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Abstract

Working memory (WM) function has traditionally been investigated in terms of two dimensions: 

within-individual effects of WM load, and between-individual differences in task performance. In 

human neuroimaging studies, the N-back task has frequently been used to study both. A reliable 

finding is that activation in frontoparietal regions exhibits an inverted-U pattern, such that activity 

tends to decrease at high load levels. Yet it is not known whether such U-shaped patterns are a key 

individual differences factor that can predict load-related changes in task performance. The current 

study investigated this question by manipulating load levels across a much wider range than 

explored previously (N = 1–6), and providing a more comprehensive examination of brain-

behavior relationships. In a sample of healthy young adults (n = 57), the analysis focused on a 

distinct region of left lateral prefrontal cortex (LPFC) identified in prior work to show a unique 

relationship with task performance and WM function. In this region it was the linear slope of load-

related activity, rather than the U-shaped pattern that was positively associated with individual 

differences in target accuracy. Comprehensive supplemental analyses revealed the brain-wide 

selectivity of this pattern. Target accuracy was also independently predicted by the global resting-

state connectivity of this LPFC region. These effects were robust, as demonstrated by cross-

validation analyses and out-of-sample prediction, and also critically, were primarily driven by the 

high-load conditions. Together, the results highlight the utility of high-load conditions for 

investigating individual differences in WM function.
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1. Introduction

Understanding the neural basis of working memory and executive control (WM/EC) 

functions has been a major aim of cognitive neuroscience research. One of the key drivers of 

such research efforts are the well-established findings that WM/EC function is strongly 

dominated by individual differences, and moreover, that these individual differences clearly 

contribute to real-world cognitive abilities (i.e., intelligence) and important life outcomes 

(e.g., computer programming skills, ability to learn complex new task, SAT/GRE success, 

etc; (Ackerman, Beier, & Boyle, 2005; Engle, Laughlin, Tuholski, & Conway, 1999; 

Kyllonen & Christal, 1990).

The N-back task has been one of the most commonly used experimental paradigms for 

exploring the neural basis of WM/EC (Cohen et al., 1997; Gevins & Cutillo, 1993). The N-

back is well-established to robustly activate frontoparietal brain regions that which general 

consensus hold to be critical for WM/EC function (Dosenbach et al., 2006; Owen, 

McMillan, Laird, & Bullmore, 2005). An advantageous feature of the N-back is that WM 

load can be varied in an incremental, parametric fashion by increasing the value of N 

(Braver et al., 1997). This is a critical component of the paradigm, since as N-back levels 

increase, task performance shows a reliable decrement, while the subjective experience of 

cognitive effort and task difficulty also increases (Ewing & Fairclough, 2010; Otto, Zijlstra, 

& Goebel, 2014; Westbrook, Kester, & Braver, 2013; Westbrook, Lamichhane, & Braver, 

2019) The concomitant increase in task difficulty and drop in performance is useful 

psychometrically as it drives variability among participants, and thus the potential to detect 

the neural correlates of individual differences.

The consequences of N-back load manipulations on brain activity and the relationship 

between activity and behavior remain unclear, however. For example, there is uncertainty 

about which load levels are optimal for detecting brain activity patterns and brain-behavior 

relationships. This uncertainty is, in part, because of non-linear inverted U-shaped load 

functions, in which BOLD activity increases within frontoparietal brain regions as N 

increases across lower load- levels (e.g., 0, 1,2) but then starts to decrease as load increases 

to higher levels (N ≥ 3). A common observation is that inverted-U patterns emerge when 

participants reach their capacity limits (Van Snellenberg et al., 2015). For example, inverted-

U functions are observed under very high cognitive demands, with decreasing working 

memory capacity, with advancing cognitive age, and with cognitive impairments (Callicott et 

al., 1999; Cappell, Gmeindl, & Reuter-Lorenz, 2010; Jaeggi et al., 2007; Nyberg, Dahlin, 

Stigsdotter Neely, & Backman, 2009). One interpretation of inverted-U patterns is that 

individuals “disengage” at these high-load levels (i.e., discontinue applying full cognitive 

effort), since the task may be too difficult to perform adequately when load is at supra-

capacity levels (Callicott et al., 1999; Jaeggi et al., 2007; Van Snellenberg et al., 2015). 

Alternatively, inverted-U patterns may reflect shifting strategies (e.g., a shift towards 

responding based on familiarity at high load levels, rather than utilizing active maintenance 

(Juvina & Taatgen, 2007). A systematic analysis of inverted-U patterns and their relationship 

with task performance across individuals and across a wide range of load levels is needed for 

testing these hypotheses. At the same time, uncertainty about the meaning of inverted-U 

patterns makes it unclear whether very high levels of N-back load are even suitable for 
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investigating brain-behavior relationships. Consequently, very high levels of N-back loads 

(N > 3) have not been investigated.

It also remains unclear which brain regions or neural markers are the best predictors of 

individual differences in performance. For example, it is unclear whether the brain-behavior 

relationships are more focal, i.e., related to activity patterns in circumscribed brain regions, 

or more widespread and non-selective, and also captured well by other neural measures, 

such as functional connectivity. The lateral prefrontal cortex (LPFC) has traditionally been 

implicated as most likely to mediate performance in WM/EC tasks, as this region is thought 

to play a critical role in active goal maintenance, and cognitive control functions (Kane & 

Engle, 2002; Miller & Cohen, 2001). Nevertheless, evidence pointing to a specific and 

unique role for focal LPFC regions in mediating brain-behavior relationships in the N-back 

is limited. Although some studies have found evidence implicating the LPFC, in many 

others it is just one relevant region out of many that can predict individual variation in 

behavioral performance in the N-back and related WM/EC tasks (Choo, Lee, Venkatraman, 

Sheu, & Chee, 2005; Harvey et al., 2005).

Furthermore, other work has suggested that qualitatively distinct neural markers, such as 

resting-state functional connectivity, may be equally or even more strongly predictive of N-

back task performance (Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012). Specifically, 

Cole et al (2012) used a functional connectivity measure termed global brain connectivity 

(GBC), to demonstrate strong relationships between connectivity and multiple aspects of 

cognitive function, not only N-back performance but also WM capacity and fluid 

intelligence. Interestingly, this work also provided a unique perspective, in that the findings 

highlighted the contributions of a particular left PFC region (center coordinates: −44, 14, 29) 

that was unique among brain regions in showing robust brain-behavior relationships in both 

activation and GBC effects, across multiple indices. Consequently, this work suggests that 

there may in fact be focal brain-behavior effects found within distinct PFC regions, which 

may co-exist with (or even be stronger than) the more widespread network effects that have 

been reported. However, until now there have been no analyses directly comparing the 

predictive power of activity versus connectivity effects. It also suggests the potential utility 

of the GBC metric for revealing the functional importance of connectivity profiles within 

individual regions in a manner that can be compared with activation profiles. However, a 

limitation of Cole et al (2012) and other prior work was that such comparisons were not a 

direct focus of analysis, and moreover, a restricted range of N-back load levels were 

examined.

In the current study, we sought to remedy this gap in the literature, by capitalizing on a novel 

experimental design in which a large sample of individuals (n = 57) each performed the N-

back task under a very wide range of load levels, from N = 1–6. This design afforded a 

unique opportunity to test whether lower or higher load levels were more predictive of 

individual differences in task performance. In addition, we directly assessed the predictive 

power of a focal, a priori LPFC region of interest highlighted in both meta-analyses and our 

own prior work (Cole et al., 2012; Rottschy et al., 2012), to capture individual differences in 

behavioral performance in terms of both its activity and functional connectivity (i.e., GBC), 

and further to rigorously characterize the form of this predictive relationship. Finally, we 
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used newer cross-validation methods and a rigorous out-of-sample test (involving data from 

the Human Connectome Project; HCP) to establish predictive validity.

