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Abstract

Schizophrenia (SZ) is a complex disease. Single nucleotide polymorphism (SNP), brain activity 

measured by functional magnetic resonance imaging (fMRI) and DNA methylation are all 

important biomarkers that can be used for the study of SZ. To our knowledge, there has been little 

effort to combine these three datasets together. In this study, we propose a group sparse joint 

nonnegative matrix factorization (GSJNMF) model to integrate SNP, fMRI and DNA methylation 

for the identification of multi-dimensional modules associated with SZ, which can be used to 

study regulatory mechanisms underlying SZ at multiple levels. The proposed GSJNMF model 

projects multiple types of data onto a common feature space, in which heterogeneous variables 

with large coefficients on the same projected bases are used to identify multi-dimensional 

modules. We also incorporate group structure information available from each dataset. The 

genomic factors in such modules have significant correlations or functional associations with 

several brain activities. At the end, we have applied the method to the analysis of real data 

collected from the Mind Clinical Imaging Consortium (MCIC) for the study of SZ and identified 

significant biomarkers. These biomarkers were further used to discover genes and corresponding 

brain regions, which were confirmed to be significantly associated with SZ.
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I. Introduction

Schizophrenia (SZ) is a complex mental disorder which affects the way one thinks, feels and 

acts. It has been widely accepted that both genetic and environmental factors play an 

important role in the causes of SZ. The disorder tends to inherit in a family. In recent years, 

many studies have been conducted on exploring critical genes associated with SZ and many 

genetic variants have been identified, for example, the G72/G30 gene locus on chromosome 

13q [1], copy number variations on gene GRIK3, EFNA5, AKAP5 and CACNG2 [2], [3] 

and gene DISC1 variation [4]. In addition, DNA methylation, one of the main epigenetic 

markers to regulate gene expression, has also been determined to be involved with the 

development of SZ. Davies et al. showed that the interindividual variations of DNA 

methylation are significantly correlated between the blood and the brain. Some studies have 

used blood DNA methylation to identify potential biomarkers for SZ [5], [6]. On the other 

hand, fMRI has been used to measure brain activity and to identify functional abnormalities 

within brain regions in SZ [7], [8]. These different datasets (e.g., SNP, fMRI and DNA 

methylation) represent the same biological sample from different views and provide partial 

while complementary information; their joint analysis has the potential to reveal the 

mechanism underlying SZ. Since these imaging and genomic data have different scales and 

formats, they cannot be simply aggregated for joint analysis. Most of existing works either 

use single dataset [9], [10], [11] or two datasets [12] and only a few studies [13], [14] exist 

that can take advantage of three or more datasets for a more comprehensive analysis of SZ.

Canonical correlation analysis (CCA) [15] and partial least squares (PLS) [16] are two 

popular methods for exploring the relationships between two data sets. The CCA (PLS) 

method maximizes the correlation (covariance) between the linear combinations of variables 

from two datasets to find the correlated components. To overcome the small sample size but 

large dimension of feature problem in imaging (epi)genomics, sparse CCA [17], sparse PLS 

[18] and sparse reduced rank regression [19] have been proposed by using sparse constraint 

in the model. To incorporate biological knowledge and group structures (e.g., SNPs within a 

gene, voxels within a region, and methylation sites within a gene), group sparse CCA [12] 

and network-regularized PLS [20] model were proposed. However, the above models were 

for the analysis of pairwise datasets and cannot handle three or more datasets. D.M. Witten 

et al. [21] proposed a sparse multiple CCA (SMCCA) model, which is an extension of two-

way sparse CCA model when three or more datasets are considered for correlation analysis. 

In our recent work et al. [22] we proposed an adaptive SMCCA model to adaptively adjust 

the weight coefficients on the pairwise covariances in the SMCCA model. Despite of these 

efforts, there has been limited work to combine three or multiple imaging genomics data 

sets.

Nonnegative matrix factorization (NMF) [23] has been proposed to represent objects by 

incorporating the nonnegativity constraints, i.e., factorizing the representation matrix into 

two nonnegative ones. Specifically, it represents data as a linear combination of a set of 

nonnegative basis vectors. The nonnegativity constraints facilitate the interpretation of 

discovered latent factors, and many variants of NMF have been developed such as sparse 

NMF [24], [25], group sparse NMF (GSNMF) [26] and graph regularized NMF [27]. These 

methods incorporate both prior knowledge and specific data structure (e.g., sparsity, group 

Wang et al. Page 2

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and graph constrains). Zhang et al. [28] proposed a joint nonnegative matrix factorization 

(JNMF) framework, which simultaneously factorizes multiple data matrices to reveal hidden 

associations for pattern discovery in cancer genomic data. In JNMF framework, multiple 

data matrices were projected into a common subspace (i.e., the same set of basis vectors) to 

explore the correlation among multiple datasets. Since the correlated component pairs 

correspond to the same basis vectors, it is different from CCA-based or PLS-based model.

In [29], we have employed the JNMF model to extract correlative modules from SNP, fMRI 

and methylation for the SZ study. However, we haven’t taken into account specific group 

structures in the data. In our preliminary work [30], we proposed a group sparse joint 

nonnegative matrix factorization (GSJNMF) model for multiple data integration. In current 

paper, we present the detailed procedure for the solution of the model and the convergence 

analysis. We also propose a parameter selection strategy based on variable stability selection 

for the stability of the results. Then we employ the GSJNMF model to identify correlative 

modules associated with SZ. Based on the modules, we can identify significant genes or 

biomarkers associated with SZ.

The rest of the paper is organized as follows. In Section II, we briefly review NMF and its 

variants. In Section III we describe the proposed GSJNMF model and the numerical 

algorithm for its solution. We then present the experimental results on both simulation and 

real SZ datasets in Section IV. We conclude the paper in Section V by summarizing the 

major contributions of the work.

