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Abstract

Single-cell RNA sequencing (scRNA-seq) data is noisy and sparse. Here, we show that transfer 

learning across datasets remarkably improves data quality. By coupling a deep autoencoder with a 

Bayesian model, SAVER-X extracts transferable gene-gene relationships across data from 

different labs, varying conditions, and divergent species to denoise target new datasets.

In scRNA-seq studies, technical noise blurs precise distinctions between cell states, and 

genes with low expression cannot be accurately quantified. Existing methods1–6 to denoise 

scRNA-seq data often underperform when sequencing depth is low or when the cell type of 

interest is rare, and also ignore datasets in public domain, which may contain relevant 

information to aid denoising. Ensuing the mouse cell atlases7,8, we will soon have detailed 

atlases for each anatomic organ in the human body9. Publicly available scRNA-seq datasets 

contain information about cell types and gene signatures that is relevant to newly generated 

data. Yet, it is unclear how to borrow information across platforms, subjects and tissues. 

Moreover, such transfer learning must not introduce bias or force the new data to lose its 

distinctive features.

Here, we describe a denoising method, Single-cell Analysis via Expression Recovery 

harnessing eXternal data (SAVER-X), which couples a Bayesian hierarchical model to a 

pretrainable deep autoencoder10. Although neural networks have formed the basis of other 
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single cell methods4,6, existing tools act solely on the data at hand. Moreover, extensive 

benchmarking11 and examples herein (Figure S1) highlight that most methods except 

SAVER1, the precursor to SAVER-X, produce biased estimates of the true gene expression 

and introduce spurious gene-gene correlations. SAVER-X builds upon the core model from 

SAVER, combining it with the autoencoder backend with a two-stage training regime to 

utilize public data resources.

The statistical framework underlying SAVER-X is explicated in Methods. Briefly, let Y 
denote the new scRNA-seq count matrix to be denoised (“target data”). SAVER-X 

decomposes the variation in Y into: (i) a predictable structured component (Λ) which 

explains the shared variation across genes, (ii) unpredictable cell-level fluctuations that are 

independent across genes, and (iii) technical noise12. SAVER-X estimates the unobserved 

true gene expression, X, centered at Λ with independent gene-specific dispersions:

Λ unpredictable biological variation X technical noise Y

Λ is learned through an autoencoder (Figure 1b, item A), whose weights are first pretrained 

on cells from the same tissue or of similar type, extracted from public repositories 

(“pretraining data”; Figure 1a). The weights are then updated to fit the target data. This two-

stage training regime allows adaptive retention of transferable features. Many core cell types 

and essential pathways are shared between human and mouse9,13. To allow cross-species 

learning, the autoencoder in SAVER-X includes a shared network between human and 

mouse (Figure S2). Additionally, SAVER-X employs cross-validation-based gene filtering 

and Bayesian shrinkage to preserve expression patterns that are unique to the target dataset 

(Figure 1b, items B and C). Cross-validation identifies genes poorly fit by the autoencoder, 

whose predictions are replaced by their target data mean. Bayesian shrinkage computes a 

weighted average of the predicted values (Λ) and the observed data (Y) to get the final 

denoised value (X).

We first explored the benefits and limits of transfer learning via SAVER-X on a diverse 

testbed of cells that constitute the immune system. Despite being implicated in virtually 

every disease, tissue-infiltrating immune cells in scRNA-seq data are scarce in the absence 

of flow sorting. In such cases, denoising becomes especially challenging without the aid of 

external data14. We examined whether SAVER-X pretrained on data from the Human Cell 

Atlas (HCA) project9 (500,000 immunocytes from umbilical cord blood and bone marrow) 

and 10X Genomics15 (200,000 Peripheral Blood Mononuclear Cells; PBMCs) could 

meaningfully improve the data quality of immune cells from healthy and disease tissue. 

Concomitantly, we benchmarked SAVER-X against existing denoising methods on a set of 

purified cells from 9 non-overlapping immune cell types15.

Reliable identification of T-cell subtypes is crucial in characterizing a tissue’s immune 

environment, yet T-cell subtypes are often conflated in the raw scRNA-seq data (Figure 2a). 