To preview our findings, we observed that this focal region of LPFC was a reliable neural 

predictor of behavioral performance, and moreover that the predictive utility was strongest 

when aggregating across all load levels, rather than just in selecting lower levels. Moreover, 

in a direct comparison, high load levels were more predictive of behavioral performance 

than low load levels. Nevertheless, additional independent variance was explained by 

activation global resting state functional connectivity, such that the strongest predictions of 

individual differences were found when both measures (LPFC activity and GBC in LPFC) 

were aggregated in the model. Lastly, we observed that this a priori defined LPFC region 

was one of the best predictors of behavioral performance in a large out-of-sample dataset 

(HCP). Together, the results suggest the importance of including a wide range of variability 

in N-back paradigms to target individual differences, and highlight the unique contributions 

of a focal LPFC region for predicting WM performance.

2. Materials & Methods

2.1. Participants

Fifty-eight participants were recruited from the Washington University in St. Louis 

community. One was excluded (participant disclosed neurological problem after data was 

collected) yielding a final sample of 57 participants (27 male and 30 female; mean age = 

24.28 ± 5.1 years) in N-back task. However, an additional 6 subjects out of 57 had technical 

issues with their resting-state fMRI data. Consequently, the remaining 51 participants were 

used for analyses of resting-state functional connectivity. All included participants were 

healthy, right-handed, neurologically normal, not currently taking any psychoactive 

medication, native English speakers, and with normal-to-corrected vision including no color-

blindness.

2.2. Experimental task and data collection procedure

All MRI data were collected in a 3 Tesla Siemens Trio scanner. After MR safety screening 

and consent, participants were scanned in six BOLD fMRI runs while they performed each 

of one level of the N-back task (N = 1:6; see Figure 1). To facilitate individual difference 

analyses, all participants performed N-back conditions in the same order of increasing N-

back load levels (i.e., 1-back in first scan, 6-back in last scan). The experimental session also 

included two additional resting-state scans and collection of a T1-weighted anatomical scan 

(these are described further below).

All N-back fMRI BOLD scans consisted of 3 task blocks, each approximately 2 minutes in 

duration, that were preceded and followed by a 30 second rest fixation period (marked by a 

central crosshair; 4 total per scan; total scan duration = 520 seconds). Task blocks consisted 

of 64 stimuli (lower-case consonants), presented in the center of a screen in large (32 point) 

Arial font. Each stimulus was presented for a maximum of 2 seconds during which 

participants were instructed respond by button press as quickly as possible, without 

sacrificing accuracy, to indicate whether the stimulus was a target (N-back repeat) or not 
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(using middle/index fingers). Upon button press, letters were replaced by a fixation 

underscore ‘_’, until the next letter appeared, 2 seconds after the previous letter was 

presented. There were 16 target items in each task block, and a variable number of lures, 

depending on the task level (8 for the 1-back, 6 for the 2-back, 5 for the 3-back, and 3 for the 

4-, 5-, and 6-back, each) where a lure is considered to be any stimulus repeated within two 

positions of the target position (e.g., a 1, 2, 4 or 5-back repeat would be considered a lure in 

the 3-back block). The number of lures decreased for higher load levels to “flatten” 

performance functions - attenuating differences in performance from lower to higher load 

levels.

At the end of each block, participants received brief feedback on their performance in terms 

of percentage accuracy on target and non-target items. This was presented for 5 seconds, 

followed by 25 seconds of resting fixation prior to the next block (total 30s, in between 

blocks rest). The total duration of each scan was 520 seconds (260 scans). Each N-back level 

was presented in a unique color (black, red, blue, purple, green, brown for the 1-back, 2-

back, 3-back, 4-back, 5-back, 6-back respectively as shown in Figure 1); task instructions 

referred to the condition by color (rather than numerical load descriptor), to minimize 

potential demand characteristics regarding difficulty. This last feature of the procedure was 

not relevant for the current study, and was put in place solely for purposes of a subsequent 

study phase (in a separate experimental session) that was not the focus of the current work.

Two resting-state scans were also conducted, one prior to beginning the N-back task scans 

and after completing these scans; each was 530 seconds long. All fMRI BOLD scans were 

acquired using the following parameters: 2000 msec TR, 27 msec TE (spine-cho time), 90 

degree flip angle, 4×4×4 mm voxels with a 256×256 field of view with 34 slices. 

Anatomical T1-weighted images were also collected with the following parameters: 2400 

msec TR, and 3080 msec TE (spin-echo time), 8 degree flip angle, 1×1×1 mm voxels, and 

176 slices.

2.3. Behavioral analysis

Behavioral performance was analyzed separately for target and non-target trials, and by 

examining both accuracy and reaction time measures. Some studies of the N-back have 

analyzed behavioral performance in terms of the signal detection measure d’, since this 

provides a relative measure of sensitivity to the target/non-target status of items while 

controlling for response bias (Wickens, 2002). In contrast, for the current analysis this 

measure may be less appropriate particularly for comparing load levels, since the load levels 

varied in the proportion of non-target trials that were lures (i.e., lower lure frequency at 

higher load levels). Thus, to be more conservative, all primary results are described in terms 

of target or non-target accuracy. Nevertheless, we did conduct supplementary analyses with 

d’ (reported in Supplemental Results), with most effects largely unchanged (and in fact, 

some effects, with LPFC were even stronger).

2.4. Imaging analyses

All neuroimaging analysis was conducted using AFNI (https://afni.nimh.nih.gov) software, 

with the following processing steps.
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2.4.1. Task fMRI preprocessing—After the converting raw DICOM images to NIFTI 

format, data were temporally aligned within each brain volume, and corrected for 

movement, yielding 6 estimated motion parameters (three translation: x, y, z and three 

rotation: pitch, yaw, roll). As an additional quality control step, data were also censored 

(scrubbed) for motion transients using a frame-wise displacement threshold of 0.3 mm. 

Functional images were then registered to the Montreal Neurological Institute (MNI) atlas 

space, which also involved up-sampling from 4×4×4 mm to 3×3×3 mm voxels. Precise 

registration was verified visually for every participant and cost functions were tailored to 

optimize registration for each participant. Image intensities were scaled to have a mean value 

of 100, and a range of 0–200. Finally, images were spatially smoothed with a Gaussian full-

width half maximum (FWHM) = 8 mm filter.

General linear models (GLMs) were fit using the 3dDeconvolve function in AFNI, to 

analyze the relationship between task conditions on voxel-wise BOLD activation levels. All 

GLMs incorporated the 6 estimated motion parameters and polynomial functions (-polort 4) 

to capture low-frequency signal drifts as nuisance covariates. N-back task activations were 

modeled by a block design of boxcar functions spanning each 128-second stimulus run, 

convolved with a gamma hemodynamic response function.

