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Abstract

Speech neuroimaging research targeting individual speakers could help elucidate differences that 

may be crucial to understanding speech disorders. However, this research necessitates reliable 

brain activation across multiple speech production sessions. In the present study, we evaluated the 

reliability of speech-related brain activity measured by functional magnetic resonance imaging 

data from twenty neuro-typical subjects who participated in two experiments involving reading 

aloud simple speech stimuli. Using traditional methods like the Dice and intraclass correlation 

coefficients, we found that most individuals displayed moderate to high reliability. We also found 

that a novel machine-learning subject classifier could identify these individuals by their speech 

activation patterns with 97% accuracy from among a dataset of seventy-five subjects. These results 

suggest that single-subject speech research would yield valid results and that investigations into 

the reliability of speech activation in people with speech disorders are warranted.

Keywords

speech production; fMRI; reliability; classifier

1. Introduction

Our understanding of the neural mechanisms responsible for speech and language has 

dramatically improved in recent decades due to the development of non-invasive techniques 

for measuring whole-brain activity. Perhaps the most widely used technique of this type is 

functional magnetic resonance imaging (fMRI); at least 4,500 papers have been published 

on this topic since 20001. To date, the vast majority of fMRI studies of speech and language 
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have involved analyzing group average results from cohorts of 10 or more neurotypical 

participants, in many cases compared to similar-sized cohorts of patients with neurological 

conditions that impact speech or language function. Collectively, these studies have revealed 

a network of brain areas that are commonly active during speech production (Guenther, 

2016; Price, 2012). When brain responses are compared between groups, however, the 

results are often less consistent (e.g., Connelly et al., 2018 vs. Chang et al., 2009). This 

could result from the relatively small sample sizes of typical fMRI study designs lacking 

sufficient power, a shortcoming that is being addressed in more recent studies with larger 

samples sizes and data pooling (Brown et al., 2005; Costafreda, 2009; Turkeltaub et al., 

2002), i.e., measuring across larger groups.

Larger groups, however, cannot address another factor that is becoming more apparent to 

those mapping the functional components of the speech production network: high between-

subjects variability in the location and level of speech-related hemodynamic responses. 

Attempts to localize the “crucial” neural damage in acquired apraxia of speech (AOS), for 

instance, have reported a variety of locations (Dronkers, 1996; Hillis et al., 2004; Moser et 

al., 2016). Moreover, there is tremendous variability in the location and extent of stroke-

related damage to neural tissue across individuals. This individual variability found in AOS 

and other speech network disturbances (e.g., stuttering, Wymbs et al., 2013) can mask group 

differences in fMRI analyses and make it difficult to map the neural locus (or loci) of a given 

disorder.

Several analysis approaches have been used to try to reduce the effects of individual 

variability including aligning individual brains using the folding patterns of the cortical 

surface (e.g., Anticevic et al., 2008; Fischl et al., 2008) or implementing group analyses by 

comparing regions-of-interest defined at the individual level (usually based on functional 

scans from a related task of interest termed “functional localizers”; e.g., Nieto-Castañón & 

Fedorenko, 2012). Another approach for studying speech disorders is to use subject-specific 

study designs that are unaffected by between-subjects variability. A number of studies have 

demonstrated the utility of single-subject fMRI study designs or encouraged its future use 

for a range of purposes. These include mapping language areas prior to resective surgery for 

patients with epilepsy or gliomas (Babajani-Feremi et al., 2016; Bizzi et al., 2008; Chen & 

Small, 2007; Gross & Binder, 2014), improving diagnosis of disorders such as dyslexia and 

schizophrenia (Raschle et al., 2012; Sundermann et al., 2014), and determining whether 

neural plasticity following stroke can predict neurological recovery (Chen & Small, 2007; 

Kiran et al., 2013; Meltzer et al., 2009). In the speech domain, single-subject approaches 

have been used to evaluate responses to treatment in AOS (e.g., Farias et al., 2014), but these 

could be expanded to tracking natural neural organization changes over time in 

developmental speech disorders like stuttering. Due to the individuality of the presentation 

of these disorders, subject-specific approaches could provide more meaningful measures of 

change not captured in group average analyses.

1Derived from a search of articles on pubmed.gov on February 25, 2020 containing the terms “fMRI” or “functional magnetic 
resonance imaging” and “speech” or “language” in their title or abstract.
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Importantly, the suitability of subject-specific studies of speech and language processes 

depends heavily on the reliability of speech-related activity in individual brains. The main 

purpose of the current study is to test this assumption by assessing the reliability of single-

subject fMRI measured during speech production tasks across scanning sessions. Several 

prior studies have examined within-subject reliability of BOLD responses during language 

production tasks (e.g. Mayer, Xu, Paré-Blagoev, & Posse, 2006; Otzenberger, Gounot, 

Marrer, Namer, & Metz-Lutz, 2005; Wilson, Bautista, Yen, Lauderdale, & Eriksson, 2017). 

Many have used a covert speech task (Brannen et al., 2001; Harrington et al., 2006; Maldjian 

et al., 2002; Mayer et al., 2006; Otzenberger et al., 2005; Rutten et al., 2002) or have focused 

on a limited set of regions of interest (ROIs) like Broca’s area and temporoparietal cortex 

(e.g., Brannen et al., 2001; Harrington et al., 2006; Mayer et al., 2006; Otzenberger et al., 

2005; Rau et al., 2007). However, speech requires overt motor actions and the integration of 

sensory feedback supported by large and often distant areas of the brain (Guenther, 2016; 

Sato, Vilain, Lamalle, & Grabski, 2015).

Four recent studies (Gorgolewski et al., 2013; Nettekoven et al., 2018; Paek et al., 2019; 

Wilson et al., 2017) provide insight on reliability in neurotypical participants across the 

cortex during overt word production. These studies report a range of within-subject 

reliability that varies depending on the task, level of analysis specificity (regions-of-interest 

vs. whole-brain) and the type of statistical threshold used to generate activation maps. Of 

these, studies that examined activation overlap (overlap in suprathreshold regions between 

two scanning sessions) during picture naming in the whole brain (Nettekoven et al., 2018; 

Paek et al., 2019; Wilson et al., 2017) consistently showed moderate reliability.

Another commonality across these studies was that within-subject reliability varied greatly 

across subjects. Understanding the factors that lead to this variability is important for single-

subject research both for optimizing scanning parameters and determining the suitability of 

this research for certain populations. Gorgolewski and colleagues (2013) directly explored 

this issue by examining how much variability in reliability measures could be attributed to 

the scanner task, scanner noise, coregistration error, and subject motion. The type of task 

accounted for up to 43% of variance, but subject motion in the scanner accounted for the 

next most variance in reliability scores (20%). The sample in this study comprised only 10 

adults over the age of 50; it will be helpful to see if this finding holds in a larger sample of 

younger adults. It also points to the need to understand other potential sources of variance 

such as time interval between scans. Both Nettekoven et al. (2018) and Paek et al. (2019) 

explicitly set up their studies to compare short-delay (within a week) and long-delay (1 – 2 

months) test-retest reliability and found little difference between these two intervals. Other 

factors like age, sex, and number of trials have not been examined as closely. The large 

amount of individual variability in these studies suggests that more work is needed to 

determine what factors are important to yield reliable mapping of the speech network.

