one transitioned to the other.

Second, Figure 7 shows that the algorithm may have difficulty detecting a biomarker with 

high transparency, such as edema.

Third, the imaging technique and image quality may affect the ability to accurately identify 

and segment biomarkers. The field of view and quality of the images can vary drastically if 

images do not adhere to a strict protocol. In Figure 6, the intensity of fluorescein staining 

varies between images and the fluorescein staining can be picked up by other structures, 

such as the eyelid cul-de-sac. This makes it difficult to discern the true EDs and may result 

in different annotations by different physicians based on their judgment calls. SIs will gain a 

yellow tinge on diffuse white light images if the eye is imaged after the clinician stains the 

eye with fluorescein as shown in Figure 7, which may affect the ability of the algorithm to 

accurately detect the biomarkers. Besides that, the complete limbus may be visible in some 

images and partially occluded in others. To prevent limbus occlusion, the image often 

includes the photographer’s fingertips.

Evaluating an algorithm by performance metrics is the standard approach for validation, but 

it does not sufficiently determine reliability for clinical applications. For our next step, we 

will evaluate SLIT-Net on sequential clinical images to evaluate MK healing during 

treatment. Determination of the ability of SLIT-Net to measure the change in biomarkers on 

images over time generates a more clinically meaningful evaluation of the algorithm’s 

performance and its potential for use [90]. Measuring disease trajectories could also be used 

to compare different treatments and predict clinical outcomes.

The diffuse white light and diffuse blue light images of an eye were taken in one imaging 

session. Therefore, segmentation performance may improve if both images are provided as 

inputs to SLIT-Net simultaneously. We will investigate this approach as we build our dataset. 

We will also explore if the use of additional image types, such as slit beam images, improves 

performance.
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Prior to clinical studies and applications, SLIT-Net has to undergo further development, 

improvement, and testing. Meanwhile, SLIT-Net can be used in a semi-automatic manner to 

provide initial annotations on SLP images. Clinicians can then evaluate and correct any 

algorithmic errors. This will provide clinicians with objective quantified measures of ocular 

structures and biomarkers of MK which can aid clinicians as they manage patients over time. 

For example, since SLIT-Net accurately segments the corneal limbus, this can serve as a 

reference point to annotate the other biomarkers. SLIT-Net can aid clinicians in identifying 

and segmenting ROIs more reliably, as shown with the application of other algorithms [29].

V. Conclusion

MK is an infectious corneal disease and a leading cause of blindness worldwide [1–5]. 

Clinicians subjectively evaluate multiple important biomarkers to inform treatment 

decisions. However, no fully-automatic, standardized, and distributed strategies exist. 

Therefore, clinicians still rely on manual and subjective assessments of these biomarkers. 

We have developed the first fully-automatic algorithm, SLIT-Net, for segmentation of ocular 

structures and biomarkers of MK on SLP images under two different illuminations. SLIT-

Net identifies and segments four pathological ROIs on diffuse white light images (SIs, 

hypopyons, WBCs, and edema), one pathological ROI on diffuse blue light images with 

fluorescein staining (EDs), and two non-pathological ROIs (corneal limbus and light 

reflexes) on all images. Each component of our method, individually or together, can be 

used in many anterior eye segment research projects. To promote future advancement of 

automatic algorithms for diagnosis and prognosis of infectious corneal diseases, we made 

our dataset and algorithms freely available online as an open-source software package.
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Figure 1: 
Examples of SLP images taken with diffuse white light illumination and diffuse blue light 

illumination after topical fluorescein staining. Pathological and non-pathological ROIs were 

manually annotated by a physician (P1).
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Figure 2: 
SLIT-Net architecture.
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Figure 3: 
Examples of manual annotations by P1 and fully-automatic segmentations by the baseline 

U-Net, nnU-Net, Mask R-CNN, and the proposed SLIT-Net. SLIT-Net’s segmentations were 

closest to that of P1 and outperformed the alternative methods.
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Figure 4: 
Examples of manual annotations by P1 and P2 and fully-automatic segmentations by SLIT-

Net on diffuse white light and diffuse blue light images. There was good agreement among 

the three methods.
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Figure 5: 
Examples of the difficulty with identification and segmentation of WBCs and edema on 

diffuse white light images. Top: P1 identified the region surrounding the SI as WBCs, while 

P2 identified the same region as edema instead. SLIT-Net’s segmentations were closer to 

that of P1. Middle: P1 identified the region surrounding the SI as only WBCs, while P2 

identified an additional region of edema. P1 also identified a smaller SI compared to P2. 

SLIT-Net identified a SI that was closer to P2 but did not identify any edema. Bottom: P1 

identified both WBCs and edema surrounding the SI, while P2 and SLIT-Net identified only 

WBCs.

Loo et al. Page 23

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
Examples of the difficulty with segmentation of EDs on diffuse blue light images. SLIT-

Net’s segmentations were closer to that of P2 in these cases.
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Figure 7: 
Examples of poor segmentation by SLIT-Net due to the heterogeneity of MK phenotype or 

poor image quality. In some cases, there was also low agreement between P1 and P2.
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