2.4.2. Resting state fMRI preprocessing—Resting-state fMRI data were pre-

processed using AFNI’s standard resting state pre-processing procedure (also see Jo et. al., 

2010). Specifically, in addition to standard steps taken for task BOLD data (i.e., spike-

correction, temporal alignment, motion correction, registration to MNI atlas space), more 

conservative censoring (scrubbing) of motion transients was also performed (given that 

motion transients are known to have a large impact of functional connectivity estimates, 

(Power et al., 2011) using a frame displacement threshold of 0.2 mm. Likewise, the data 

were band-pass filtered (0.01–0.1 Hz), and nuisance signal from locally-averaged white 

matter (ANATICOR procedure available in AFNI (Jo, Saad, Simmons, Milbury, & Cox, 

2010)) and the 6 estimated motion parameters were regressed out of the time-series prior to 

connectivity analyses.

2.4.3. Region of interest (ROI) analyses—A region-of-interest (ROI) approach was 

used primarily for task activation and connectivity analyses. The key ROI was a particular 

left prefrontal cortex (LPFC) region that was selected based on prior findings demonstrating 

the strong involvement of this region in WM function and individual differences in brain-

behavior relationships (Cole, Ito, & Braver, 2015; Cole et al., 2012; Rottschy et al., 2012). 

To define the ROI, we created a spherical region (6mm radius) with center coordinates based 

on Cole et al, 2012 (MNI coordinates [−44, 14, 29]). Note that this is region overlaps with 

that identified by Rottschy et al (2012) as part of the WM core network that they refer to as 

left inferior frontal gyrus pars opercularis (−46, 10, 26); however, the extent of the sphere 

that we used extends from the inferior frontal gyrus to the middle frontal gyrus. 

Nevertheless, to reduce ambiguity, from here on we use the term LPFC to refer to this 

particular ROI.

To further assess the predictive utility of this ROI, supplemental analyses compared its 

activation to a comprehensive, brain-wide set of focal ROIs, as well as larger-scale brain 
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networks. For these, we used the set of 264 (spherical, 6mm radius) nodes centered on loci 

defined in Power et al (2011), as these were drawn from both task fMRI meta-analyses and 

large-sample functional connectivity datasets, and have already been pre-structured into 

brain network communities. After fitting GLMs, regression weights were extracted and 

averaged across voxels for the LPFC ROI (and for supplementary analysis for each of the 

nodes and networks defined in Power et al, 2011). Between-subjects analyses of load-level 

and individual difference effects were conducted using these averaged regressions weights. 

For GBC analyses, resting-state timeseries data were averaged within the LPFC node and 

also for each node in the Power et al (2011) set, such that pairwise correlations between all 

nodes could be calculated for each participant. These correlation values were then included 

in similar brain-behavior analyses testing for individual difference effects.

3. Results

3.1. N-back performance and load effects

As predicted, overall N-back accuracy (Table1 and Figure2), and target accuracy decreased 

with increasing load (formally, repeated-measures ANOVA shows reliable effects of task 

load (F5,280 = 218.14, p < 0.001, Figure 2A). Similarly, as predicted, overall non-target 

accuracy also decreased with increasing load (F5, 280 = 24.93, p < 0.001, Figure 2B). 

Nevertheless, mean performance remained relatively high even at the highest load 

conditions. Also, response times (RT) for both targets (F5,280 = 42.75, p < 0.005, Figure 2C) 

and non-targets (F5,280 = 32.53, p < 0.001, Figure 2D) showed the significant effect of load 

and differ reliably (RTs slower for targets than non-targets, Table 1) at every load levels. 

These accuracy and RT patterns imply that participants did not resort to guessing or random 

responding, even at the highest load levels.

We next used linear mixed-effects models (equation 1) to test for linear effects of load on 

accuracy and RT. Specifically, we tested whether accuracy and reaction time, as independent 

variables (Behavij) could be predicted by load i (Loadij), with loads nested within 

participants j. Note that α00 and α10 are random intercepts, allowing the intercept and slope 

to vary by subject, respectively.

Beℎavij = B0j + B1jLoadij + εij Eq(1)

B0j = a00 + u0j
B1j = a10 + u1j

For target and non-target accuracy, there were significant, negative linear effects of load 

(target accuracy: slope = −10.25, t(56) = −23.2, p < 0.001; non-target accuracy: slope = 

−1.62, t(56) = −7.3, p < 0.001). For target RT, but not for non-target RT, positive linear 

effects were observed (target RT: slope = 0.03, t(56) = 7.34, p < 0.001; non-target RT: slope 

= 0.004, t(56) = 1.63, p > 0.1). We further tested an extension of the mixed-effects model 

that included a quadratic term1 for target accuracy (slope = 1.18, t(56) = 5.46, p < 0.001) 

and both RT measures (target: slope = −0.017, t(56) = −8.8, p < 0.001; non-target: slope = 
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−0.018, t(56) = −9.4, p < .001). These quadratic patterns indicate that target accuracy did not 

decline linearly at high load levels but rather declined asymptotically, while RT slowed with 

load, but then sped up again when N-back load was very high.

3.2. Overview of N-back fMRI results

In order to investigate neural substrates of working memory, we used an a priori approach, 

focusing on a particular prefrontal region of interest and, as a supplemental analysis, on a 

comprehensive set of additional brain-wide nodes and networks. The focal left LPFC region 

of interest was selected because it has been repeatedly shown to exhibit strong connections 

with WM and behavioral performance in both meta-analyses and specific studies, including 

those conducted in our lab (Cole et al., 2015; Cole et al., 2012; Rottschy et al., 2012; Wager, 

Spicer, Insler, & Smith, 2014). In particular, not only was this region included as part of the 

“core WM network” in Rottschy et al (2012), but also, in Cole et al (2012, 2015) this region 

was unique in exhibiting robust brain-behavior relationships in terms of both activity and 

connectivity patterns. Consequently, for this LPFC ROI, we focused on both its activity, as 

well as its resting-state functional connectivity.

After characterizing the load function observed in this ROI, we conducted a comprehensive 

set of analyses characterizing brain-behavior relationships with it (additional supplementary 

analyses compared this ROI to others across the brain as well as to brain networks- reported 

in Supplemental Results). A road-map to these analyses is as follows. First, we explored a 

variety of measurement and statistical approaches to modeling the load function and 

reducing the dimensionality of activity and behavioral performance variables: factor 

analysis, linear slope estimation, and linear mixed effects modeling. Second, after 

characterizing brain-behavior relationships in terms of neural activation, we tested whether 

similar relationships are present in regards to the functional connectivity of the LPFC ROI, 

using the GBC metric. Additionally, we tested whether GBC and neural activity measures 

each served as unique predictors of behavioral performance, using a multiple regression 

approach. Moreover, to ensure the predictive validity of this approach, these analyses were 

confirmed using cross-validation. Third, to establish the generality of LPFC predictive 

power, we examined this in terms of out-of-sample prediction, using both the N-back task 

and an additional out-of-scanner measure of WM function from the HCP dataset. Lastly, to 

further understand the source of LPFC brain-behavior relationships, we separately examined 

the relative predictive power of high versus low load conditions.