We created a test dataset by randomly selecting 100 cells for each cell type, and found that 

SAVER-X pretrained on HCA not only markedly heightens the segregation among T-cell 

subtypes, but also improves the Adjusted Rand Index (ARI) over other methods (Figure S3). 
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Encouraged by the transference of cell type-specific transcriptional signatures between 

datasets that contain similar cell types, we observed that the benefits of transfer learning 

manifest more clearly with decrease in cell number or sequencing depth in the target data 

(Figure S3). In the extreme case, even cells with a coverage of merely 60 total UMIs, 

typically discarded in current pipelines, can be rescued by transfer learning to reveal useful 

information.

To appreciate the limits of transfer learning, we evaluated the relationship between denoising 

accuracy and cell type similarity between the pretraining and target datasets. Can transfer 

learning effectively denoise cellular states absent in the pretraining data? Consider the 

purified T-cells analyzed above. When SAVER-X is pretrained on all T-cell subtypes, 

clustering and expression quantification of marker genes improve substantially (Figure 2b). 

However, even when a cell type (CD4+ regulatory T-cells, Tregs) is completely absent in 

pretraining, SAVER-X improves identification and marker gene quantification for this “new” 

cell type. Relatedly, to determine whether enrichment of a cell type in the pretraining data 

improves denoising accuracy in the target data, we pretrained SAVER-X on T-cells enriched 

for Tregs, which did not produce any appreciable difference (Figure S4), Thus, SAVER-X 

does not require a perfect match in cell type composition between the pretraining and target 

data, and, importantly, can improve the quantification of new cell types that are absent in the 

pretraining data.

As an auxiliary measure, we also used CITE-seq16 to examine the gene-protein correlations 

of key immune markers. Correlations between protein abundances and RNA expression of 

their cognate genes were found to be strikingly low in CITE-seq16. We discovered that for 

PBMC/CBMC CITE-seq data, the denoised expression estimates from SAVER-X 

(pretrained on HCA and PBMC 10X Genomics) have patently higher correlations with their 

protein product. Compared with other methods, SAVER-X consistently improved 

correlations across all markers when the target dataset contained 100 and 1000 cells (Figure 

2c, S5). For larger data with 8000 cells, however, pretraining did not provide an apparent 

benefit (Figure S5).

Next, we probed whether SAVER-X can effectively learn from healthy immune cells to 

denoise immune cells sequenced from primary breast carcinoma samples17. Compared with 

the no-pretraining model, pretraining on immune cells from healthy tissue (HCA and PBMC 

10X Genomics) allowed us to better characterize the tumor-infiltrating immune cell types in 

multiple subjects (Figure 2d, Figure S6). Meanwhile, a tumor-associated immune cell 

subpopulation remained identifiable after transfer learning. In particular, SAVER-X 

preserved the elevated immunoglobulin production signature in this disease-specific cell 

state (Figure 2e, Figure S7). This population was absent in the normal tissue, and we 

validated its immunophenotype by the presence of markers such as LYZ. Cell-type specific 

gene expression differences between paired tumor and normal tissues were also preserved in 

all patients with paired tissues and for both two cell-types vital in immune-surveillance 

(Figure 2f). These results highlight that SAVER-X can effectively harness public immune 

cell data from healthy conditions to denoise immune cells from disease conditions, while 

preserving disease-specific signatures.
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Finally, we considered cross-species transfer learning using scRNA-seq data from cells in 

the developing ventral midbrain of both mouse and human13. We sampled 10% of the reads 

in the human data13, reducing it to a median-per-cell coverage of 452 UMIs, and utilized the 

original data as reference to gauge denoising accuracy. We split the human cells randomly 

into two groups, down-sampled the reads of one group and reserved the other group for 

pretraining (Figure S8a). SAVER-X pretrained on the matched mouse brain cells led to a 

noticeable improvement, compared to no-pretraining, in for human cell classification (Figure 

3b). Pretraining on both human and mouse cells further improved the denoising accuracy 

compared to pretraining on human cells alone (Figure S8bd). Moreover, pretraining SAVER-

X on cells from regions other than the ventral midbrain7 was beneficial, and so was 

pretraining on three human non-UMI datasets18–20 together with mouse cells (Figure S8b). 

These experiments demonstrate the merit of transfer learning across species in general and 

practical settings where the anatomical regions and experimental protocols might differ 

between the pretraining and target data.