Our aim in the present study was to extend this work to determine whether such reliability is 

robust in the speech production network when comparing similar (but not identical) 

speaking tasks. To do this, we performed a retrospective analysis of participants who had 

taken part in more than one fMRI study of speech production in our lab. This had the 

advantage of assessing the reliability of general speech network activation patterns in an 
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individual rather than the reliability of a specific task to allow for greater generalization of 

the results herein. Compared to previous work, we included studies with speech tasks that 

limited semantic, syntactic, and attentional processing. Doing so allowed us to assess the 

reliability of neural activity specific to phonological, phonetic, and sensorimotor processes. 

Furthermore, we limited our analyses to regions of the cortex involved in speech planning 

and sensorimotor processes. In doing so, we focused our characterization of reliability on 

brain regions that are disrupted in motor speech disorders. Finally, since these datasets were 

collected for basic research purposes in healthy individuals, they were composed of much 

longer sessions which may improve the reliability of an individual’s speech network activity.

We used the Dice coefficient to measure the spatial overlap of active brain regions within 

individuals across multiple speech production studies. This easily interpretable measure can 

be compared to numerous previous studies of fMRI reliability (Bennett & Miller, 2010). For 

a more thorough reliability measure that accounts for both the location and relative scale of 

activity across the brain, we calculated a single-subject intraclass correlation coefficient 

(ICC; as in Raemaekers et al., 2007). We then used regression analyses to examine whether 

these single-subject measures of reliability were impacted by various factors like subject 

motion, number of trials, age, and time between studies. In doing so, we aimed to extend the 

findings of similar work (Gorgolewski et al., 2013) to a larger sample and a younger age 

cohort.

While these measures provide an estimate of similarity that can be used in a single-subject 

context, further information can be gleaned from measures that assess reliability in relation 

to a between-subjects standard. We therefore computed an ICC for each vertex on the 

cortical surface to yield a map of reliability (as in Aron, Gluck, & Poldrack, 2006; Caceres, 

Hall, Zelaya, Williams, & Mehta, 2009; Freyer et al., 2009; Meltzer et al., 2009). This 

measure estimated the reliability and discriminability of activation across the entire brain at 

a vertex level. Finally, we directly tested whether an individual speaker’s neural activation 

patterns during speech in one study could predict activation in a second study using a 

machine learning classifier. Reliability measures were compared to two benchmarks: a 

chance-level baseline derived from random data maps, and a residual signal map derived 

from anatomy-related information in the BOLD signal that we would expect to have high 

reliability.

2. Materials and Methods

2.1. Participants

Our dataset comprises seventy-five individuals who previously participated in fMRI studies 

of speech production in the SpeechLab at Boston University. Of these, data from twenty 

individuals (mean age: 28.95 years, range: 19–44, 10 female/10 male) who participated in 

two fMRI studies (see Tables 1 and 2) were used to evaluate reliability (median number of 

days between studies: 13.5, range: 6 – 196). Data from the remaining fifty-five speakers (age 

range: 18–51) from these or three other speech production studies (see Table 2) were added 

in the classifier analysis to train the subject classifier and to generalize its features to the 

broader population of healthy speakers (see section 2.5.4. Subject Classifier). All 

participants were right-handed native speakers of American English and reported normal or 

Frankford et al. Page 4

Brain Lang. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corrected-to-normal vision as well as no history of speech, language, hearing, or 

neurological disorders. Informed consent was obtained from all participants, and each study 

was approved by the Boston University Institutional Review Board.

2.2. Speech Tasks

All speech tasks included in the present study were overt productions of either real words or 

pseudowords formed by two or more consecutive phonemes. These characteristics ensure a 

distribution of tasks used in neuroimaging studies of speech, while limiting activation 

patterns to those associated with overt speech production that includes phonemic transitions. 

A list of speaking tasks and their visual baseline control conditions from each study is 

included in Table 1. Details of the four studies from which repeated measures were taken 

(CCRS, FRS, APE, and PBB) are described here. More detailed information on the other 

studies (OP, SylSeq, and CAT) is provided in the publications listed in Table 1.

The CCRS and FRS experiments were block-design fMRI studies in which subjects 

produced sequences of pseudowords during continuous scanning. Both studies included 

multiple speech conditions and a baseline condition. During speech trials, subjects 

simultaneously viewed an orthographic representation and heard a recording of the 

pseudoword to be produced. A white cross replacing the orthographic representation cued 

the subject to produce the pseudoword. On baseline trials, subjects saw a series of asterisks 

on the screen rather than orthographic stimulus and rested quietly. Functional runs were 

organized into blocks of 6 trials of the same condition with a 3 s pause between blocks. 

Pseudowords and conditions were randomized within runs.

Sequences in the CCRS study comprised pairs of two-syllable pseudowords that varied in 

the number of unique phonemes, consonant clusters and syllables in the sequence. The 

conditions were: exact repetition (e.g., ‘GROI SLEE, GROI SLEE’); same phonemes and 

consonant clusters, different syllables (e.g. ‘GROI SLEE, GREE SLOI’); and different 

phonemes, consonant clusters, and syllables (e.g. ‘KWAI BLA, SMOO KROI’). Each trial 

lasted 2.5 s. Runs consisted of fifteen blocks of six trials, and lasted approximately 5 min. 

Each subject completed 7 runs that optimally allowed for approximately 21 blocks per 

condition per subject. In total, 120 fMRI volumes were acquired continuously during each 

run.

Sequences in the FRS study were pairs of monosyllabic pseudowords that varied in the 

number of unique phonemes, syllables, and syllabic frames (see MacNeilage, 1998). The 

conditions were: exact repetition (e.g. ‘TWAI, TWAI’); same frames, different phonemes 

and syllables (e.g. ‘FAS REEN’); same phonemes, different frames and syllables (e.g. 

‘RAUD DRAU’); and different frames, phonemes, and syllables (e.g. ‘DEEF GLAI’). Each 

trial lasted 2 seconds. Runs consisted of eighteen blocks of six trials and lasted 

approximately 4.5 min. Each pseudoword or pseudoword pair was maximally used once per 

block and in 2–3 blocks throughout the experiment to maintain novelty. Each subject 

completed 6 runs that optimally allowed for approximately 27 blocks per condition per 

subject. In total, 108 fMRI volumes were acquired continuously during a run.