3.3. WM Load function in LPFC

Prior studies have not investigated patterns of recruitment of these networks beyond 3-back, 

and so the current study provides novel information on the role of these regions at extremely 

high load levels. In particular, when plotting load-related activity across participants in 

LPFC we observed a monotonic increase in activity across lower level loads, when then 

shifted to a decreasing pattern beyond N = 3, thus exhibiting a clear inverted-U profile 

(Figure 3A; although see below for evidence of a different profile when subdividing 

1In this case the model was extended to include an additional term: Beℎav = B0j + B1jLoadij + B2jLoadij
2 + εij, which was 

also allowed to vary by subject B2j = α20+u2j
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participants according to performance). This visual pattern was quantitatively confirmed by 

linear mixed effects modeling (as in equation 1 replacing behavior (Behavij) by brain 

activity-BOLDij. A non-significant linear term (slope = 0.002, t(56) = 1.29, p = 0.26) and a 

significant quadratic term (slope = −0.005, t(56) = −5.33, p < 0.001 was obtained. These 

findings confirm that in LPFC the effects of N-back load appears to follow the inverted-U 

pattern, with a decrease in activity at high load levels (see Supplemental Results for parallel 

findings at the brain network level).

3.4. Statistical modeling of activity-based brain-behavior relationships

Our primary focus in this study was to identify the relationship between load-related activity 

and behavior to elucidate the source of individual differences in WM. Rather than testing for 

multiple correlations across multiple load levels and BOLD response profiles, we initially 

explored a measurement model perspective, employing factor analysis to reduce 

dimensionality and test for correspondence between single factors of performance and 

BOLD signal. To do so, we first validated that the BOLD and accuracy measures could each 

be adequately captured by single factors (see Supplemental Results).

Next, we tested for correlations between participants’ behavioral accuracy and BOLD 

activity factor scores in an analysis, which is formally equivalent to a structural equation 

modeling or latent variable approach. In the LPFC, we found a significant positive 

correlation, such that higher BOLD activity factor scores were associated with higher N-

back task accuracy (r = 0.28, p = 0.034; Figure 4A). We also conducted parallel analyses 

using the signal detection index d’ rather than target accuracy, and found similar results (see 

Supplemental Results).

This hypothesis-driven confirmatory ROI analysis, was supplemented by an additional 

exploratory follow-up analysis that also examined the remaining brain networks and all 

individual Power nodes (see Supplemental Results for details). Interestingly, even when 

using a liberal statistical significance threshold (i.e., uncorrected alpha level of 0.05), no 

other nodes or networks exhibited a positive correlation with behavior, with the sole 

exception of the node that was located the closest anatomically to our LPFC ROI.

It is noteworthy that this analysis, which collapses load-related activity to a single value, was 

associated with the target accuracy measure. However, it raises the question whether the 

effects are specific to accuracy. Conversely, another parallel analysis which substituted target 

RT as the behavioral index found no significant correlations with LPFC (r = −0.13, p = 

0.31). To more stringently confirm this specificity, we compared the strength of the 

correlations between target accuracy and target RT, using Meng’s correction for non-

independent correlation coefficients (Meng, Rosenthal, & Rubin, 1992). Indeed, for this 

LPFC ROI, relationship with target accuracy was significantly stronger than the relationship 

with target RT (LPFC: Z=2.57, p < 0.01). This finding is particularly noteworthy, given that 

a supplementary analysis found that within-subject (i.e. load-related) BOLD patterns related 

better to RT than accuracy measures (see Supplemental Results). Thus, the results suggest 

that between-subjects co-variation in brain activity and behavior are dissociable from within-

subjects relationships (i.e., focused on load-related brain-behavior covariation).
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The previous analyses above modeled load-related activity in terms of a factor-score, which 

is conceptually similar to a cross-load weighted average. The second set of analyses 

examined LPFC activity in terms of the linear-trend present in each individual’s load-related 

data. Specifically, we estimated the linear slope of load-related LPFC activity for each 

participant and tested whether this slope was correlated with their behavioral accuracy factor 

score. For the LPFC, this correlation was significantly positive, indicating that the 

participants showing a more positive linear load function also had higher N-back task 

accuracy (r = 0.36, p = 0.006, Figure 4B).

To illustrate this effect more clearly, we subdivided participants into those that had a positive 

linear slope in load-related activity (slope > 0; i.e., consistently increasing with load) and 

those that had a linear slope that was not positive (slope ≤ 0; i.e., flat or decreasing activity 

with load). We then examined behavioral accuracy separately in these two participant 

subgroups (Figure 5A). As can be seen, participants with a positive linear slope (n = 38) 

showed consistently numerically higher accuracy than those without a positive slope (n = 

19), and the difference was significant at multiple individual load levels (i.e., 1-back: p = 

0.02; 2-back: p = 0.24; 3-back: p = 0.07; 4-back: p = 0.04; 5-back: p = 0.04; 6-back: p = 

0.66).

Since the accuracy factor score includes components of both mean performance (i.e., load 

independent) and changes in performance due to increasing load, we followed up this 

analysis by testing for a more specific relationship between the LPFC linear load slope in 

BOLD signal and the linear load slope in target accuracy. To do this most robustly, we used 

linear mixed effects models, via a cross-level interaction. Here, individual differences in 

behavioral performance were treated as an interaction term that modulated the linear slope 

of load-related activity. In other words, the model predicted BOLD activity in terms of linear 

effects of load, but with the slope of load-related activation change modulated by the linear 

slope coefficient of task accuracy (target trials). Consequently, similar to the previous 

analysis, this model tests whether more accurate participants (who will exhibit a less 

negative / more positive linear slope in target accuracy) also tend to show a more positively 

sloped linear load effect in BOLD activation than less accurate participants. Additionally, the 

use of a linear mixed effects model is more rigorous as it directly tests the cross-level 

interaction (individual differences effect), while simultaneously controlling for random 

variation in both the slope and intercept of load-related activity. Specifically, we tested 

whether BOLD signals (BOLDij) could be predicted by linear, mean-centered load (LOADij) 

i, with load-levels nested within participants j. Note that the linear load slope for accuracy 

(AccSlopej) estimated separately for each subject is a predictor of the load effect on BOLD 

signal at the subject level of the model. Also, α11 gives the cross-level interaction of load 

and the accuracy slope.

BOLDij = B0j + B1jLoadij + εij
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B0j = a00 + u0j
B1j = a10 + a11AccSlopj + uij

Indeed, the model reinforced the findings of the prior analysis, there was a significant 

interaction between LPFC BOLD load slope and individual differences in behavioral 

performance (indexed via the linear slope coefficient of target accuracy; t(56) = 2.08, p = 

0.041). To demonstrate these effects, we visualize the predicted performance across load 

levels and across participants, which also illustrates the complementary nature of this 

analysis to the previous one (Figure 5B). Specifically, the linear slope patterns clearly 

indicate the variability present across participants, and also that high accuracy participants 

tended to have a positive linear slope (increasing BOLD signal with increasing load), while 

the lower accuracy participants tended to exhibit a flat (or decreasing) effect of load on 

BOLD signal.

Finally, it is worth noting that we also tested whether individual differences in the strength 

of the U-shaped load related pattern in BOLD activity were related to behavioral 

performance, using the quadratic term coefficient as the individual difference measure. 

However, in none of these analyses was there a significant brain-behavior correlation 

observed in the LPFC (and indeed no correlation was observed in any brain network when 

tested in additional control analyses; see Supplemental Results).

3.5. Brain-behavior relationships with LPFC functional connectivity

In addition to the relationship between load-related activity and behavior, we were also 

interested in investigating whether functional connectivity (FC), observed during the resting 

state, was uniquely predictive of N-back task performance. We focused on a FC measure 

which can be computed for specific, focal brain regions (as well as networks), and which has 

been related to N-back performance in prior work: the global brain connectivity (GBC) 

index. Specifically, in a prior study from our group (Cole et al., 2012), we found that the 

GBC of this LPFC ROI was predictive of N-back task performance, along with other 

relevant cognitive individual differences (working memory capacity, fluid intelligence). 