II. Related work

In this section, we will briefly review NMF and some of its variants.

A. NMF

NMF [23] is a matrix factorization algorithm with many applications. Given m samples in 

ℝn, whose elements are all nonnegative and arranged in columns of a nonnegative matrix 

X ∈ ℝ+
m × n, NMF aims to find its approximation with two low-rank nonnegative matrices 

W ∈ ℝ+
m × r and H ∈ ℝ+

r × n, with r < min(m, n). It can be formulated as

min
W , H

‖X − W H‖F
2 s.t. W , H ≥ 0, (1)

where ⋅ F  is the Frobenius norm, W ∈ ℝ+
m × r stores the basis column vectors and 

H ∈ ℝ+
r × n stores the corresponding column coefficient vectors. r is the number of the basis 

vectors.

The objective function of NMF in Eq. (1) is nonconvex with respect to W and H, so it is 

impractical to find the global minimizer. Fortunately, it is convex in either W or H only, so 

an iterative optimization can be used to find a local minimizer. Lee et al. [31] developed the 

multiplicative update algorithm to solve the optimization problem in Eq. (1) as follows
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W ik W ik
XHT

ik
W HHT

ik
, Hjk Hjk

W TX jk
W TW H jk

. (2)

For each column X·j, a linear, nonnegative combination of the basis vectors is given by

X . j = ∑
i = 1

r
W . iHij = W H . j, (3)

where W·i is the i-th column vector of W. Thus, the r basis vector W·i can be considered as 

the skeleton of the data, while the r-dimensional coefficient vector H·j gives the weights of 

each basis vectors on X·j. The basis vectors can often discover data structures that are latent 

in the X.

B. Variants of NMF

With the nonnegativity constraint, NMF can learn a parts-based representation of a dataset. 

However, NMF sometimes fails to discover intrinsic structures of the data, which is essential 

to the real-world applications. By incorporating prior information about the dataset or 

enforcing a sparsity constraint, we can further improve the model or make the results more 

interpretable.

For a nonnegative data matrix X ≥ 0, Hoyer proposed nonnegative sparse coding (NSC) 

model [24] to ensure sparsity of the encoding matrix as follows

min
W , H

1
2‖X − W H‖F

2 + λ∑
ij

Hij s.t. W , H ≥ 0, (4)

where λ > 0 is a parameter for balancing the two terms.

In Eq. (4), since H ≥ 0, we can get

∑
ij

Hij = ∑
ij

Hij = vec(H)
1
,

(5)

which is the sparse constraint. vec(·) is a vectorization operator. In [25], Hoyer proposed a 

novel sparseness measure based on the relationship between the L1 norm and L2 norm. 

Given a vector x ∈ ℝn

sparseness (x) =
n − x 1/ x 2

n − 1 . (6)

This function equals to 1 if and only if x contains only a single non-zero element, and equals 

to 0 if and only if all elements are equal (up to signs), a trade-off between the two extremes. 

Hoyer [25] enforced this sparse constraint to the columns of W and rows of H with desired 

sparseness values as follows
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sparseness W . i = Sw, ∀i, i = 1, …, r,
sparseness Hi . = Sℎ, ∀i, i = 1, …, r, (7)

where Sw and Sh are predefined.

Liu et al. [26] proposed a group sparse NMF (GSNMF) model to learn multiple linear 

manifolds for face recognition. GSNMF imposes the group sparsity constraint on the column 

vectors of the coefficient matrix to get a group sparse representation. For nonnegative 

coefficient matrix H ∈ ℝ+
r × n, let’s assume there are K manifolds and the dimension of each 

manifold is p. For each row vector of H, it can be divided into K groups and each group has 

p coefficients. The i-th row, k-th group norm Hi ⋅ Gk is defined as

Hi . Gk = ∑
α ∈ Gk

Hiα
2

1
2
, (8)

where Gk is the column index set of the k-th group and i is the row index. Then the group 

sparsity for H is defined by

‖H‖G = ∑
i, k

Hi . Gk = ∑
i, k

∑
α ∈ Gk

Hiα
2

1
2

. (9)

If we consider each row as a group, ⋅ G = ⋅ 2, 1.

All the variants of NMF model described above just factorize one single matrix and cannot 

handle multiple data matrices. Zhang et al. [28] proposed a joint NMF (JNMF) framework, 

which simultaneously projects multiple types of data matrices onto a common subspace. The 

common subspace is spanned by nonnegative basis vectors, which can be used to represent 

the heterogeneous variables with nonnegative weights. Based on the nonnegative weights on 

a particular basis vector, JNMF can identify the correlated variables and reveal the hidden 

associations. Given three nonnegative matrices X1 ∈ ℝ+
m × n1, X2 ∈ ℝ+

m × n2, X3 ∈ ℝ+
m × n3, the 

JNMF model is formulated as follows

min
W , H1, H2, H3

∑
q = 1

3
Xq − W Hq F

2

s.t. W , H1, H2, H3 ≥ 0,
(10)

where W ∈ ℝ+
m × r stores the common basis vectors shared by the three data matrices and 

Hq ∈ ℝ+
r × nq, (q = 1, 2, 3) are the corresponding coefficient vectors.
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III. Proposed method

The nonnegative constraint in NMF model only allows additive combinations of the 

nonnegative basis vectors, which differs from other matrix factorization methods such as 

singular value decomposition (SVD). As a result, NMF can learn parts-based representation, 

which find good applications to many real-world problems such as document clustering [32] 

and DNA gene expression analysis [33]. JNMF simultaneously projects multiple data 

matrices into a common subspace to explore their correlations but overlook the prior 

knowledge or specific structure information in the data. In this section, we propose the group 

sparse JNMF (GSJNMF) model by enforcing group sparse constraint.