Frankford et al. Page 5

Brain Lang. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The APE (Tourville et al., 2008) and PBB studies (Golfinopoulos et al., 2011), used a sparse 

fMRI acquisition design that allowed subjects to produce speech during silent intervals 

between fMRI volume acquisitions. In both experiments, subjects were instructed to read 

aloud the speech stimulus presented orthographically at the onset of each trial or to remain 

silent if a control stimulus (the letter string ‘yyy’) was presented. Stimuli in the APE study 

consisted of 8 /CεC/ words (e.g., beck, bet, debt). Stimuli remained onscreen for 2 s. An 

experimental run consisted of 64 speech trials (8 presentations of each word) and 16 control 

trials (Tourville et al., 2008). On 25% of speech trials, the first formant (F1) of the subject’s 

speech was altered before being fed back to the subject. Trial order was randomly permuted 

within each run such that consecutive presentation of the same stimulus and consecutive F1 

shifts in the same direction were prohibited. Subjects performed 3 or 4 functional runs. Only 
speech trials with normal feedback and baseline trials were included in the present study.

Speech stimuli in the PBB study (Golfinopoulos et al., 2011) consisted of eight pseudowords 

that required a jaw closure after producing an initial vowel (e.g., /au/, /ani/, /ati/). Stimuli 

remained onscreen for 3 s. Each experimental run consisted of 56 speech trials (seven 

presentations of each pseudoword) and 16 baseline trials. On one seventh of all speech trials 

and half of all baseline trials, jaw closure was restricted by the rapid inflation of a small 

balloon positioned between the subjects’ upper and lower molars. Trial order was randomly 

permuted within each run such that consecutive perturbation trials were prohibited. Subjects 

included in the present analysis completed between three and five runs. No perturbation 
trials were included in the present analysis.

2.3. Image Acquisition

MRI data were acquired at the Athinoula A. Martinos Center for Biomedical Imaging at 

Massachusetts General Hospital (APE, PBB, OP, CCRS, FRS), the Athinoula A. Martinos 

Imaging Center at the McGovern Institute for Brain Research at the Massachusetts Institute 

of Technology (CAT), and the fMRI Centre of Marseille (SylSeq).

For CCRS and FRS, data were acquired using a 3 Tesla Siemens Trio Tim scanner with a 

32-channel head coil. For each subject, a whole-brain high-resolution T1-weighted 

MPRAGE volume was acquired (voxel size: 1 mm3, 256 sagittal images, TR: 2530 ms, TE: 

3.44 ms). T2*-weighted volumes consisting of 41 gradient echo – echo planar axial images 

(in plane resolution: 3.1 mm, slice thickness: 3 mm, gap: 25%, TR: 2.5 s, TA: 2.5 s, TE: 20 

ms) were collected continuously during functional runs.

For APE and PBB, a high-resolution T1-weighted anatomical volume (128 slices in the 

sagittal plane, slice thickness: 1.33 mm, in-plane resolution: 1 mm2, TR: 2530 ms, TE: 3.3 

ms) was obtained for each subject prior to functional imaging. Functional volumes consisted 

of 32 gradient echo - echo planar axial images (in plane resolution: 3.125 mm2, slice 

thickness: 5 mm, TR: 2000 ms, TE: 30 ms). A sparse sampling (Hall et al., 1999) clustered 

volume acquisition method, consisting of silent intervals between consecutive volume 

acquisitions, was used. Two consecutive volumes (each volume acquisition taking 2 s) were 

acquired 5 s after the onset of each trial.
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See Peeva et al. (2010), Ghosh, Tourville, & Guenther (2008), and Niziolek & Guenther 

(2013) for acquisition parameters for the SylSeq, OP, and CAT studies, respectively (refer to 

Table 1 for study codes).

2.4. Preprocessing and first-level analysis

Preprocessing was carried out using SPM12 (http://www.fil.ion.ucl.ac.uk/spm) and the 

CONN toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012) preprocessing modules. Each 

participant’s functional data were motion-corrected to their first functional image, and 

coregistered to their structural image using SPM12’s inter-modality coregistration procedure 

with a normalized mutual information cost function (Collignon et al., 1995; Studholme et 

al., 1998). For CCRS and FRS, BOLD responses were high-pass filtered with a 128-second 

cutoff period and estimated at each voxel using a general linear model (GLM). The 

hemodynamic response function (HRF) for each stimulus block was modeled using a 

canonical HRF convolved with the trial duration from each study. While previous work has 

found that fitting the canonical HRF to all voxels in the brain does not capture all types of 

neural responses to stimuli (Gonzalez-Castillo et al., 2012; Janssen & Mendieta, 2020), 

using a canonical HRF is still a standard and widely used analysis protocol. Following the 

same procedure puts the present study in line with much of the current speech reliability 

literature. For APE and PBB, the BOLD response for each event was modeled using a 

single-bin finite impulse response (FIR) basis function spanning the time of acquisition of 

the two consecutive volumes. For each run, a linear regressor was added to the model to 

remove linear effects of time, as were six motion covariates and a constant session effect 

(the intercept for that run). See Peeva et al. (2010), Ghosh, Tourville, & Guenther (2008), 

and Niziolek & Guenther (2013) for first-level design details in the other studies. Functional 

data were also censored (Power et al., 2014) by including additional regressors for all studies 

to remove the effects of volumes with excessive motion and global signal change, as 

identified using ART (https://www.nitrc.org/projects/artifact_detect/) with a scan-to-scan 

motion threshold of 0.9 mm and a scan-to-scan signal intensity threshold of 5 standard 

deviations above the mean.

In all studies and subjects, first-level model estimates for each speech condition and baseline 

were contrasted at each voxel and averaged across all study-specific speech conditions to 

obtain speech activation maps (speechBeta maps). Effect size maps were used for 

subsequent analyses rather than significance (p-value) maps because a) significance maps 

are not as consistent for individual subjects as they are for group analyses (Gross & Binder, 

2014; Voyvodic, 2012) and b) previous research has demonstrated greater overlap in effect 

size maps (Wilson et al., 2017). We also analyzed reliability across t-statistic maps (speechT 
maps) in case the quality of the GLM fit had an effect on reliability and to aid comparison to 

previous studies that used this measure. T1 volume segmentation and surface reconstruction 

were carried out using the FreeSurfer image analysis suite (freesurfer.net; Fischl, Sereno, & 

Dale, 1999). Activation maps were then projected to each individual’s inflated structural 

surface. To align subject data, individual surfaces were inflated to a sphere and coregistered 

with the FreeSurfer mean surface template (fsaverage; see Figure 1). Surface maps were 

then smoothed using iterative diffusion smoothing with 40 diffusion steps (equivalent to a 8 

mm full-width half maximum smoothing kernel; Hagler et al., 2006). This level of 
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smoothing has previously been shown to optimize reliability of task-related BOLD response 

data in individuals (Caceres et al., 2009).