Consequently, we tested whether this pattern would replicate in a new dataset, and with a 

parametric manipulation of load.

We computed the GBC value in two steps and then correlated the value with our accuracy 

factor score. First, the resting-state functional connectivity (rsFC) value between LPFC and 

every other brain region (defined using the 264 Power node parcellation) was computed and 

then Fisher r-to-z transformed. Next, these values were averaged to create a single GBC 

score for each participant. As predicted, we found a reliable correlation between this GBC 

score and the behavioral accuracy factor score and this GBC value across participants (r(49) 

= 0.29, p = 0.039).

Another analysis compared the GBC of the LPFC relative to other brain regions to 

determine whether this relative-GBC value was also predictive of behavioral performance. 

To determine relative GBC, we first computed the GBC separately for not only the LPFC, 

but also for each of the other 264 Power nodes in turn. Then, for each participant we rank 
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ordered these GBC values, to obtain the rank for LPFC relative to other brain regions, which 

we call the relative-GBC value. We then correlated each participant’s relative-GBC value 

against their behavioral performance, again using the factor score measure. This correlation 

was also significant (r(49) = 0.30, p = 0.029). This finding suggests that the higher the 

LPFC’s GBC relative to other brain regions (irrespective of its overall value), the better was 

task performance.

Our results up to this point implicate distinct LPFC predictors of individual differences in N-

back target accuracy: activity (either through the factor score or linear slope approach) and 

resting-state function connectivity (GBC). However, from the above analyses, it is not clear 

whether these predictors explain overlapping or independent variance in behavioral 

performance. If it is the latter, then the amount of variability in behavioral performance that 

can be explained from these distinct neuroimaging measures should increase when both are 

simultaneously included as predictors. In addition to testing whether these regions explain 

overlapping of complementary variance, we also conducted cross-validation analyses to 

more rigorously test the combined predictive capabilities of these brain indices for WM 

behavioral performance.

To address these questions, we reformulated the analysis into a multiple regression, using 

the accuracy factor score as the outcome variable, and LPFC activity (linear slope 

coefficient) and functional connectivity (GBC) as simultaneous predictors. The multiple 

regression indicated that, together, the predictors explained significant and distinct 

components of behavioral variance, accounting for over 22% of individual variation in N-

back performance (i.e., overall model R2 = 0.223) (LPFC activity slope: beta = 62.4, t(47) = 

2.86, p = 0.006; LPFC GBC: beta = 3.08, t(47) = 2.15, p = 0.036). When compared 

individually, activity measure was somewhat stronger (R2 = 0.148) than the connectivity 

measure (R2 = 0.09), yet this finding indicates that each of the two measures accounted for a 

substantial portion of individual differences in WM performance.

Although this type of multiple regression analysis is informative, current literature has 

pointed to the limitations of standard regression approaches in demonstrating predictive 

validity due to over fitting with respect to a given dataset (Yarkoni & Westfall, 2017). 

Consequently, we next adopted a cross-validation approach popularized in the machine 

learning literature - the leave-one-subject-out method - to provide further validation of these 

results. Specifically, we tested the correlation between the predicted and actual behavioral 

performance values on the left-out data. This correlation remained significant, though as 

expected was of lower magnitude, with an adjusted R2 = 0.15 (p = 0.006).

This result supports the predictive utility of the two neural indices of LPFC function, the 

linear slope of load-related activity and GBC, for predicting N-back performance in out-of-

sample data. Interestingly, cross-validation analyses also demonstrated that LPFC activity 

(linear slope) was a significant predictor in isolation since it remained significant in leave-

one-out cross-validation tests with it as the only predictor variable (r=0.29, p=0.036). 

However, the same was not true for LPFC functional connectivity (GBC), as it was no 

longer significant when included as the only predictor variable (r = 0.17, p = 0.22).
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This conclusion was further supported by a permutation test implemented by computing the 

correlation between actual and predicted accuracy (in 1000 iterations) after randomly 

shuffling accuracy values (in a linear model where LPFC activity slope and LPFC GBC 

were simultaneous predictors of accuracy). As expected, the mean correlation (mean 

correlation from 1000 iterations after Fisher r-to-z transformations) between predicted and 

true accuracy was near zero across permutations (r = 0.0066). In 1000 iterations only 8 of 

the permutations was the correlation as high as in our original dataset (r = 0.36). Thus, the 

cross-validation test confirms a highly significant correlation between predicated and actual 

accuracy (p = 0.006)2.

3.6. Testing generalization of brain-behavioral performance prediction

The prior analyses suggested the predictive validity of LPFC neural measures for predicting 

individual differences in WM function. To further test for the generalizability of these 

predictions, we examined whether this unique left LPFC ROI, which was not well-identified 

in by any existing parcellation scheme (Cole et al., 2015; Cole et al., 2012), exhibited 

predictive power related to N-back behavioral performance in another, much larger dataset, 

albeit one that did not examine parametric manipulations of working memory load. To do 

this, we made use of the publicly available HCP dataset, which includes N-back data from 

the 2-back and 0-back condition. To simplify the analysis, we included data from the 500-

release set, since this was the last set to provide results from a volume-based GLM analysis 

(i.e., the largest release that used an analysis approach compatible with the use of volume-

based, voxelwise ROIs). Furthermore, from this release we used only unrelated participants 

(n = 198), to avoid potential confounds in using twins and other related individuals. To 

provide the strongest test of generalization, we tested whether 2-back activation in our LPFC 

ROI predicted an out-of-scanner measures of WM and executive control function that were 

collected in that study: List Sorting (i.e., a standard WM measure included as part of the 

NIH Toolbox; (Barch et al., 2013; Gershon et al., 2013) and Penn Matrices (Bilker et al., 

2012); a measure of fluid cognition or fluid intelligence/gF). The advantage of using these 

out-of-scanner behavioral measures is that any observed associations cannot be attributed to 

the contemporaneous collection of brain activity and behavioral performance measures, 

which serves as a potential confound when using N-back accuracy as the behavioral 

measure. Instead, a correlation with a separate, out-of-scanner measure like List Sort or 

PMAT performance would indicate that N-back-related LPFC activity reflects a more stable 

trait-related index of WM/EC function. Indeed, the robust correlation between LPFC 2-back 

activity and both List Sort performance (r=0.26, p < 0.001) and PMAT (r=0.22, p < 0.0015) 

supports the hypothesis that LPFC recruitment is trait-like, and thus generalizes across tasks. 

Moreover, when comparing the magnitude of this brain-behavior correlation (with List Sort) 

relative to all the other (264) nodes in the Power parcellation, we found that it was one of the 

strongest – indeed only 4 other nodes showed slightly stronger correlations (highest r = 

0.285) and three of these were also in the FPN. This finding demonstrates clearly that this 

LPFC ROI can be expected to robustly reflect brain-behavior relationships in other N-back 

datasets and with other behavioral measures of WM/EC function.

2Note that we also conducted a parallel set of analyses that replaced the linear slope parameter with the factor score as the index of 
LPFC activity. These analyses provided very similar conclusions to the ones above and are reported in Supplemental results.
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For completeness, we also note that activity in this LPFC ROI was also reliably correlated 

with in-scanner 2-back performance as well in this HCP dataset (r=0.23, p=0.001). The 

magnitude of this correlation was comparable to that observed in our own dataset when 

restricting to the 2-back activity level (r=0.23).