A. GSJNMF

We consider three types of datasets from the same samples. After preprocessing, we make 

the data matrices nonnegative and denote them as X1 ∈ ℝ+
m × n1, X2 ∈ ℝ+

m × n2, and 

X3 ∈ ℝ+
m × n3, where m is the sample size and ni is the number of variables in data Xi. For 

data Xi (i = 1, 2, 3), assuming there are Ki disjoint groups in the ni variables, we denote the 

group information of variables in Xi as

Gi = G1
i , G2

i , ⋯, GKi
i

s.t. Gp
i ∩ Gq

i = ∅ , p ≠ q

∪
j = 1

Ki Gj
i = 1, 2, ⋯, ni ,

(11)

where Gj
i  is the column index set of the j-th group in data Xi. The GSJNMF model is then 

formulated as

min
W , H1, H2, H3

ℱ = ∑
i = 1

3 1
2 Xi − W Hi F

2 + λi Hi Gi ,

s.t. W , H1, H2, H3 ≥ 0,
W . j 2

2 = 1 (j = 1, ⋯, r),

(12)

where W ∈ ℝ+
m × r, H1 ∈ ℝ+

r × n1, H2 ∈ ℝ+
r × n2, H3 ∈ ℝ+

r × n3. r is a predefined rank and λ1, 

λ2, λ3 are regularization parameters. W.j is the j-th column basis vector in matrix W. Hi Gi

is the group sparse penalty term of matrix Hi defined as follows

Hi Gi = ∑
j, k

Gk
i ∑

α ∈ Gk
i

Hi jα
2

1
2
, (13)

where Gk
i  is the number of elements in Gk

i .

GSJNMF simultaneously factorizes multiple data matrices and obtains the shared basis 

vectors. Since the variables in each data matrix have group structure, the group sparse 
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penalty on the coefficient vectors can yield simultaneously nonzero weights within the same 

group. The constraint on the basis vectors W is used to prevent the elements in W from 

growing arbitrarily large. In particular, the term Gk
i  in (13) can reduce the effect of group 

size difference during the process of optimizing the coefficient values.

B. Multiplicative updating algorithm

The objective function of GSNMF in Eq. (12) is nonconvex in W, H1, H2, H3. Therefore, it 

is difficult for an algorithm to find the global minimizer. In the following, we introduce an 

iterative algorithm to find a local minimizer. Let Ψ ∈ ℝm × r, Φ1 ∈ ℝr × n1, Φ2 ∈ ℝr × n2, 

Φ3 ∈ ℝr × n3 be the Lagrange multipliers for constraint W ≥ 0, H1 ≥ 0, H2 ≥ 0, H3 ≥ 0, 

respectively; the Lagrange function is then given by

ℒ = ∑
i = 1

3 1
2 Xi − W Hi F

2 + λi Hi Gi

+ ∑
i = 1

3
tr ΦiHi

T + tr ΨW T ,
(14)

where tr(·) is the trace of a matrix. The partial derivatives of ℒ with respect to W and Hi (i = 

1, 2, 3) are

∂ℒ
∂W = ∑

i = 1

3
W Hi − Xi Hi

T + Ψ, (15)

∂ℒ
∂Hi

= W T W Hi − Xi + λi
∂ Hi Gi

∂Hi
+ Φi . (16)

Based on the Karush-Kuhn-Tucker conditions ΨjkWjk = 0, or specifically (Φi)jk(Hi)jk = 0, 

we can get the following equations for Wjk and (Hi)jk:

∑
i = 1

3
W HiHiT jkW jk = ∑

i = 1

3
XiHiT jkW jk,

W TW Hi + λi
∂ Hi Gi

∂Hi jk
Hi jk = W TXi jk Hi jk .

Then we can get the following multiplicative updating rules:

W jk W jk
∑i = 1

3 XiHi
T

jk
∑i = 1

3 W HiHi
T

jk
, (17)
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Hi jk Hi jk
W TXi jk

W TW Hi + λi
∂ Hi Gi

∂Hi jk

, (18)

where

∂ Hi Gi
∂Hi jk

=
Gq

i Hi jk

∑α ∈ Gqi Hi jα
2 . (19)

The iteration will terminate when the relative error of the value of the objective function in 

Eq. (12) between two iterations is smaller than a predefined tolerance τ > 0. We summarize 

the algorithm to solve GSJNMF model in Algorithm 1. Since the objective function (12) is 

nonconvex on W, H1, H2, H3 as a whole, the above algorithm may only find a local 

minimizer. We repeat the procedure for 100 times with different initialization settings. The 

solution with the lowest objective function value was used as the final result for further 

analysis.

C. Convergence analysis

From Eq. (12), we can know that the objective function ℱ is bounded from below by zero. If 

we can prove that the ℱ is nonincreasing under the multiplicative update rule given in Eq. 

(17) and Eq. (18), the objective function ℱ will be invariant if and only if W and Hi (i = 1, 2, 

3) are at a stationary point. The final solution will be a local minimizer. To simplify the 

proof, we just prove that ℱ is nonincreasing under the update rule for Hi (i = 1,2,3). The 

proof for ℱ being nonincreasing under the update rule for W can follow a similar way. We 

introduce an auxiliary function to prove the convergence as Lee et al. used in [31] and the 

definition of the auxiliary function is given in the following.

Definition 1: G(h, h∗) is an auxiliary function for F(h) if the condition G(h, h∗) ≥ F(h), G(h, 
h) = F(h) is satisfied.

Algorithm 1

The algorithm to solve GSJNMF model

Input: Xi ∈ ℝ+
m × ni, Gi

, λi, (i = 1, 2, 3), r, τ.

Initialize W and Hi, (i = 1, 2, 3) to random positive matrices.

k = 1.

while 1 do

 Calculate the current function value fk on Eq. (12).

 update W by using Eq. (17).

 for j = 1 : r

  W.j = W.j/||W.j||2.

 end for
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 Update Hi (i = 1, 2, 3) by using Eq. (18).