We then scrutinized whether a model pretrained on mouse data biases the estimates for 

genes with human-specific expression. We computed the log fold-change in cell type-

specific average expression between human and mouse, and identified genes differentially 

expressed between the two species for four cell types. Denoising the down-sampled human 

data with SAVER-X pretrained on mouse cells preserved the log fold-changes (Figure 3b). 

In contrast, simply relying on the autoencoder, without cross-validation and shrinkage, 

reduced the fold-change for some genes (Figure S8c). Unlike other methods, SAVER-X also 

preserved the variance of genes across cells (Figure 3c).

Taken together, our results demonstrate that SAVER-X’s framework can leverage existing 

data to improve the quality of new scRNA-seq datasets. At its core, SAVER-X trains a deep 

neural network across a range of study designs, and applies this model to new data to 

strengthen shared biological patterns. Transfer learning changes the approach to scRNA-seq 

data analysis from a process of study-specific statistical modeling to an automated process 

of cross-study data integration and information sharing.

Online Methods

Statistical model of SAVER-X

As stated in the main text, SAVER-X uses a statistical hierarchical model to decompose the 

randomness of observed UMI counts into three parts. Assume that the observed data is Y = 

(Ygc)G×C where g represents a gene and c represents a cell. Also, assume that the true 

relative gene expression is X = (Xgc)G×C where Xgc is the proportion of RNA copies of gene 

g in cell c. First, for the technical noise of UMI counts, it was shown12,21 that a Poisson 

model,

Ygc  Poisson  lcXgc

where lc = ∑g Ygc is the library size of cell c, has substantial empirical and logical support. 

Thus, both SAVER and SAVER-X have adopted this model for the technical noise and only 
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support denoising scRNA-seq data with UMI. Next, to quantify the biological variation, we 

assume that the true gene expression Xgc is derived by adding independent fluctuations for 

each gene to an underlying gene-gene correlated component Λgc, as follows:

Xgc ∣ Λgc Gamma Λgc, θgΛgc2

which is a Gamma distribution with mean Λgc and variance θgΛgc
2 . Λgc can be interpreted as 

the portion of gene g’s expression that is predictable by other genes. Since, at the level of 

single cells, gene expression can be idiosyncratic and unpredictable, at least given our 

current knowledge, we let the true expression Xgc to deviate from the correlated component 

Λgc to better recover single-cell level expression stochasticity. This is a critical difference 

between our framework and other denoising frameworks.

Pretraining and prediction with autoencoder

The autoencoder in SAVER-X is used to estimate Λ = (Λgc)G×C. It can be trained 

exclusively on the target data set, or first pretrained on existing data sets and then on the 

target data set. To allow transfer learning across species, the autoencoder used by SAVER-X 

has three subnetworks, as shown in Figure S1, with one subnetwork taking human genes as 

input, one subnetwork taking mouse genes as input, and one subnetwork taking shared 

human-mouse homologous genes as input. 21183 and 21122 genes are used for human and 

mouse (Supplementary Note 1), respectively, as input and output nodes of the autoencoder. 

By current annotations using the getLDS() function in the bioMaRt R package, 15494 genes 

out of these nodes have homologs shared between the two species (Supplementary Note 1). 

For each sub-network, the number of nodes in the encoding and decoding layers are, 

successively, 128, 64, 32, 64, and 128. We find in practice that the results are relatively 

robust to the chosen number of layers and nodes.

For a given tissue or cell-type, and for a given (set of) specie(s), publicly available scRNA-

seq data of the given category are mixed and fed into the autoencoder to pretrain a model. If 

only human data is available, only the human and shared sub-network weights are updated. 

Similarly, if only mouse data are available, only the mouse and shared sub-network weights 

are updated. Although SAVER-X can only denoise UMI counts, it can use both UMI and 

non-UMI datasets for pretraining. To adjust for the differences between data generated using 

non-UMI- and UMI-based technologies, an indicator node at the input layer feeds into each 

sub-network. For UMI datasets, the input expression levels are normalized by library size, 

re-scaled and log-transformed using formula: Y gc = log Y gc/lc × 10000 + 1) with  lc = ∑gY gc. 