3.7. The relative predictive power of high vs. low load data in the N-back

One of the most unique and potentially counter-intuitive aspects of our study design and 

analysis is that we examined N-back activity and performance at levels beyond those 

standardly tested in either behavioral or brain imaging studies of the N-back. Indeed, to our 

knowledge, this study is the first to examine six parametric levels of N-back fMRI and 

performance data. The likely reason for the uniqueness of our design is that conventional 

intuitions regarding the N-back are that the high load levels are too difficult for participants 

to perform well, and thus likely would be less sensitive to individual differences in brain 

activity and behavioral performance, due to floor effects.

We tested this assumption directly via analyses that separated the data into low load (N = 1

—3) and high load (N = 4—6) subsets, since it is the high load conditions that are most 

unique to our study. We then conducted analyses that tested brain-behavior relationships in 

various ways in these two subsets. First, we replicated the multiple regression analysis 

described above in which we retained the behavioral accuracy factor score that included all 6 

load levels, but then split the LPFC activity predictor in two, with one indicating the linear 

slope effect in only the low load conditions (1,2,3) and the other indicating linear slope in 

only the high load conditions (4,5,6). Thus, there were a total of 3 predictor variables (LPFC 

GBC, LPFC 123-slope, LPFC 456-slope). In a multiple regression we found that the total 

explained variance was similar at 22%, but that only the GBC and 456-slope predictors were 

statistically significant (LPFC GBC: beta = 3.26, t(46) = 2.25, p = 0.03; 123-slope: beta = 

8.06, t(46) = 0.95, p = 0.34; 456-slope: beta = 33.58, t(46) = 1.97, p = 0.055).

Second, we conducted separate regressions with just the low load predictors (along with 

LPFC GBC) predicting accuracy in just the low load conditions (by creating a factor score 

summary over just N = 1—3) and just the high load predictors (+LPFC GBC) predicting 

accuracy in just the high load conditions (again with N = 4—6 behavioral factor score 

summary). In this analysis, low load brain measures explained only 5% of the variance in 

low load performance and neither of the predictors were significant (LPFC GBC: beta = 

0.08, t(48) < 1; 123-slope: beta = 13.23, t(48) = 1.64, p = 0.10). In contrast, high load brain 

data explained 16% of variance in high load performance, and both predictors were 

significant (LPFC GBC: beta = 3.09, t(48)= 2.15, p = 0.037; 456-slope: beta = 33.17, t(48)= 

2.17, p = 0.035)3.

Together these results suggest that, counter to standard intuitions, brain-behavior 

relationships are stronger in very high load conditions relative to low load conditions. Thus, 

including very high load conditions increased our sensitivity to detect these brain-behavior 

3Again, we ran a parallel set of analyses that replaced the linear slope parameter with the factor score as the index of LPFC activity. 
Again, these additional analyses provided the same conclusions as drawn above, attesting to their robustness. These analyses are also 
reported in Supplemental results.
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relationships. To quantify this sensitivity, we directly assessed the proportion of total 

variability explained by individual differences (i.e., between-subject variability) using the 

intraclass correlation coefficient (ICC), which provides a measure of both how reliable are 

individual differences, and the relative proportion of variance that is due to load effects (i.e., 

within-subject variability vs. individual differences). The ICC statistic is typically used in 

test-retest reliability analyses, but for our purposes, each load-level condition was treated as 

a “retest” event. All analyses were conducted using the ‘psych’ package in R (Revelle, 

2018), and report the ICC(3,k) metric, which is the most conservative.

When examining all load conditions (N = 1—6), the ICC estimate for target accuracy was 

0.83 (95% CI: 0.74—0.89); of that, the proportion of variance due to load was 0.68 and to 

individual differences 0.14 (0.18 residual). For the LPFC BOLD data, again with all load 

conditions, the ICC estimate was 0.93 (95% CI: 0.90—0.95); with proportion of variance 

due to load 0.05 and to individual differences 0.65 (0.29 residual). This indicates high 

reliability of both measures, but with varying sensitivity to individual differences.

Next, we compared variance explained when separately examining low (N = 1—3) and high 

(N = 4—6) conditions. For both the behavioral and BOLD data the effects were striking, 

with increased ICCs and proportion of variance due to individual differences in the high load 

conditions (target accuracy: ICC = 0.85, 0.76—0.90 95% CI, proportion of variance due to 

individual difference = 0.51 and to load = 0.20; BOLD: ICC = 0.91, 0.86—0.95 95% CI, 

proportion of variance due to individual differences = 0.77 and to load = .01) compared to 

low load (target accuracy: ICC = 0.62, 0.41—0.76 95% CI, proportion of variance due to 

individual difference = 0.14 and to load = 0.59; BOLD: ICC = 0.82, 0.73—0.89 95% CI, 

proportion of variance due to individual difference = 0.53 and to load = 0.13). Taken 

together, these data support the idea, that counter to standard intuitions, the high load 

condition is actually more sensitive for the detection of individual differences in both 

behavioral performance and brain activity.

4. Discussion

Our study fills an important gap in our understanding of brain-behavior relationships in 

working memory tasks, and in the N-back in particular. Although the N-back is one of the 

most widely used paradigms to study working memory and executive control, there is still a 

poor understanding of how brain activity varies by load and how load-related activity 

patterns relate to task performance. Our study is unique in that we examined brain-behavior 

relationships in an N-back study design that used a very wide range of load levels, spanning 

from N = 1–6. To our knowledge, no previous studies of the N-back have systematically 

examined brain activity and behavioral performance at very high load levels (N > 3). The 

key question of interest was how LPFC activity varied with load and in comparison to other 

regions, and whether LPFC contributed to behavioral performance in a systematic way 

across load levels.

A systematic analysis of brain activity and performance across a large sample, and a wide 

range of load levels revealed multiple novel observations. First, we clearly replicated the 

inverted U-shaped pattern that has been a prominent feature of prior studies (Callicott et al., 
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1999; Jaeggi et al., 2007; Van Snellenberg et al., 2015), leading to the greatest activation at 

middle load levels (i.e., 2/3-back). This feature was not only prominent in LPFC activity, but 

observed brain-wide, as it was present in many other networks related to WM/EC as 

described in Supplemental Results. Second, we found that within a focal left LPFC ROI, 

load-related activity reliably predicted N-back behavioral performance. Moreover, this brain-

behavior relationship was selective: it was observed with the linear, rather than the inverted-

U component of load-related activation, it was not found with RT measures, and it was 

unique relative to other brain regions and even whole-networks, as revealed in supplemental 

analyses (Supplemental Results). Third, we found that global connectivity with this focal 

LPFC region was an independent predictor of N-back task performance (i.e., even when 

considering LPFC activation). Fourth, rigorous cross-validation analyses demonstrated the 

predictive utility of load functions in the LPFC, which also generalized to a large out-of-

sample dataset (HCP). Finally, and potentially one of the most counter-intuitive aspects of 

our findings, the highest load levels (4–6) of the N-back, rather than standard lower-load 

levels (N ≤ 3), were the most sensitive for detecting brain-behavior relationships, as they 

exhibited the greatest individual variability in both performance and brain activity. Thus, 

together the results highlight the utility of our approach in testing for brain-behavior 

relationships in WM tasks such as the N-back when sampling across a very wide-range of 

load levels. Nevertheless, the results do point to a number of puzzling and unresolved issues 

in terms of the neural mechanisms of WM function, that we discuss next.