 Calculate the current function value fk+1 on Eq. (12).

 if |(fk − fk+1)/fk+1| < τ

  break.

 end if

 k = k + 1.

end while

Output: W, Hi, (i = 1, 2, 3).

For Hi, considering any element (Hi)jk, we use Fijk to denote the part of ℱ which is only 

relevant to (Hi)jk. The first order and second order derivative of Fijk are given as

Fijk′ = W T W Hi − Xi jk + λi
∂ Hi Gi

∂Hi jk
,

Fijk′′ = W TW jj + λi
∂2 Hi Gi

∂2Hi jk
.

Lemma 1: Function

G(ℎ, (Hi
(t))jk)

= Fijk((Hi
(t))jk) + Fijk′ ((Hi

(t))jk)(ℎ − (Hi
(t))jk)

+
(W TW Hi

(t))jk + λi
∂ Hi

(t)
Gi

∂Hi
(t)

jk
2(Hi

(t))jk
(ℎ − (Hi

(t))jk)2

(20)

is an auxiliary function for Fijk.

Proof: Obviously, G(h, h) = Fijk(h), we only need to prove G(ℎ, (Hi
(t))jk) ≥ Fijk(ℎ). The 

Taylor series expansion of Fijk(h) in (Hi
(t))jk is given as

Fijk(ℎ)
= Fijk((Hi

(t))jk) + Fijk′ ((Hi
(t))jk)(ℎ − (Hi

(t))jk)

+
Fijk′′ ((Hi

(t))jk)
2 (ℎ − (Hi

(t))jk)2 .
(21)

Comparing Eq. (20) with Eq. (21), we can find that G(ℎ, (Hi
(t))jk) ≥ Fijk(ℎ) is equivalent to

(W TW Hi
(t))jk + λi

∂ Hi
(t)

Gi

∂Hi
(t)

jk

≥ W TW jj + λi
∂2 Hi

(t)
Gi

∂2Hi
(t)

jk
(Hi

(t))jk .
(22)

Obviously, we have
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W TW Hi
(t)

jk
= ∑

v
W TW jv Hi

(t)
vk ≥ W TW jj Hi

(t)
jk . (23)

From Eq. (19), we have

∂ Hi
(t)

Gi

∂Hi
(t)

jk
=

Gq
i Hi

(t)
jk

∑α ∈ Gqi Hi
(t)

jα
2 . (24)

We can also get

λi
∂2 Hi

(t)
Gi

∂2Hi
(t)

jk
Hi

(t)
jk

= λi
∂ Hi

(t)
Gi

∂Hi
(t)

jk
1 −

Hi
(t)

jk
2

∑α ∈ Gqi Hi
(t)

jα
2

≤ λi
∂ Hi

(t)
Gi

∂Hi
(t)

jk
.

(25)

Adding Eq. (23) and Eq. (25), we can get Eq. (22). Thus G(ℎ, (Hi
(t))jk) ≥ Fijk(ℎ) holds and 

function G(ℎ, (Hi
(t))jk) is an auxiliary function for Fijk. ∎

Lemma 2: If G is an auxiliary function of F, then F is nonincreasing under the update h(t+1) 

= arg min G(h, h(t)).

Proof:

G ℎ(t + 1), ℎ(t + 1) = F ℎ(t + 1)

≤ G ℎ(t + 1), ℎ(t) ≤ G ℎ(t), ℎ(t) = F ℎ(t) ,

then F(h(t+1)) ≤ F(h(t)). So F is nonincreasing under the update h(t+1) = arg min G(h, h(t)). ∎

Based on Lemma 2, we only show that the multiplicative updating rules given in Eq. (18) is 

the optimum of G(ℎ, (Hi
(t))jk).

∂G(ℎ, (Hi
(t))jk)

∂ℎ

=
W TW Hi

(t)
jk + λi

∂ Hi
(t)

Gi

∂Hi
(t)

jk
Hi

(t)
jk

(ℎ − (Hi
(t))jk)

+ W T W Hi − Xi jk + λi
∂ Hi Gi

∂Hi jk
= 0.

(26)
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Then we can get

ℎ = Hi
(t)

jk
W TXi jk

W TW Hi
(t) + λi

∂ Hi
(t)

Gi

∂Hi
(t)

jk

,
(27)

which is the updating rule of Hi given in Eq. (18). Due to the property of the auxiliary 

function, Fijk is nonincreasing under this updating rule.

D. Identification of modules

After GSJNMF, the three datasets were projected onto a common subspace whose basis 

vectors were stored in the basis matrix W. The basis vectors can be considered as the 

skeleton of the three datasets. For j-th basis vector, we can select the variables in Xq with 

large coefficients in j-th row of Hq to form a membership variable set 

Sj
q, (j = 1, 2, ⋯, r; q = 1, 2, 3). Since Sj

1, Sj
2 and Sj

3 all have large coefficients on the j-th basis 

vector in the common subspace, the j-th basis vector is the bridge that link the three member 

variable sets. In other words, each basis vector can define a module and the member 

variables across the three datasets in the module are correlated. For example, 

Sj = {Sj
1, Sj

2, Sj
3} is a module corresponding to the j-th basis vector. In [33], researchers have 

used the maximum of each column of coefficient matrix to determine the variable’s 

membership. In this way, each variable can belong to only one module. However, some 

variables may be either inactive in any module or active in multiple modules.

Considering above facts, we calculated the z-score [28] for each element in each row of 

coefficient matrices Hq (q=1, 2, 3) by

zij = xij − μi
σi

(28)

where μi is the mean value of i-th row vector in Hq and σi is the standard deviation. For Hq, 

zij > T means that the j-th variable in dataset Xq is a member of Si
q, q = 1, 2, 3 and T > 0 is a 

given threshold. Since GSJNMF extract the correlated variables from multiple datasets based 

on the shared basis vectors from the same sample, this model can only be used for multiple 

datasets from the same subject.