In addition to the above speechBeta and speechT maps, we computed two other sets of maps 

for comparison purposes. The first was random maps, representing randomly generated data 

with similar spatial properties, and processed in exactly the same way as the speech maps. 

We expected these maps to show minimal reliability (chance-level). Reliability measures 

derived from random maps served as a baseline reference, and to eliminate the possibility 

that our preprocessing and estimation procedure would artifactually introduce unexpected 

biases in reliability metrics. The second was null maps, representing anatomical information 

about each subject like tissue morphology and neurovasculature present in the average 

BOLD signal, and, again, were processed in exactly the same way as the speech maps. We 

expected these maps to show high reliability, as anatomical information is expected to vary 

minimally over the time spans considered in this study. Reliability measures derived from 

null maps served as references for comparison purposes, and to explore the possibility that 

reliability of speech-related functional activation may be influenced by, or related to, 

reliability of anatomical features.

Maps of random activation (random maps) were created by independently replacing effect 

sizes at each vertex with a randomly chosen value from a normal distribution (mean of 0 and 

a standard deviation of 1) and smoothing the data to the same degree as the speech maps. To 

obtain maps of average MRI signal (null maps) that is not affected by task effects, estimates 

of the constant regression term of each run were averaged for each subject in each study. 

These maps represent the average T2* signal after the effects of speech, baseline, motion, 

and outliers have been removed. Similar to the speech maps, they were then projected to 

each individual’s structural surface. Because there is individual variability in the T2* signal 

across the cortex, these maps represent individual features of a subject’s cortical anatomy.

2.5. Reliability Measures

We used two measures to quantify individual-subject activation reliability across different 

sessions in individuals (while sessions come from two separate studies, for clarity the term 

session will be used going forward to refer to a data collection time point): the Dice 

coefficient and a single-subject intraclass correlation coefficient. Two further measures were 

used to examine sampled-normed reliability: a vertex-wise intraclass correlation coefficient, 

and a machine-learning classifier. Each of these measures was applied to the speechBeta, 
random, and null maps. In addition, the Dice coefficient, single-intraclass correlation 

coefficient, and vertex-wise intraclass correlation coefficient were applied to the speechT 
maps.

2.5.1. Single-subject Spatial Overlap—To measure the spatial overlap of supra-

threshold vertices, we used the Dice coefficient, a metric widely used in fMRI reliability 

studies (see Bennett & Miller, 2010 for a review). It is the ratio between the extent of 

overlap of individual maps and their average size and yields values between 0 (no overlap) 

and 1 (complete overlap). A strength of this measure is that it is straightforward to interpret 

and provides a simple way to characterize the reproducibility of thresholded activation maps 
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(Bennett & Miller, 2013). On the other hand, the Dice coefficient is sensitive to how these 

maps are thresholded (Duncan et al., 2009; Smith et al., 2005), and the area over which the 

calculation is made (Gorgolewski et al., 2013), where lower thresholds and whole-brain 

analyses will tend to increase overlap. Despite this, the Dice coefficient provides a rough 

estimate of neural response reliability.

The Dice coefficient is formally given by:

Roverlap = 2 * Aoverlap
A1 + A2

(Eq. 1),

where A1 and A2 are defined as the number of supra-threshold vertices for individual 

sessions and Aoverlap is the total number of vertices that exceeds the threshold in both 

sessions (Bennett & Miller, 2010). Because we were mainly interested in assessing 

reliability in brain areas commonly activated during speech production, we masked each 

map to only analyze activation within a predefined bilateral speech production network area 

covering approximately 35% of cortex (see Supplementary Figure 1; Tourville & Guenther, 

2012; whole-cortex results can be found in Supplementary Table 1). Activation maps were 

then thresholded to retain only the highest 20% of surface vertices within the masked area 

(approximately 7% of total cortex; see Figure 2 for examples of these thresholded maps). 

Finally, these maps were binarized (active voxels = 1, all other voxels = 0).

2.5.2. Single-subject ICC—To obtain a measure of reliability that was not threshold-

dependent and took into account the level of activation at each vertex, we calculated a 

single-subject ICC (see Raemaekers et al., 2007) for each subject that compares variance 

between sessions to within-session (across-vertex) variance. Like the Dice coefficient, the 

ICC is relatively straightforward to interpret: a value of 0 means there is no correlation 

across all vertices, while a value of 1 signifies perfect correlation across all vertices. Of the 

many types of ICCs described in the literature, we used the ICC(1) as defined in McGraw 

and Wong (1996). This type of ICC is based on an analysis of variance (ANOVA) of the 

following one-way random effects model:

yij = μ + bi + sij (Eq. 2),

where yij is the value for the ith vertex and the jth session, μ is the mean value across all 

vertices and sessions, bi is the between-vertices effect at vertex i, and sij is the residual, 

representing the between-sessions effect. ICC(1) estimates the degree of absolute agreement 

across multiple repetitions of a set of measurements. Formally, it is an estimate of

ICC(1) =
σb

2

σb
2 + σs2

(Eq. 3),

where σb
2 is the between-vertex variance and σs2 is the between-sessions variance. Based on 

McGraw and Wong (1996), the sample estimate, ICC(1), can be calculated using the 

following formula:
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ICC(1) = MSb − MSs
MSb + (k − 1)MSs

(Eq. 4),

where MSb is the mean squares across vertices, MSs is the mean squares of the residuals, 

and k is the number of within-subjects measurements (in this case, 2 sessions). Following 

the convention of Koo and Li (2016), ICC values below 0.5 indicate poor reliability, between 

0.5 and 0.75, moderate reliability, between 0.75 and 0.9, good reliability, and above 0.9, 

excellent reliability.

In addition, to determine whether reliability in individual subjects across sessions was higher 

than that across the sample, we also computed a between-subjects ICC analysis. This was 

accomplished by averaging each individual’s maps across sessions, and estimating the same 

ICC defined in Eq. 2 and Eq. 3. Thus, the s term estimated the between-subjects effect rather 

than the between-session effect.

For this analysis, activation maps were masked with the same speech production network 

mask described for the overlap analysis but no activation threshold was applied (see 

Supplementary Table 1 for whole-cortex results). To account for any gross scaling 

differences in effect sizes across contrasts and sessions that could affect the this ICC 

(McGraw & Wong, 1996), effect sizes were unit normalized within each map prior to each 

analysis by dividing the value at each vertex by the Euclidian norm of all the vertices in the 

map.