4.1. Load-related activity functions: Meaning of the inverted-U pattern

The current findings replicate and extend a now consistent pattern of inverted-U load 

functions observed in neuroimaging studies of WM (Jaeggi et al., 2007; Jansma, 2004; Van 

Snellenberg et al., 2015). The inverted-U shape has puzzled investigators, and several 

hypotheses have been proposed. The most prominent is that the inflection point, in which 

activation levels start decreasing as load continues to increase, may reflect the point in which 

WM capacity is exceeded (Callicott et al., 1999; Haier, Siegel, Tang, Abel, & Buchsbaum, 

1992; Neubauer, Grabner, Fink, & Neuper, 2005). This account is bolstered by findings of a 

close correspondence between the load level in which the inflection point occurs and 

independent measures of WM capacity (Vogel, McCollough, & Machizawa, 2005). These 

findings have not only been observed in N-back paradigms, but in delayed match-to-sample 

paradigms (such as the Sternberg item recognition task) in which the inverted-U function has 

been linked to the active maintenance of information in working memory (Cappell et al., 

2010; Karlsgodt et al., 2007; Karlsgodt et al., 2009).

Other accounts have postulated that inverted-U functions reflect task disengagement, or a 

shift in processing strategy, which may occur somewhat independently of available capacity 

(i.e., due to other considerations, such as cognitive effort avoidance (Jaeggi et al., 2007; 

Jonides & Nee, 2006; Vogel et al., 2005). It is also consistent with neuro-computational 

models of WM, which suggest that the balance between recurrent connectivity and strong 

lateral inhibition leads to capacity constraints that create sub-linear relationships between 

load and average activation (Chatham et al., 2011; Edin et al., 2009; Rolls, Dempere-Marco, 

& Deco, 2013; Wei, Wang, & Wang, 2012).
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Our results contribute to this literature in several ways. First, our design increased sensitivity 

to the inverted-U pattern due to the wider range of load levels employed, at least relative to 

standard N-back paradigms (Van Snellenberg et al., 2015). Thus, we confirm that in the 

LPFC (and indeed in other brain networks as well; see Supplemental Results), there is a 

definite non-monotonic pattern with activation levels being strongest at N = 3, and 

decreasing from that at higher levels (e.g., Figure 3A). Interestingly, however, we found that 

it was the linear rather than non-linear load effect that best predicted individual differences 

in behavioral performance. In particular, highest performing participants showed a definite 

linear increase in activity, whereas lower performing participants tended to show decreasing 

activity. This finding suggests that although there may be an overlying pattern of decreasing 

activity in all participants at high load levels, it is the strength of the linear load-pattern (i.e., 

the tendency to monotonically increase, or at least not decrease, activity with increasing 

load) that most strongly discriminates high and low performers. Thus, the results suggest the 

continued utility of linear load modeling, to test for individual variation in WM function, 

even given the presence of non-monotonic patterns.

Nevertheless, a limitation of our study is that we did not have an independent measure of 

WM capacity, which ideally would be assessed out-of-scanner, with well-established 

psychometric measures (e.g., standard span or change detection tasks (Conway et al., 2005; 

Kyllingsbaek & Bundesen, 2009; Luck & Vogel, 2013). Consequently, a direction for future 

research would be to determine whether and how WM capacity limits relate to the 

distinctions between high and low performers we observed in terms of N-back load patterns 

in the current study, and moreover, whether capacity indices can be used to predict where the 

inflection point in inverted-U patterns is located or whether it exists (cf. van Snellenberg et 

al, 2015).

Data of this type (i.e., independent measures of WM capacity) would also be informative 

with regard to our finding that between-subjects variability in BOLD signal was not related 

to reaction times. Conversely, supplemental analyses confirmed that within-subject (rather 

than between-subject) load-related inverted-U patterns seemed to better track with reaction 

time (see Supplemental Results). It is possible that the inflection point within the inverted-U 

BOLD activity load functions might predict not only between-subjects variability in N-back 

accuracy, but also the inverted-U and inflection point in load-related RT patterns (i.e., and 

related to WM capacity measures). Such findings would support the idea that inverted-U 

patterns reflect something more about how target/non-target response decisions are reached, 

rather than about the quality of information storage per se. Although it was beyond the scope 

of current study to directly test for such effects (which would require more trials at each load 

condition, and more explicit manipulation of decision-related factors), this is an issue that 

could be addressed in future work, particularly through the use of evidence accumulation 

decision-making models: e.g., drift diffusion, linear ballistic accumulator (Ratcliff, Smith, 

Brown, & McKoon, 2016).

4.2. Focal region vs. network-level contributions to WM performance

Although our focus was brain-behavior relationships within a focal brain region (LPFC), we 

also investigated whether parallel relationships were observed at the network level. In 
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supplemental analyses we also tested cognitive brain networks including the broader 

frontoparietal network, as well as the dorsal attention, cingulo-opercular, and default mode 

networks. Paralleling our findings with the LPFC, in none of these networks was the 

inverted U-shaped or linear pattern associated with performance. It is worth noting that some 

analyses did reveal brain-behavior relationships in the DMN (see Supplemental Results), but 

these relationships were observed at the average level of task-related deactivation, rather 

than in terms of task-related activity that was specifically load-related.

It is possible that these null findings with regard to “task-positive” networks is actually a 

false negative, and that significant brain-behavior effects might have emerged with larger 

sample sizes. In fact, other work using very large N-back datasets have pointed to network-

level prediction of WM performance (Bolt et al., 2018; Egli et al., 2018). Nevertheless, it is 

also possible that the lack of load-related findings present at the brain network level within 

the current dataset reflect a true pattern that is related to the use of a wider-range of load 

levels than has previously been studied in the N-back. For example, if inverted-U patterns 

reflect capacity limitations, the inverted-U patterns observed at lower loads (N =1—3) 

would be primarily driven by low-capacity individuals. These patterns would also thus 

obscure any linear effects that only emerge for higher-capacity individuals across the wider-

range of loads (N = 1—6). Thus the wider-range may be necessary to capture and 

distinguish between linear and quadratic effects, and relate them to individual differences in 

performance. Moreover, it is possible that linear versus quadratic components may emerge 

to varying degrees across load levels in different parts of a given brain network. Hence, 

when considering the full load range (N = 1—6), subtler linear effects might be most 

sensitively be detected in focal regions (e.g. the LPFC), rather than in entire networks.

Our results do confirm the functional importance of this focal left LPFC region for WM task 

performance. Indeed, the results are consistent with the findings of many meta-analyses, 

which have pointed to the reliable engagement of this particular region in WM paradigms. 

For example, Rottschy et al. (2012) highlight this region as a key component of what they 

refer to as the “core” WM network. Furthermore, in our own prior work we found that this 

region was uniquely selective in predicting N-back task performance both in terms of 

within-subject and between-subject indicators (Cole et al., 2012). Although the current 

results do not highlight exactly how and why this region contributes to WM in such a unique 

way, they do point to the need for further targeted investigations of this region, to better 

reveal the mechanisms by which it contributes to WM function4.