E. Significance estimation

For module S = {S1, S2, S3}, we expect that the variables in S1, S2 and S3 are correlated. To 

check if such relationship is statistically significant, we employ a permutation test to 

estimate the P-value of the identified modules. Assuming the number of elements in S1, S2 

and S3 are l1, l2 and l3, respectively, we then denote them by 

A = a1, a2, ⋯, al1 , B = b1, b2, ⋯, bl2 , C = c1, c2, ⋯, cl3 , where ai, bj, ck are column vectors 

from X1, X2, X3, respectively, and the length of the vector is the number of samples. We use 

ρ(x, y) to represent the Pearson correlation between x and y. Based on the above 

assumption, the mean correlation among the three datasets in a module can be given by
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ρ* = 1
3

1
l1l2 ∑

i = 1

l1
∑
j = 1

l2
ρ ai, bj + 1

l1l3 ∑
i = 1

l1
∑

k = 1

l3
ρ ai, ck

+ 1
l2l3 ∑

j = 1

l2
∑

k = 1

l3
ρ bj, ck .

(29)

We permutate the row order of matrices A and B while keep the matrix C unchanged for Θ 
times. For each permutation, the mean correlation ρθ*(θ = 1, 2, ⋯, Θ) can be calculated by Eq. 

(29), which is used to build the null distribution of the mean correlation. By large number of 

permutations, the significance of the mean correlation can be evaluated by

P‐value = θ ∣ ρθ* ≥ ρ*, θ = 1, 2, ⋯, Θ /Θ, (30)

where | · | is the number of elements in the set. Variables with P-values smaller than 0.05/r 
were considered to be significant.

F. Parameter selection

For NMF-based model, how to determine the number of basis vectors r is still a challenging 

problem. If r is too large, the matrices will be over-factorized and we cannot achieve the goal 

of dimension reduction. If r is too small, e.g., r = 1, the limited basis vectors will represent 

the original data with a large residual error and we cannot discover the hidden skeleton in 

the datasets. A common method is to choose r based on the stability of the corresponding 

solutions [33]. Most of the time, we prefer a smaller value and let r ≪ min(m, n1, n2, n3). 

The convergence tolerance was set to τ = 1 × 10−6. As for the regularization parameters λ1, 

λ2, λ3, we apply grid search method based on variable stability selection to find the optimal 

value, which were proposed by Sun et al. in [34]. In Sun et al.’s work, there is only one 

sparse coefficient vector used to select variables. However, in our model, based on multiple 

coefficient vectors, we select multiple set of variables for the basis vectors simultaneously. 

Not all of the modules will be adopted in the following analysis and we just keep the 

modules with significant mean correlations defined in Eq. (29). In a word, we cannot use the 

pipeline in our model directly. Given a decreasing sequence for λ1, λ2, λ3, we assume Λ = 

{Λ1, Λ2, ⋯, Λν}, where Λj = λ1
j, λ2

j, λ3
j . is the j-th parameter combination (j = 1, 2, 3, ⋯, 

ν). The procedure of selecting the optimal combination of parameters is as follows:

1. The sample set was denoted as Ω and |Ω| = m, where m is the number of matrices 

rows. We randomly partition the Ω into two disjoint sets Ω1 and Ω2 and |Ω1| = |Ω2| 

= m/2. If m is an odd number, we delete one sample randomly. For Λj, we 

perform the GSJNMF on Ω1 and Ω2 and obtain two sets of significant modules 

represented as Mj
1, Mj

2, respectively. The modules in these two sets were sorted 

by ascending order of P-values.

2. Assume δj = min Mj
1 , Mj

2 , δ = max 1, min δ1, δ2, ⋯, δν . Once we get δ, it will 

not change in the following operations.
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3. For Λj (j = 1, 2, ⋯, ν), we rerun Step 1) and extract the top δ modules in Mj
1 and 

Mj
2. For each dataset and each sample set, we compute the union set of variables 

in the δ modules. For example, Aj
i  is the union set of variables in the first dataset 

of Ωi; ℬj
i  is the union set of variables in the second dataset of Ωi; and Cj

i  is the 

union set of variables in the third dataset of Ωi (i = 1, 2).

4. The variable selection stability of the first dataset can be measured by Cohen’s 

kappa coefficient [35] as follows

κ(Aj
1, Aj

2) =
Pa Aj

1, Aj
2 − Pc Aj

1, Aj
2

1 − Pc Aj
1, Aj

2 , (31)

where Pa is the relative probability of observed agreement and Pc is the 

hypothetical probability of chance agreement, which can be calculated by using 

the method in [34]. Analogically, the variable selection stability of the second 

and third datasets can also be measured. We use the mean value of these three 

Cohen’s kappa coefficient κj to represent the variable selection stability on the 

parameters combination Λj.

5. Repeat Step 3), 4) for D times and the d-th mean Cohen’s kappa coefficient for 

Λj is κjd. The average variable selection stability of these D times repeats is given 

by

κj = 1
D ∑

d = 1

D
κjd, j = 1, 2, ⋯, ν . (32)

We select the parameter combination, corresponding to the largest average 

variable selection stability.

IV. Materials and results

A. Simulation study

To assess the performance of the proposed GSJNMF model, we simulate three datasets with 

correlated components and then we compare JNMF and GSJNMF based on their abilities to 

identify the hidden associations within these simulated datasets. Since we want to simulate 

the group effect in the datasets, each dataset consists of some disjoint groups. The variables 

in a group are generated based on one single seed vector. For example, a group component 

with n variables can be denoted as

α[n] = βi ∣ βi = α + σηi, i = 1, 2, …, n , (33)

where α ∈ ℝm is a seed vector with entries randomly chosen from the standard normal 

distribution and ηi ∈ ℝm is a Gaussian noise vector. σ ∈ ℝ+ indicates the noise level. We 

arrange the column vectors βi, (i = 1, 2, …, n) to form a sub-matrix of size m × n. The group 

components generated from the same seed vector are considered as correlated. Then these 
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sub-matrices are concatenated to form the final data matrix. Based on the number of 

variables in each group and the number of groups in each data matrix, we generate four 

types of cases for the three data matrices in Table I, where “√” means equal while “×” means 

unequal. Two correlated group components are set across the three data matrices in all cases.