2.5.3. Vertex-wise Reliability—As in previous fMRI reliability studies (Aron et al., 

2006; Caceres et al., 2009; Freyer et al., 2009; Meltzer et al., 2009), we used the ICC to 

determine the vertex-wise reliability of individuals across sessions. This analysis used the 

ICC(1) as in 2.5.2, but we defined MSb in Eq. 4 as the mean squares between subjects, while 

MSs and k remained the same. Then, to focus our results on vertices that exhibited ‘good’ or 

‘excellent’ reliability, we used Koo & Li’s (2016) convention to threshold the resulting ICC 

map, keeping only those vertices with good or excellent reliability (values greater than or 

equal to 0.75). Because this measure is calculated with respect to the sample variance, it also 

provides a measure of discriminability – greater differences between subjects leads to higher 

values. We applied this analysis to all cortical vertices (without a speech network mask) in 

order to compare the discriminability of vertices within speech-related areas to those not 

usually associated with speech. As with the previously described analyses, activation values 

in each map were unit normalized.

2.5.4. Subject Classifier—Machine-learning tools have recently been applied to MRI 

data to detect whether subject groups (e.g., patient and control) are discriminable by their 

neural structure and function (see Sundermann et al., 2014 for a review). Here, we trained a 

nearest-neighbor subject classifier to identify individual subjects from their functional maps, 

in order to assess both the reliability and discriminability of speechBeta and null maps 

(separately) for individual subjects. First, one session map from among all the 20 subjects 

who were scanned twice (“test subjects”) was set aside as the “test map.” A randomly 

selected single-session activation map from all 75 subjects was then used as the training set 
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(excluding the “test map”). The training set data were converted to a set of activation vectors 

(of size 1 × v vertices), demeaned, and whitened using the observed between-subjects 

covariance within the training set (Strang, 1998). The nearest-neighbor classifier then 

selected the subject within the training set that had the smallest Euclidean distance (in v-

dimensional space) to the “test map.” This was repeated for all 40 activation maps in the 

dataset from each of the 20 “test subjects,” and a percent accuracy score was obtained. This 

whole procedure was repeated 100 times, each time selecting different sets of random 

single-session activation maps for training, and the mean accuracy value across these 

repetitions was taken as the classifier predictive accuracy. Bias-corrected and accelerated 

(BCa) bootstrapping 95% confidence intervals (Efron, 1987) for accuracy were estimated 

with 1000 resamples.

For this analysis, we used maps that were masked, thresholded, and unit normalized (see 

Figure 2B for examples). This meant that subjects were classified by the patterns of relative 

activation within the most active vertices. We also ran this same classifier on random maps 

(described in section 2.4) to provide an estimate of the accuracy expected based on chance, 

given the thresholding steps and type of classifier used.

2.6. Group-level Statistical Analyses

Dice coefficient and single-subject ICC reliability measures from the speechBeta, speechT, 
null, and random maps, which were not assumed to follow a normal distribution, were 

compared using Wilcoxon Signed-Ranks tests. For the single-subject ICC analysis, we also 

compared individual ICC values with the between-subjects ICC group measure. In addition, 

we calculated the Spearman correlations between the speechBeta and null maps in these 

measures to determine whether reliability in these two conditions was related (i.e. whether 

high reliability in the speechBeta condition corresponded with high reliability in the null 
condition).

Finally, a multiple regression analysis was carried out to determine whether head motion, 

number of trials, subject age, subject sex, or the time between scanning sessions were 

significant predictors of individual reliability values (see Supplementary Figures 2–6 for 

each predictor plotted against the reliability measures). Head motion was defined as the 

mean framewise displacement (a summary measure of scan-to-scan motion computed across 

all six displacement and rotation parameters; Nieto-Castañón, 2020), averaged across runs 

and then between studies. Number of trials was computed as the total number of speech and 

baseline trials in each study averaged between studies. Because time between sessions was 

distributed such that many subjects had short inter-study intervals (< 30 days) and relatively 

fewer subjects had larger interstudy intervals (see Supplementary Figure 4), these values 

were log-transformed prior to being entered into the regression.

2.7. Data and Code Sharing Statement

All anonymized data and analysis code are available upon reasonable request in accordance 

with the requirements of the institute, the funding body, and the institutional ethics board.
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3. Results

3.1. Single-subject Spatial Overlap

The Dice coefficient for each subject’s thresholded speechBeta maps compared between 

scanning sessions can be found in Figure 3A. On average, their Dice coefficient was 0.693 

(SD: 0.089), demonstrating approximately 69% spatial overlap of individual activation 

maps. Overlap between speechT maps was similar at 0.687 (SD: 0.085; see Supplementary 

Figure 7 for individual subject values). For individual null maps, the Dice coefficient 

between sessions 1 and 2 are also shown in Figure 3A. On average, individuals had a Dice 

coefficient of 0.726 (SD: 0.110), indicating about 73% spatial overlap across sessions. To 

understand how these values would compare to subjects with completely uncorrelated 

activation maps, random maps yielded a Dice coefficient of 0.205 (SD: 0.016; this is 

expected, since only voxels with the highest 20% of effect sizes in each map were included). 

For the group comparison, although speechBeta scores were lower than null scores, this 

comparison was not significant (z=−1.31, p=0.191). However, both conditions were 

significantly different from the random maps (z = 3.92, p < 0.001 for both). Further, there 

was no correlation between Dice coefficients for speechBeta and null maps (Spearman’s r = 

0.098, p = 0.681).

Our model predicting speechBeta Dice coefficients from head motion, number of trials, age, 

sex, and time between sessions found a significant negative effect of motion (t(14) = −2.486, 

p = 0.026). None of the other predictors were found to be significant (see Supplementary 

Table 2 for complete model results. For the speechT maps, a similar negative effect of 

motion was found (t(14) = −2.618, p = 0.020; Supplementary Table 3). Results from using 

the same model to predict null Dice coefficients can be found in Supplementary Table 4.

3.2. Single-subject ICC

The distribution of single-subject speechBeta ICC values across sessions can be found in 

Figure 3B. Subjects exhibited poor (0.196) to good (0.868) reliability according to the 

convention of Koo & Li (2016), with a mean ICC(1) of 0.721 (SD: 0.172). As a comparison, 

the between-subjects correlation, calculated on the averaged individual activation maps 

across both sessions, was poor with a value of 0.475. A Wilcoxon Signed-Rank test shows 

that the median of the within-subject ICCs was significantly higher than the between-subject 

ICC (z=3.51, p<0.001). The speechT ICC values were similar with a mean within-subject 

ICC(1) of 0.710 (SD: 0.168) and a between subject ICC(1) of 0.546 (see Supplementary 

Figure 7 for a comparison with the speechBeta maps). For the null condition, individuals 

showed moderate (0.622) to excellent (0.976) within-subject reliability, with a mean ICC(1) 

of 0.870 (SD: 0.092). The between-subjects correlation for this condition was poor at 0.345, 

and the median of the within-subject coefficients was significantly greater than this value 

(z=3.92, p<0.001). The random maps yielded a mean ICC of 0.013 (SD: 0.025). Within-

subject ICCs for the null maps were significantly greater than the ICCs for the speechBeta 
maps (z=3.17, p=0.002), and both were significantly greater than random maps (z = 3.92, p 

< 0.001 for both). Similar to the Dice coefficient, there was no significant correlation 

between ICC values in the speechBeta and null conditions (Spearman’s r = 0.173, p = 

0.464).
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There were no significant effects of head motion, number of trials, age, sex, or time between 

sessions on speechBeta ICC, though for speechT ICC, a significant effect of motion was 

found (t(14) = −2.282, p = 0.039; see Supplementary Tables 5 and 6). Results for the null 
maps can be found in Supplementary Table 7.