Nevertheless, an important implication of the current results is that they clearly underscore 

the potential importance of conducting region-focused analyses in addition to network-based 

ones. Although network-focused analyses are useful for dimensionality reduction, our 

results suggest the potential limitations of such approaches, as they may obscure focal and 

4While revising this manuscript for publication, we took an initial step towards better understanding of the anatomic and functional 
specialization of this left LPFC ROI, by taking advantage of a new anatomic parcellation scheme (Ji et al., 2019), which subdivided 
brain regions into not only standard WM/EC brain networks, but also newly defines a left-lateralized language network, which also 
involves the LPFC. Overlapping our ROI onto this parcellation revealed that our ROI primarily overlapped with the FPN, with only a 
small fraction overlapping the language network (see Supplemental). This finding confirmed our intuition that although the region 
may reflect a unique functional region, it seems to belong within the FPN proper.
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unique contributions to functionality. As a concrete example of this point, the recent study of 

Egli et. al., (2018) analyzed their large N-back dataset using independent component 

analyses (ICA) as a data-driven dimensionality reduction approach, which they argued 

revealed the presence of two unique networks: a parietally-centered network related more to 

WM load effects and a frontally-centered network was more involved with general sustained 

attention. However, close inspection of their own data also points to the importance of the 

same left mid-lateral PFC region we focus on here. Nevertheless, because of their network-

focus, Egli et. al., (2018) do not highlight this region in their results, which otherwise would 

cause its potentially unique contribution to behavioral performance to be overlooked.

4.3. Global connectivity vs. activity within LPFC

Although the first-generation of WM neuroimaging studies focused exclusively on relating 

BOLD response magnitude to load manipulations, the field has clearly shifted to focus on 

functional connectivity as an important predictor of WM performance. In Cole et. al., 

(2012), we highlighted the GBC metric as a potentially powerful summary measure of 

functional connectivity that could be associated with focal brain regions. Moreover, in that 

study we demonstrated that GBC within the left LPFC showed a strong degree of individual 

variation, which critically appeared to have strong functional consequences, in predicting not 

only N-back accuracy, but also broader measures related to WM function (i.e., working 

memory capacity and fluid intelligence). The current study replicated this pattern in a new 

dataset, and moreover replicated the finding that LPFC GBC and LPFC activity served as 

independent predictors of a behavioral measure of WM function (N-back accuracy).

The finding of independent sources of individual variation in both the GBC and activity of 

LPFC begs the question of what each of these two metrics reflect, and how they relate. More 

broadly, the information content of mean activation versus that of functional connectivity is 

of growing general interest, moreover there have been concerns raised about the growing 

divide in studies focused on functional connectivity (particularly resting-state) and those 

focused on task-related activation. Recent attempts have been made to integrate connectivity 

and activity-based analyses, of which a notable example is activity flow mapping (Cole, Ito, 

Bassett, & Schultz, 2016). Our results, however, are consistent with the idea that the activity 

and connectivity patterns associated with LPFC contribute unique variance to behavioral 

performance. In particular, the factors associated with individual variation in LPFC activity 

and with LPFC GBC seem to be functionally independent, and so potentially reflect distinct 

causal mechanisms. Moreover, the results also replicate other prior results suggesting the 

importance of resting-state functional connectivity patterns (Sala-Llonch et al., 2012), 

particularly involving the DLFPC, as an important and unique dimension of individual 

difference with clear implications for WM function.

4.4. The importance of high-load WM conditions

Potentially the most surprising contribution of this study was the finding that high-load (i.e., 

N > 3), rather than low-load working memory conditions were the most sensitive for 

identifying individual differences. A common assumption that high-load conditions in the N-

back exceed most participants’ WM capacity predicts that performance would be at floor for 

N ≥ 3, and that variability in BOLD activity patterns would merely reflect noise. On the 
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contrary, we found that high-load conditions most strongly differentiated individuals, 

behaviorally and in terms of activity patterns. Given that individual differences analyses rely 

on between-subjects variability, higher load levels may thus be critical for detecting brain-

behavior relationships.

Indeed, it may have been precisely the utilization of high-load manipulations which provided 

the necessary discriminating power to identify individuals who were able to maintain high 

levels of performance and LPFC activity. Those with shallower decreases in performance 

showed more positive linear slopes in activity patterns. It is possible that under such high-

load conditions, preservation of performance, and the brain activity metrics are more closely 

reflecting processes related to cognitive control factors, rather than simple active 

maintenance, such as sustaining cognitive goals, resisting tendencies to distraction and 

mind-wandering, or potential for affective reactivity to internal negative performance 

feedback signals. In fact, to speculate, it may be that the high-load LPFC metrics may reflect 

control processes more closely than simple active maintenance, and these may be the most 

critical dimensions of individual differences in cognitively demanding tasks, such as the N-

back. If so, the findings would be consistent with the view that the N-back should be more 

strongly construed as a probe of cognitive control functions, than pure working memory per 
se, and this might be particularly true at high-load levels, which are most control-

demanding. A key implication of the current results is that if investigators are most 

interested in individual differences, high-load rather low-load N-back conditions should be 

emphasized. Notably, this recommendation is essentially opposite to common intuitions and 

predominant practice governing N-back studies since the beginning. Of course, one caveat is 

that we can only make this recommendation for studies involving healthy young adults, 

since that is the population we studied here. Future work will need to determine whether 

high-load N-back conditions are also equally efficacious and sensitive when examining other 

populations of interest.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic of single blocks of tasks for the 1-, 2-, and 6-back (“black”, “red”, and “brown” 

task). Each color corresponded to a single load level and indicated the N-back rules for a 

given run of stimuli.
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Figure 2. 
Bar plot of N-back performance. (A) Target: mean performance (accuracy, %) by load level 

and (C) response time (RT). (B) Non-target: mean performance (accuracy, %) by load level 

and (D) response time (RT). Error bars indicate standard error of the mean.
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Figure 3. 
Bar plot of N-back activity (beta parameter), mean over all participants by load level, in (A) 

LPFC, (B) Anatomical location the left LPFC region from Cole et al. (2012). Error bars 

indicate standard error of the mean.
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Figure 4. 
Scatter plots. (A) Accuracy factor score and LPFC activity factor score (betaparameter). (B) 

Target accuracy factor score and LPFC load slope (linear fit of LPFC activity on N-back 

load).
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Figure 5. 
(A) Participants are divided into subgroups based on whether they exhibited load-related 

increases in LPFC BOLD activity (positive linear slope; blue), or flat/decreasing activity 

(nonpositive linear slope; red). Bar plots display mean target accuracy of the two participant 

subgroups for 1:6 back tasks, and demonstrate generally better performance across all load 

levels in the (blue) subgroup showing load-related increases. Error bars indicate standard 

error of the mean. (B) Plot of fitted bold activity of N-back levels. Gray thin lines represent 

the linear slope of BOLD load effects in all individual participants. Mean slope of the high 

accuracy participants (top third, n = 19; yellow) and low accuracy participants (bottom third, 

n = 19; red).
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Table 1

Behavioral results: performance (%) and respose time (ms) (±standard deviation).

N-back task Target (mean) ± standard deviation Non-target (mean) ± standard deviation

Accuracy (%) Response time (ms) Accuracy (%) Response time (ms)

1-back 87.7 ± 9.0 592 ± 82 95.7 ± 6.6 558 ± 88

2-back 77.3 ± 12.4 710 ± 11 92.4 ± 8.5 678 ± 128

3-back 58.1 ± 15.3 787 ± 123 90.5 ± 7.2 713 ± 145

4-back 52.1 ± 11.9 771 ± 139 90.2 ± 7.8 681 ± 132

5-back 43.1 ± 15.3 758 ± 142 88.9 ± 7.9 654 ± 119

6-back 37.7 ± 15.0 763 ± 147 86.4 ± 9.0 618 ± 121
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