In our simulation test, the length of variable vector m = 40. We generate the seed vectors 

randomly from the standard normal distribution and form the three data matrices as follows,

1. Case1: X1 ← {α1[20], α2[20], α3[20], α4[20], α5[20]}, X2 ← {α3[20], α6[20], 

α1[20], α7[20], α8[20]}, X3 ← {α9[20], α10[20], α11[20], α3[20], α1[20]}.

2. Case2: X1 ← {α1[15], α2[5], α3[9], α4[12], α5[10]}, X2 ← {α3[11], α6[19], 

α1[11], α7[7], α8[2]}, X3 ← {α9[6], α3[8], α10[17], α11[18], α1[6]}.

3. Case3: X1 ← {α1[20], α2[20], α3[20], α4[20], α5[20]}, X2 ← {α2[20], α6[20], 

α1[20]}, X3 ← {α7[20], α8[20], α9[20], α10[20], α1[20], α11[20], α2[20]}.

4. Case4: X1 ← {α1[10], α2[13], α3[8], α4[9], α5[11]}, X2 ← {α1[8], α6[11], 

α3[13]}, X3 ← {α7[8], α8[9], α3[12], α9[10], α10[7], α1[13], α11[11]}.

In each case, there are two correlated modules across the three data matrices. The 

corresponding variable indices of the correlated group components are displayed in Table II.

We normalize the three data matrices and make them to fit the constraints of nonnegativity 

with the following transformations. First, we standardize each column vector in the matrices 

to make the mean value be 0 and variance be 1. Second, we use the function F(x) = x − 
min(x)+ϵ to make each column be nonnegative, where x is the objective column vector and ϵ 
∼ unif(0, 10−3). Third, we normalize each column vector to make the L2 norm equal to 1. 

Fourth, we scale all the matrices so that the three data matrices have the same Frobenius 

norm. It is worth noting that the operations from the second to fourth step are all linear 

transformations, which will not change the Pearson correlation between the column vectors.

In the synthetic data experiments, because there are only two correlated modules in our 

design, we set r = 5 > 2. Since we identify the modules based on the z-score of each 

variables in the coefficient vectors, in each case we assess the performance of the GSJNMF 

and JNMF models by comparing the distribution of the z-scores of the variables in their 

identified modules. Based on the variable indices of the correlated module in Table II, we 

draw Figure A.1(a), A.2(a), A.3(a), A.4(a) (see Appendix A) to show the active variable 

indices in the four cases. The color of a line indicates a corresponding dataset. For example, 

red, blue and green means that the variables are from X1, X2 and X3, respectively. In each 

case, we calculate the z-score of the 5 modules from JNMF and GSJNMF models and select 

the modules that are most likely to be the true correlated modules we generated. Three noise 

levels (σ = 0.5, 1, 1.5) are considered in each case and the z-scores of the variables of the 

two selected modules from JNMF and GSJNMF model are displayed in Figure A.1–A.4 (see 

Appendix A). A variable with a large z-score means that it is active in the module.

From the results of the four cases, we can know that the z-score of the variables in the 

modules from GSJNMF model can reflect the true correlated modules. When the noise level 

σ = 0.5, the z-scores of the variables in the same group are at the same level, and the z-score 
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line looks very flat. If we increase the noise level to σ = 1, the GSJNMF model can still find 

the true correlated modules, but the z-score line becomes fluctuant. When the σ = 1.5, the 

fluctuation gets more severe. It’s worth noting that for all noise levels, the high z-score 

variables are all in the true correlated modules and the variables with Z-scores outside of the 

correlated modules are all very small. In this way, the GSJNMF model can identify the true 

variables in the modules.

As to the JNMF model, in the experiments of the four cases, even though the z-score of the 

variables in the true module are large, some variables outside of the true modules are still 

very large because of the fluctuations in the lines. These variables will be easily identified as 

wrong active variables. For example, in Figure A.1(a) (see Appendix A), the z-score of the 

variables (index from 21 to 40) from X2 in JNMF-module2 are large, but are not the 

members of module2. When the noise level σ = 0.5, the distance between the lines in the 

large z-score region is relatively large. When the noise level σ = 1, the z-score lines become 

closer due to the increase of fluctuation and it is difficult to separate the true modules from 

the whole variables. When the noise level σ = 1.5, the fluctuations become more severe and 

we can hardly get any module information from the lines.

From this comparison, we can know that JNMF model is more sensitive to noise. In 

GSJNMF model, even though there are some fluctuations, the z-score lines still reflect the 

true variables in each module. When there exists group structure in the datasets, GSJNMF 

can employ this group information and improve performance.

B. Data preparation and preprocessing

Participants in this study were from the Mind Clinical Imaging Consortium (MCIC). 80 SZ 

patients (age: 34±11, 20 females) and 104 healthy controls (age: 32 ± 11, 38 females) were 

analyzed here. We used three types of datasets (e.g., SNP, fMRI, DNA methylation data) of 

the 184 samples. Each SNP was categorized into three clusters based on their genotype and 

was represented with discrete numbers: 0 for ‘BB’ (no minor allele), 1 for ‘AB’ (one minor 

allele) and 2 for ‘AA’ (two minor alleles). The fMRI data were extracted with 53×63×46 

voxels and all the voxels with missing measurements were excluded. 116 ROIs were 

extracted based on the AAL brain atlas. DNA from blood samples was assessed by the 

Illumina Infinium Methylation27 Assay. A methylation value represents the ratio of the 

methylated probe intensity to the total probe intensity. We followed the same preprocessing 

procedures in [12] for SNP and fMRI, as well as the one [11] for DNA methylation, 

resulting in 722,177 SNPs, 41,236 fMRI voxels and 27,508 methylation sites, respectively. 