For non-UMI datasets, TPM for each cell c and gene g are denoted as Ycg, and then the Ycg 

are transformed using the same formula as that for UMI. We use the negative log-likelihood 

function of the data as the loss function of our autoencoder. For UMI counts, based on our 

hierarchical model, Y|Λ follows a Negative Binomial distribution. Thus, for each cell c in 

one dataset, the loss function is:

L Y ⋅ c, Λ ⋅ c = ∑
autoencoder node g measured in the dataset

log NB Ygc; lcΛgc, θgU .
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On the other hand, for the non-UMI TPM data, Y|Λ is assumed to approximately follow a 

zero inflated Negative Binomial distribution (although TPM is not integer-valued, the 

likelihood function can still be computed) and the loss is:

L Y ⋅ c, Λ ⋅ c = ∑
autoencoder node g measured in the dataset

log ZINB Ygc; lcΛgc, θgNU, πgc

Here NB(x; μ, θ) and ZINB(x; μ, θ, π) are the densities of Negative Binomial and zero-

inflated Negative Binomial distribution (see Supplementary Note 3). A separate gene-

specific dispersion parameter θg
U and θg

NU is dedicated for UMI and non-UMI input, 

respectively. For non-UMI data, the gene- and cell-specific zero inflation parameter is 

defined as

πgc
1 − πgc

= wglogΛgc + bg

Where wg and bg are gene-specific unknown coefficients. SAVER-X only transfers the gene-

gene relationship weights, and does not transfer the over-dispersion nor zero inflation 

parameters. Our implementation of the autoencoder utilizes the library functions of DCA4.

Cross-validation and filtering for unpredictable genes

When training the autoencoder on a target UMI dataset to get the prediction matrix Λ, cross-

validation is applied to filter out genes that cannot be predicted accurately by the 

autoencoder. Specifically, the target data is randomly split into held-in and held-out cell sets, 

the autoencoder is trained on the held-in set and then used to make predictions on the held-

out set. We compare the performance of the autoencoder with a completely null model 

where the gene expression in every cell is predicted by their means across cells. For a 

specific gene g, let the held-in sample mean for the library-size normalized counts be μg. 

Then a gene is unpredictable if the Poisson deviance of the autoencoder is larger than that of 

the null model, equivalently:

− ∑
c is a held  −  out cell 

Ygclog lcΛgc + ε − lcΛgc > − ∑
c is a held  −  out cell 

Ygclog lcμg + ε − lcμg

where ε = 10−10 to avoid taking the log of zeros. For the unpredictable genes that are 

identified by cross-validation, their predictions are replaced with the null model prediction, 

which are the sample means of library size normalized UMI counts for every gene.

Empirical Bayes Shrinkage

After estimating Λ, the final denoised matrix X of SAVER-X is obtained by empirical Bayes 

shrinkage based on the hierarchical model:

Ygc Poisson lcXgc ,    Xgc ∣ Λgc Gamma Λgc, θgΛgc2
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We replace the unknown Λgc with the estimated Λgc and estimate θg for each gene by 

maximum likelihood. The final denoised value Xgc is the posterior mean of Xgc, which is an 

inverse-variance weighted average:

Xgc =
σ2g

2

σ1g
2 + σ2g

2
Ygc
lc

+
σ1g

2

σ1g
2 + σ2g

2 Λgc

where σ1g
2 = Var Y gc/lc = Λgc/lc and σ2g

2 = Var Xgc ∣ Λgc = θgΛgc
2 . SAVER-X also outputs the 

posterior variance of each Xgc.

Data denoising using other bench-marking methods

MAGIC3 was performed using the R version 1.3.0 on the square root transformed mean 

library-size normalized expression. scImpute2 version 0.0.9 was performed on the 

unnormalized expression values. The tuning parameter Kcluster is set to 9 for the PBMC 

data15, set to 11 for the CITE-seq data, and set to 13 for the human midbrain data. DCA4 

version 0.2.2 was performed on the unnormalized expression values and the library-size 

normalized expression output was used for downstream analysis. scVI6 version 0.2.4 was 

performed with n_epochs = 400, traing_size = 0.9, frequency = 5 and lr = 1e-3 and all genes 

being used.