3.3. Vertex-wise Reliability

The vertex-wise ICC map for the speechBeta data thresholded at 0.75 can be found in Figure 

4. While much of cortex was found to have ICC values greater than 0.5 (see Supplementary 

Figures 8, 9, and 10 for an unthresholded ICC map of speechBeta, speechT and null data, 

respectively), the highest within-subject reliability (>0.75, reflecting good or excellent 

reliability; Koo & Li, 2016) appeared in areas commonly activated during speech production 

including, on the lateral surface: bilateral motor and somatosensory cortex, bilateral 

secondary auditory cortex, bilateral inferior frontal gyrus (IFG) pars opercularis, left anterior 

insula, and bilateral anterior supramarginal gyrus, and on the medial surface: bilateral 

supplementary and pre-supplementary motor areas, and bilateral cingulate motor area. Some 

additional regions showed high discriminability as well: bilateral IFG pars orbitalis, right 

anterior insula, bilateral middle temporal gyrus, and bilateral posterior cingulate cortex. 

Thus, the speech production network accounted for most of the regions with high within-

subject reliability.

3.4. Subject Classifier

Accuracy of the subject classifier for the speechBeta and null maps is displayed in Figure 

3C. For the speechBeta maps, classifier accuracy for untrained test data was 96.52% (BCa 

bootstrapping 95% confidence interval: 92.5% – 100%). Similarly, the accuracy of this 

classification method reached 95% for the null activation maps (BCa bootstrapping 95% 

confidence interval: 90.48% – 100%). To assess whether these results were better than 

chance, we substituted random maps for each subject’s speechBeta surface maps (while 

maintaining the number of maps that each subject has and the thresholding pipeline). These 

results show that for random data, the classifier accuracy was 1.63% (BCa bootstrapping 

95% confidence interval: 0% – 10.42%).

4. Discussion

Characterizing individual reliability in speech activation is an important step toward 

validating subject-specific speech research in persons with and without speech disorders. In 

this study, we used four methods to assess reliability in a group of 20 healthy speaker, and 

carried out a regression analysis to determine which factors significantly affected reliability.

4.1. Subject-specific Reliability

The Dice coefficient and single-subject ICC results in this study demonstrated that both the 

extent and degree of activation patterns during speech production in the speech network in 

most, but not all, individuals showed moderate to high amounts of reliability across tasks 

and timepoints. The Dice values found in this study were generally larger than those found 

in previous overt expressive language studies (Gorgolewski et al., 2013; Nettekoven et al., 

2018; Paek et al., 2019; Wilson et al., 2017). One main reason for this was that we focused 
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our analysis on a region of cortex identified as related to speech production a priori. When 

we expanded this analysis to the whole cortex, the mean Dice coefficient value dropped to a 

more moderate level with individuals ranging from poor (0.43) to good (0.73), in line with 

most previous studies of picture naming (Nettekoven et al., 2018; Paek et al., 2019; Wilson 

et al., 2017), but higher than that of sentence completion (Wilson et al., 2017) or word 

repetition (Gorgolewski et al., 2013). This likely reflects greater reliability of the primary 

motor, somatosensory, and auditory areas in speech production (Nettekoven et al., 2018) 

compared to language planning and processing areas (Wilson et al., 2017). We argue, 

however, that assessing reliability within more targeted regions or networks may be more 

meaningful for determining the validity of activation in subject-specific studies. For 

example, finding lower reliability in visual processing regions should not detract from 

reliability of speech production tasks where visual processing is not relevant. In addition, the 

lower Dice values found for word repetition in Gorgolewski et al. (2013) may have been due 

to the difference in the number of trials; in that study, participants had 36 speech trials and 

36 baseline compared to an average of 271.9 speech trials in the present analysis (range: 143 

– 378) and 78.7 baseline trials (range 24 – 126), potentially leading to differences in power 

as shown previously (Friedman et al., 2008). Paek et al. (2019), on the other hand, included 

60 speech trials and 60 baseline trials which may have contributed to its relatively higher 

Dice coefficients. Future studies will need to determine how to balance optimal power with 

minimal scan time to accommodate clinical populations.

The single-subject ICC applied in this study measured the degree of reliability between two 

cortical activation maps. While it relied only on within-subject sources of variance, it was 

highly correlated with the Dice coefficient (speechBeta: Spearman’s r = 0.902, p < 0.001; 

null: r = 0.949, p < 0.001) thus demonstrating its validity as a measure of reliability. One 

noteworthy difference between this measure and the Dice coefficient was significantly 

higher ICC for the null maps compared to that of the speechBeta maps with some subjects 

attaining near perfect between-session null map correspondence. This demonstrates that 

once all task and motion parameters are accounted for, the underlying signal patterns that 

reflect individual anatomy maintain high reliability for individuals across scanning sessions. 

Nonetheless, both speechBeta and null maps generally demonstrated greater within-subject 

reliability than a matched between-subjects measure.

There were, however, two participants (Subject 6 and Subject 7) whose within-subjects ICC 

scores for the speechBeta maps were less than the between-subjects ICC estimate. In both 

cases, the median beta value across vertices for one of the two scanning sessions (the CCRS 

study session) was more negative than that of any other subjects. This might imply that these 

subjects had less power for the speechBeta contrasts in CCRS. Although they had similar 

numbers of speech trials as the other subjects, they were among the subjects with the highest 

scan-to-scan motion for this study, which was found to negatively influence the Dice 

coefficient in the present study and other reliability measures in previous work (Gorgolewski 

et al., 2013). However, their motion was not excessive for typical neuroimaging sessions and 

other subjects with similar amounts of scan-to-scan motion and signal change maintained 

among the highest ICC values. Another potential reason that these two subjects had much 

lower ICC scores is methodological: since the ICC(1) measures absolute agreement rather 

than consistency (McGraw & Wong, 1996), it does not account for global differences in 
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effect sizes across studies. Indeed, the distribution of activation values was shifted between 

the two sessions to a greater extent for these subjects than for others. We attempted to 

correct for this by unit-normalizing vertex values for each subject in each study, but this is 

not a perfect method. Thus, both data quality and methodological choices likely drove down 

their reliability scores. Minimizing motion will therefore be especially important for future 

subject-specific analyses.