Since we want to find the biomarkers only associated with SZ, we applied the t-test to these 

three datasets between SZ and healthy samples, and only selected those variables with P-

value < 0.05. For SNP data, we only keep the SNPs included in the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway [36]. After variable selection, we obtained 10,351 

SNPs, 2,428 fMRI voxels and 2,724 methylation sites in 2,006 genes, 76 brain regions, 

2,134 genes from 184 samples, which were represented in three matrices X1 ∈ ℝ184 × 10351, 

X2 ∈ ℝ184 × 2428 and X3 ∈ ℝ184 × 2724, respectively. We used the same procedure to process 

the three data matrices and normalize them to the same value level. We then applied the 

GSJNMF model to the three matrices.
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C. Module discovery and validation

The variables in SNP, fMRI and DNA methylation datasets were grouped based on the genes 

and brain regions of interest (ROIs) (e.g., SNPs within the same gene, voxels within the 

same region, and methylation sites within the same gene). As a result, there were 2,006 

groups in X1, 76 groups in X2, 2134 groups in X3 and these groups have different sizes. We 

then performed the GSJNMF model on the preprocessed datasets to identify multi-

dimensional modules. In our test, we set the number of basis vectors r = 20 and the threshold 

for z-score T = 3 corresponding to the P-value = 0.0013 < 0.01. We searched the 

regularization parameters in {0.1 × 1
2n ∣ n = 1, 2, ⋯, 10} and set λ1 = 1.9531 × 10−4, and λ2 = 

λ3 = 0.025 by using the proposed selection procedure. The three data matrices were broken 

down into 20 basic building blocks, which capture the major information embedded in the 

original data. In other words, the variables in the three datasets can be linearly represented 

with the 20 basis vectors. For each basis vector, we identified a module, which consists of 

multiple variables from the three datasets. Within the 20 modules, four of them were 

significantly correlated, and these four modules were used for the subsequent analysis. Table 

III and IV provide the gene lists within the four modules identified from the SNP variables 

and DNA methylation sites, respectively. The brain ROIs identified from the fMRI voxels 

are displayed in Table V, where ‘*’ means null and each voxel’s volume is 3×3×3 mm3.

In the 1-st module, there are 18 genes identified from SNPs, 6 genes from DNA 

methylations and 1 brain ROIs from fMRI, which can be further validated. Among them, 

DNMT3B may increase the risk for SZ because of the gene-gene interaction with DRD1 

[37]. DCC is a promising novel candidate gene that may contribute to the genetic basis 

behind individual differences in susceptibility to SZ [38]. PRKG1 [39] has shown its 

association with SZ with the 21-st most significant SNP in the CATIE GWAS [40]. PRKG1 

also interacts with RGS2 and GABRR1, which has modest association with SZ symptoms 

[41] and schizoaffective disorder [42]. The PLA2G4A gene has been found to be associated 

with negative symptoms of SZ [43]. The abnormalities of PLA2G4A may be involved in a 

subgroup of the illness. C10orf26 as one of the target gene of miR-137 was also reported to 

have genome-wide significant associations with SZ [44]. CDH13 has been implicated in the 

susceptibility to a variety of psychiatric diseases, which may contribute to the genetic risk of 

SZ [45], [46].

In the 2-nd module, there are 7 genes identified from SNP, 5 genes identified from DNA 

methylation and 3 brain ROIs identified from fMRI. CD28 gene polymorphisms may not 

only act in immune deregulation observed in SZ, but may also influence the course of the 

illness by modifying the susceptibility to the co-occurrence of psychotic and affective 

symptoms [47]. In [48], fMRI results showed reduced clusters of activation in left lingual 

gyrus in SZ subjects as compared to controls during empathy task, which means that the left 

lingual gyrus is associated with empathy in SZ patients. The bilateral reduction in fusiform 

gyrus [49] and progressive reduction in left superior temporal gyrus [50] gray matter volume 

are associated with SZ patients in first-episode.

In the 3-rd module, 15 genes from SNP, 7 genes from DNA methylation and 6 brain ROIs 

were identified. A real effect of variation on CACNG5 may modify the susceptibility to SZ, 
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which means CACNG5 might contribute to the risk of SZ [51]. The maternal GRIK2 

transmission disequilibrium previously reported for autism supports that GRIK2 is a 

susceptibility gene for SZ [52]. NRG1 and ERBB4, critical neurodevelopmental genes, are 

implicated in SZ [53]. FUT8 may associate with SZ because of its lower expression [54]. 

Within insula, abnormalities in gray matter volume, cortical thickness, cellular structure and 

the expression of proteins can be observed in SZ, which means insula may play an important 

role in the development of SZ [55]. The SZ patients’ gray matter in left postcentral gyrus 

significantly decreases relative to the control group, indicating that the left postcentral gyrus 

maybe associated to the SZ [56].

In the 4-th module, we identified 7 genes from SNP, 5 genes from DNA methylation and 1 

brain ROI from fMRI dataset. ATM was considered as one of the biomarker genes to 

discriminate SZ from controls. The combination of ATM and ADSS may confer 

susceptibility to the development of SZ [57]. Since the TGFBR2 mRNA levels in the 

peripheral leukocytes may be a potential state marker for SZ, TGFBR2 gene may be 

involved in the pathogenesis of SZ [58]. CTNNA2 is differentially regulated by smoking in 

SZ patients and it represents a promising candidate gene for SZ based on previous genetic 

linkage and expression study [59]. PLXNA2 is involved in axonal guidance during 

development and may modulate neuronal plasticity and regeneration and the PLXNA2 

ligand semaphorin 3A is upregulated in the cerebellum of SZ patients, which means 

PLXNA2 is likely a candidate susceptibility gene for SZ [60]. We also plot the selected 

fMRI voxels corresponding to the four modules in Figure 1.