Generating down-sampled datasets

For an observed UMI count data matrix, we down-sample the reads to obtain a data set of 

the same gene and cell numbers but with lower quality. For cell c and gene g, we treat the 

original count as the true expression Xgc and the down-sampled value Ygc is generated 

following the Poisson-alpha technical noise model in Wang et. al.12 by independently 

drawing from a Poisson distribution with Ygc~Poisson(lcXgc where lc is a cell-specific 

efficiency loss. To mimic variation in efficiency across cells, we sampled lc as follows:

1. 10% efficiency: lc~Gamma(10, 100), used on the mouse midbrain data13

2. 5% efficiency: lc~Gamma(5,100), used on the 10X PBMC data15

t-SNE visualization and cell clustering

We used Seurat version 2.0 to perform cell clustering and t-SNE visualization according to 

the preprocessing workflow detailed at (https://satijalab.org/seurat/pbmc3k_tutorial.html). 

For all analyses, we set the number of principal components (PC) to 15, though we find our 

comparison results robust to a range of PC from 10 to 20. For cell clustering using Seurat, 

resolution is set to be 1.6, 1.2, 0.8 and 0.8 for each of the four experiments (90 cells, 900 

cells, 9000 cells and 9000 cells with down-sampled reads) of the PBMC data (Figure 2ab, 

Figure S2) and kept the same on all the methods compared. The resolution is set to 1 for the 

cell clustering of the PBMC T cells (Figure 2c, Figure S4) and the midbrain data13. The 

adjusted Rand Index (ARI) is computed using R package mclust to evaluate the clustering 

performance compared with the known cell type labels. We exclude human midbrain cells 
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that are labeled as either “unknown” or three rare types (“hMgl”, “hOPC”, “hSert”) in the 

original paper for both the t-SNE plot and ARI calculation.

Each t-SNE plot is generated after going through a fresh preprocessing workflow of the cells 

in the plot using Seurat. For some t-SNE plots, companion feature plots are shown for 

selected marker genes (Figure S7, Figure S7) using Seurat 2.0 function FeaturePlot().

Analysis of the CITE-seq data16 and Breast Cancer data17

The CITE-seq data were pre-processed as described in the original paper. Cells with more 

than 90% UMI counts from human genes were retained. The mouse genes and zero 

expression genes were removed. To study the situation where the information available from 

the target data is limited, we created two subsampled data with 1,000 and 100 cells from the 

PBMC and CBMC data, respectively, along with the original datasets (~8,000 cells for 

each). The mRNA data were then denoised using SAVER-X without pretraining, SAVER-X 

pretrained with immune cells (HCA + PBMC) and other benchmarking methods. mRNA 

data before and after denoising were log-normalized using Seurat 2.0. The ADT (antibody-

derived tag) protein measurements were normalized by the authors using centered-log-ratio 

(CLR) transformation. Pearson correlation were then calculated between the transformed 

and normalized proteins and mRNA.

The breast cancer data is denoised using SAVER-X pretrained immune cell model for each 

patient and each tissue separately. Cell type labels of the original paper are used as reference 

cell types subjecting to estimation inaccuracies of the original paper.

Differential expression analysis

There are two sets of differential expression (DE) analyses, DE between the tumor and 

normal tissue for each patient where both tissues are measured (Figure 2f), and DE between 

human and mouse of the developmental midbrain (Figure 3c, Figure S8c). For both, the DE 

analysis is done for each cell type separately using the original UMI counts and cell types 

provided by the original paper. The datasets are preprocessed in Seurat 2.0 following 

standard workflow and the DE genes are also obtained using Seurat 2.0, where the Wilcoxon 

rank sum test is used. P-value adjustment is performed using Bonferroni correction based on 

the total number of genes in the dataset. A gene is selected as differentially expressed if its 

adjusted p-value is ≤ 0.05 and the absolute log fold change is ≥ 0.25.

Variance calculation and comparison

For the human developmental midbrain data, we compared the variances of each gene 

estimated using different denoising methods with the sample variances directly calculated 

from the reference data, which are considered as true values in our down-sampling 

experiment. Different denoising methods are applied to the down-sampled human midbrain 

dataset. Specifically, we calculate and compared the variances of the relative gene 

expression across cells. For other denoising methods, the variances are estimated as the 

sample variance of the denoised and normalized data. Since SAVER-X outputs a posterior 

distribution:
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Xgc ˙Gamma Xgc, σgc2

where σgc is the estimated posterior standard deviation, we estimate the variance of Xgc 

across cells as the sample variance of Xgc plus the average of σgc
2  across cells. The 

differences between the estimated variances of each gene and the true variances calculated 

from the reference data are shown in Figure 3d. The down-sampled raw data has variances 

biased upwards because of the technical noise while DCA and MAGIC have variances 

biased downwards due to over-smoothing.