We also used a regression analysis to determine which factors accounted for individual 

differences in reliability measures. For the speech activation maps, head motion in the 

scanner was the only one that was significantly associated with overlap reliability despite 

begin accounted for in the first-level analyses, in agreement with previous work by 

Gorgolewski and colleagues (2013). This extends the previous finding to both a new age 

cohort and a larger sample and reinforces the fact that single-subject studies will need to 

control head motion as much as possible to ensure valid results. Other predictor variables 

such as days between sessions and number of trials were not significant, but the limited 

range and spread of their distributions may have limited detection of meaningful 

relationships with reliability. Prior work indicates similar reliability scores for between-

session periods on the order of days versus months (Nettekoven et al., 2018; Paek et al., 

2019), so this may not be an important factor, at least at the scale these studies investigated. 

Age was also not a significant predictor of the overlap in speech activation maps, though our 

analyses were limited because our sample only contained relatively younger adults. Future 

work will be needed to determine the relationship between age across the lifespan and 

speech activation reliability.

In sum, we found high within-subject reliability of activation in the speech network, except 

in two cases where motion may have negatively impacted the signal-to-noise ratio.

4.2. Population-normed Reliability

The other two measures we calculated assessed population-normed reliability by comparing 

response variability within subjects (across sessions) to variability between subjects. These 

measures assess individual reliability relative to the sample, but additionally characterize 

how discriminable individuals are from one another. The vertex-wise speechBeta ICC map 

paralleled previous studies that calculated this metric – many of the areas where ICC values 

were high corresponded to areas commonly activated during the task (Aron et al., 2006; 

Caceres et al., 2009; Freyer et al., 2009; Meltzer et al., 2009). Thus, for speech production, 

speech-related areas in somato-motor cortex, medial and lateral pre-motor cortex and 

extended areas of auditory cortex were consistent for individual subjects across scanning 

sessions. The relative ICC values in these areas also match the pattern of within-ROI overlap 

in Nettekoven (2018), where inferior frontal gyrus was less reliable than primary motor or 

posterior auditory areas. In addition, even areas of cortex inconsistently active during speech 

production like IFG pars orbitalis, middle temporal gyrus (MTG), and posterior cingulate 

gyrus (PCG) showed high discriminability. In a review of fMRI studies of speech and 

language processing (Price, 2012), both IFG pars orbitalis and MTG were associated with 

semantic processing, while MTG was also associated with translating orthography into 

sound. This second explanation would be relevant because all tasks involve reading aloud, 
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but it is less clear why semantic processing centers would be highly reliable for pseudoword 

speaking tasks. The PCG is part of the default mode network and appears to help modulate 

attentional control (Leech & Sharp, 2014). Thus, individuals may consistently activate or 

deactivate this region depending on their level of attention during speaking tasks. Previous 

studies of higher-level cognitive tasks have found reliable activation outside of areas 

commonly associated with the task, but this usually occurred in sensory and motor regions 

needed to complete the task (Aron et al., 2006; Freyer et al., 2009). Caceres et al. (2009) 

suggested that areas with high reliability but low significance values have time-series that 

are reliable but do not fit the task/HRF model, and demonstrated this pattern for half of their 

participants in one ROI. This may also be the case in the present study.

It may be worth pointing out that bilateral primary auditory cortex appears less reliable by 

this vertex-wise ICC measure. While it is counter-intuitive that a low-level sensory region of 

cortex would be least reliable, this may be an example of one of the drawbacks of this type 

of measure – since between-subject variance is an important component of this calculation, 

areas that are more reliable across speakers would tend to have lower ICC values, given 

constant within-subject reliability. Thus, it may be more accurate to say that vertices with a 

high ICC value in this map are the most discriminable areas among a group of subjects.

The final measure of population-normed reliability was the classifier analysis. This type of 

analysis, which has not previously been used to determine the reliability of an individual’s 

neural activation patterns, has the added advantage of characterizing the distinctiveness of an 

individual’s brain activation maps. From the near perfect accuracy in identifying a subject 

correctly from among 75 potential classes given 1 training sample, it is clear that individuals 

are not only quite reliable but also have distinct activation patterns during speech production 

akin to a neural “fingerprint.” In fact, the only subject that was ever mis-classified was 

Subject 7, who also had the lowest within-subject ICC value and Dice coefficient, thus 

demonstrating consistency across measures. The same classification method trained on the 

null maps also demonstrated high accuracy, roughly equivalent to that achieved by the 

speech map classifier. It is important to mention that the classification method used in the 

current study is among the simplest of modern machine learning options, and that using only 

one training map per subject severely reduces the power of the method. Nonetheless, 

classification accuracy was very high. We thus interpret the current result as a lower bound 

of discriminability of speech activation maps among individuals which might be improved 

with more sophisticated machine learning algorithms.

4.3. Speech vs. Null Reliability

As expected, the portion of the mean BOLD signal associated with brain morphology and 

neurovasculature demonstrated high reliability within subjects and high discriminability. 

However, the lack of a correlation between reliability measures in the speechBeta and null 
maps suggests that unique activation patterns during the speech task are not dependent on 

underlying individual anatomy.
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4.4. Reliability for Speech Production across Tasks

The speech tasks used to assess within-subject reliability herein differed across sessions. 

This has two important consequences for interpretation of the results. First, the present 

results do not account for activation variance attributable to inter-task reliability. There may 

be differences in activation between the studies simply because the speech stimuli were 

different. Thus, they are potentially conservative compared to the results for a consistent 

speaking task as well as other published fMRI reliability literature. Second, it means that the 

reported reliability (and discriminability) measures reflect consistency of the speech 

production network response rather than the response to a particular task. Therefore, the 

results are more generalizable to other speech production tasks (at least of the same 

characteristics – reading orthographic representations of mono- and bi-syllabic words and 

pseudowords). This is important for assessing the validity of future subject-specific analyses 

that use speaking tasks that depart from those in the present study.

4.5. Limitations

The results of this study provide evidence that BOLD signal underlying speech production is 

quite reliable in individual across studies. At the same time, we acknowledge that these 

speech tasks are, due to their carefully controlled experimental nature, not representative of 

typical communication conditions. Indeed, it will be important to test the reliability of the 

speech network at increasing levels of complexity and ecological validity. It should not be 

overlooked, however, that single word and non-word repetition tasks are commonly used 

clinically for evaluation and treatment of speech disorders (e.g., Gierut et al., 2010; Kendall 

et al., 2006). As such, the present study provides evidence that imaging of these tasks in 

individuals would lead to reliable results in the speech network that are clinically relevant.

In addition, certain methodological choices may limit the specific features and regions of 

task activation on which we are assessing reliability. This study focuses solely on spatial 

organization of activation maps in the context of typical speech production experiments 

without consideration to changes in activation spread or other measures like functional 

connectivity which are altered in various speech disorders. Future research will be needed to 

assess reliability of these additional measures of speech network activity. Furthermore, using 

a single hemodynamic response function for the whole brain to model task activation – 

which was done in two of the studies included in our analysis, CCRS and FRS – may have 

reduced statistical power in certain cortical regions where the hemodynamic response differs 

from the canonical function (Gonzalez-Castillo et al., 2012; Orban et al., 2015; Janssen & 

Mendieta, 2020). Therefore, further study is also needed to thoroughly assess the effects of 

non-homogeneity of the hemodynamic response function on reliability across the brain.