From the above analysis, each module contains significant biomarkers, which correspond to 

genes and brain ROIs related to SZ supported with existing literatures. Moreover, the genes 

and brain ROIs within the same module are significant correlated numerically. It indicates 

that these biomarkers may also have some functional associations with SZ. For real data 

integration, since we don’t have the ground truth, the genes and ROIs not reported in the 

literatures may contribute to new candidate biomarkers associated with SZ. These 

biomarkers in the same module and their correlation with clinical outcomes need to be 

further verified by the biologists. We also found that there are some genes and ROIs 

overlapping between the modules. For example, NCOR2 and PLA2G4A correspond to both 

1-st and 2-nd modules’ SNP components. PRKG1 corresponds to the 1-st and 3-rd modules’ 

SNP component. DCC is derived from the 1-st module’s SNP component and 3-rd module’s 

DNA methylation component. The left postcentral gyrus is shown in 3-rd and 4-th modules’ 

fMRI component. The left superior temporal gyrus appears in 2-nd and 3-rd modules’ fMRI 

component. These overlaps among the multi-dimensional modules may infer that these 

genes and ROIs are active and involved with multiple biological and brain functions. All 

these findings therefore demonstrate the implications of the selected modules related to SZ.

V. Conclusions

SNP, fMRI and DNA methylation provide important and complementary information about 

SZ, but most existing approaches either focus on one or two datasets analysis. If we 

represent the three datasets as a joint matrix with rows for the same subjects, JNMF 

simultaneously projects the matrices into a lower dimension subspace shared by the three 
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datasets and the nonnegative coefficient values for each matrix can be used to select 

significantly correlated features among the three datasets. Since the SNP, fMRI and DNA 

methylation datasets have group structures (e.g., multiple SNPs spanning a gene, a group of 

voxels within a ROI, and multiple methylation sites within a gene), we can take advantage of 

the group information to improve the JNMF model. In other words, our GSJNMF model can 

incorporate prior knowledge by enforcing group sparse constrains into the corresponding 

coefficient matrices in the model. As a result, the hidden dependence structures can be 

identified and the data heterogeneity in the datesets can also be reflected. In addition, the 

new GSJNMF model will render the results to be more easily interpretable. The model is 

finally validated by applying to the real imaging genomic data from MCIC to identify 

significant genes or biomarkers associated with SZ. In the future, we will incorporate gene 

networks and/or brain region network information into our analysis model. Although in this 

work we focus on the study of SZ, the model can be applicable to the study of many other 

diseases, where multi-omics data are ubiquitous.
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Fig. 1. 
(a) Brain ROIs in module 1 (b) Brain ROIs in module 2. (c,d,e) Brain ROIs in module 3. (f) 

Brain ROIs in module 4. The color indicates the z-score value of the selected voxels.
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TABLE I.

The experiment setting of different cases

Case index 1 2 3 4

# groups in three data matrices √ √ × ×

# variables in each group √ × √ ×
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TABLE II.

The variable indices of modules in each case

Case index Module index
Variable index

X1 X2 X3

1
1 1 ∼ 20 41 ∼ 60 81 ∼ 100

2 41 ∼ 60 1 ∼ 20 61 ∼ 80

2
1 1 ∼ 15 31 ∼ 41 50 ∼ 55

2 21 ∼ 29 1 ∼ 11 7 ∼ 14

3
1 1 ∼ 20 41 ∼ 60 81 ∼ 100

2 21 ∼ 40 1 ∼ 20 121 ∼ 140

4
1 1 ∼ 10 1 ∼ 8 47 ∼ 59

2 24 ∼ 31 20 ∼ 32 18 ∼ 29
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TABLE III.

The list of genes selected from the significantly identified modules

Module Gene ID (SNP)

1 VTI1B, DNMT3B, NFX1, NUMB, SEC61G, ASS1, ACTG2, ADCY2, FOXO3, ABCA12, PAK3, COL4A2, DIAPH2, GOT2, 
NCOR2, DCC, PRKG1, PLA2G4A

2 NLN, AVPR1A, NCOR2, IL7, MAN1A1, PLA2G4A, CD28

3 CACNG5, SGPP2, MKNK1, MASP1, PRKCQ, FUCA2, NDST4, GRIK2, ERBB4, FUT8, CBLB, RYR2, PRKG1, NEGR1, NRG1

4 ATM, ACP6, TGFBR2, GNA14, PPP1R12A, CTNNA2, PLXNA2
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TABLE IV.

The list of genes selected from significantly identified modules

Module Gene ID (DNA methylation)

1 FLJ22746, FLJ11155, CDKN2A, C10orf26, C10orf10, CDH13,

2 BRDT, EEF1E1, IKIP, MYO9A, LOC400696

3 C1orf26, FLJ11017, MICA, GMPR, COMMD5, WDR68, DCC,

4 FCGR3B, FLJ20245, NTNG2, TUB, DGAT2L6
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TABLE V.

Brain regions detected from significantly identified modules

Brain region╲Module
L/R volumn(cm3)

1 2 3 4

Insula * * 1.296/* *

Lingual Gyrus * 0.432/* * *

Fusiform Gyrus * */0.678 * *

Postcentral Gyrus * * 1.944/* 2.403/*

Supramarginal Gyrus * * 0.648/1.107 *

Superior Temporal Gyrus * 0.486/* 0.486/* *

Superior Temporal Pole * * 0.405/* *

Lobule VI of Cerebellar Hemisphere 0.486/* * * *
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