Data Availability

The Human Cell Atlas (HCA) dataset was downloaded from the HCA data portal (https://

preview.data.humancellatlas.org/) and the PBMC data15 was downloaded from the 10X 

website (https://support.10xgenomics.com/single-cell-gene-expression/datasets, Table S2). 

The breast cancer data17 was downloaded from GEO (GSE114725). The developing 

midbrain data13 was downloaded from GEO (GSE76381). For the other mouse developing 

brain datasets in Figure 3, we include cells from neonatal and fetal brain tissues in the 

Mouse Cell Atlas7 data (GSE108097). For the non-UMI human developing brain datasets in 

Figure S8, we include three: GSE7514019, GSE10427620 and SRP04173618. No gene or cell 

filtering is done on the original dataset.

A complete list of the pretraining datasets used for pretraining the models on the SAVER-X 

website is provided in Table S2.

Software Availability

SAVER-X is publicly available at http://singlecell.wharton.upenn.edu/saver-x/, where users 

can currently upload their data for cloud computing and choose from models pre-trained on 

31 mouse tissues and human immune cells. Models jointly pretrained on cells from both 

species are also available for brain and pancreatic tissues. The R package and source code of 

SAVER-X is also released at https://github.com/jingshuw/SAVERX.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Outline of the SAVER-X transfer learning framework.

a) The autoencoder pretraining step: for each species/organ/cell-type, public datasets are 

collected and combined to generate pretrained weights. b) Workflow of SAVER-X. Users 

can use SAVER-X web portal or run SAVER-X offline. For a target data with an UMI count 

matrix, SAVER-X trains the target data with autoencoder w/o. a chosen pretraining model 

(item A), then Filters unpredictable genes using cross-validation (item B) and estimates the 

final denoised values with empirical Bayes shrinkage (item C).
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Figure 2. 
SAVER-X denoising of human immune cells.

a) t-SNE plots of 900 immune cells, colored by known cell-type labels. The number at the 

right-bottom corner of each plot is the adjusted rand index (ARI). b) t-SNE plots of the T 

cells with different models (top) and the heatmap of the denoised gene log-scaled relative 

expressions for a set of known marker genes (bottom). c) Pearson correlations calculated 

between proteins and corresponding mRNA levels in the CITE-seq sub-sampled 100 PBMC 

cells after the RNA expressions are denoised using different methods. (d) T-SNE plots of the 

NK and T cells (1080 cells) for the BC5 tumor and (e) myeloid cells (1046 cells) for the 

BC8 tumor using SAVER-X with and without pretraining. Cells are colored with the cell 

types provided by the original paper. f) Log fold-change between paired tumor and normal 

tissues in 2 cell types and 4 patients. Patients BC1, BC2, BC3 and BC7 have 378, 53, 586 

and 80 cells monocytes, and 4215, 1510, 58 and 401 CD8+ T cells respectively. The X-axis 

shows the log fold-change computed using the original data, and the Y-axis denotes that 

computed from the denoised data with normal immune cells pretraining. Each dot 

corresponds to a cell-type specific differentially expressed gene identified using the original 

data of each patient.
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Figure 3: 
Mouse to human transfer learning within the developing ventral midbrain.

a) t-SNE plots for the down-sampled data (n=1000 cells) and SAVER-X with different 

pretraining models. Reference cell labels are obtained from the original paper. The ARI 

displayed at the bottom-right corner of each plot is computed against the original labels. b) 

Log fold-change between human and mouse data in 4 major cell types. The X-axis shows 

the log fold-change computed using the original human data, and the Y-axis denotes the 

changes computed using the denoised down-sampled human data, wherein the denoising is 

done by SAVER-X pretrained with mouse cells. Each dot corresponds to a differentially 

expressed gene between human and mouse in that cell type. c) Box plots across all 20560 
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genes (showing the median, two hinges and two whiskers, outliers omitted) of the log ratios 

of the estimated variances compared with the reference data variances.
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