5. Conclusion

Based on the results of four measures of reliability, we conclude that speech activation maps 

for most neurologically-healthy speakers are generally highly reliable, providing 

justification for subject-specific neuroimaging research of speech production. Exceptions 

were found for subjects who exhibited higher levels of scan-to-scan motion, reinforcing the 

widely held understanding that minimizing motion is crucial for trusting neuroimaging data. 
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Future work analyzing activation patterns from patients with neurogenic speech disorders 

will be needed to determine whether these individuals are similarly reliable (though extant 

work examining reliability in patients with stroke [Kimberley et al., 2008] and mild 

cognitive impairment [Zanto et al., 2014] are promising), and ultimately whether subject-

specific neuroimaging techniques can be used to map the speech production network in 

individuals and track changes in these patterns across time. This future research would be an 

important contribution to the growing body of literature characterizing disease progression 

and neurorehabilitation (Herbet et al., 2016; Reinkensmeyer et al., 2016), and has the 

potential to improve diagnosis and treatment for people with speech disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-subject cortical speech activation maps are highly reliable across 

studies.

• This reliability is not directly related to underlying anatomical reliability.

• Individuals have distinct cortical speech activation maps – a “neural 

fingerprint”.
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Figure 1. 
Thresholding pipeline map for each of the reliability analyses. After preprocessing and 

estimation of first-level condition effects, the speechBeta, speechT, null, and random maps 

were calculated, and submitted to the vertex-wise ICC analysis. A speech network mask was 

applied, so that only vertices inside this mask were used for the single-subject ICC measure. 

Next, the 20% of vertices with the highest activation levels were kept for the classifier 

analysis. Finally, these thresholded maps were binarized for the Dice coefficient analysis. 

Prior to calculating reliability measures (except the Dice coefficient), maps were normalized 

to account for differences in effect size scaling between subjects and studies. Outlines for 

regions of interest previously described in Tourville & Guenther (2012) are included for 

reference, and appear only in areas of cortex on which a given analysis was carried out.
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Figure 2. 
A. Masked and thresholded speechBeta maps for three example subjects in both sessions. 

Outlines of regions of interest covering the masked speech network previously described in 

Tourville & Guenther (2012) are included for reference. B. Masked and thresholded null 
maps for the same subjects. In both cases, the activation peaks display broad visual 

similarity between sessions. Note: the color scale indicates the rank of vertex activation 

within each map, where lighter colors indicate higher activation.
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Figure 3. 
Comparison of reliability measures across conditions. A. Dice coefficient values. Values for 

individual subjects are shown as circles in each condition, and dashed lines connect results 

from individual subjects across conditions. For each condition: thin red line = median; blue 

box = interquartile range (25th-75th percentile); black lines = boundary of values for data 

points that fall within 1.5 times the IQR away from the edges of the box; blue crosses signify 

outliers – values that fall outside the black lines. B. Single-subject intraclass correlation 

coefficients. Circles and box plots represent the same information as in A. The thick red 

lines show the between-subjects intraclass correlation values. Asterisks in line with each 

condition show comparisons between the distribution of individual points and the Between-

Subjects ICC. C. Classifier accuracy. Error bars denote the bias-corrected and accelerated 

bootstrapping 95% confidence intervals (see section 2.5.4 for details). n.s.: non-significant at 

alpha = 0.05; **: p < 0.01; ***: p < 0.001.
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Figure 4. 
Vertex-wise ICC values for the speechBeta activation maps thresholded at 0.75. Regions of 

interest previously described in Tourville & Guenther (2012) are included for reference.
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Table 1.

Information about the studies from which activation maps were included in the present analyses. C = 

consonant, V = vowel.

Study Subjects 
Included Speech Task Visual 

Baseline
Acquisition 

Type
Associated 

Publications

Consonant Cluster 
Representation 

(CCRS)
16 Ages: 20–43

Repeating bisyllabic 
pseudowords that varied in terms 

of their phonemic, cluster, or 
syllabic content

“****” Continuous

Syllable Frame 
Representation (FRS) 17 Ages: 20–43

Repeating monosyllabic 
pseudowords that varied in terms 

of their phonemic, frame, or 
syllabic content

“****” Continuous

Auditory Perturbation 
(APE) 6 Ages: 23–36 Monosyllable CVC words (non-

perturbed only) “yyy” Sparse Tourville, Reilly, & 
Guenther (2008)

Somatosensory 
Perturbation (PBB) 12 Ages: 23–51 VV or VCV pseudowords (non-

perturbed only) “yyy” Sparse Golfinopoulos et al. 
(2011)

Overt Production (OP) 10 Ages: 19–47 CV and CVCV pseudowords “xxxx” Sparse Ghosh, Tourville, & 
Guenther (2008)

Syllable Sequence 
Representation 

(SylSeq)
15 Ages: 18–30

Bisyllabic pseudowords that 
varied in terms of their phonemic 

or suprasyllabic content
“XXXXX” Continuous Peeva et al. (2010)

Auditory Category 
Perturbation (CAT) 15 Ages: 19–33 Monosyllable CVC words (non-

perturbed only) “***” Sparse Niziolek and 
Guenther (2013)
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Table 2.

Studies in which each test subject participated, total number of trials, and time between studies. Study 

identification codes refer to abbreviations in the ‘Study’ column of Table 1.

Subject
Study 1 Study 2

Days Between Studies
ID Speech Trials Baseline Trials ID Speech Trials Baseline Trials

1 CCRS 378 126 FRS 258 66 6

2 CCRS 378 126 FRS 258 66 14

3 CCRS 324 108 FRS 258 66 52

4 CCRS 378 126 FRS 258 66 7

5 CCRS 324 108 FRS 258 66 6

6 CCRS 378 126 FRS 258 66 20

7 CCRS 324 108 FRS 258 66 7

8 CCRS 378 126 FRS 258 66 13

9 CCRS 378 126 FRS 258 66 19

10 CCRS 378 126 FRS 258 66 12

11 CCRS 324 108 FRS 258 66 7

12 CCRS 324 108 FRS 258 66 7

13 CCRS 378 126 FRS 258 66 7

14 CCRS 324 108 FRS 258 66 7

15 APE 191 64 PBB 192 32 75

16 APE 191 64 PBB 144 24 163

17 APE 191 64 PBB 192 32 196

18 APE 187 63 PBB 240 40 21

19 APE 192 64 PBB 192 32 70

20 APE 143 48 PBB 240 40 28
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