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Abstract

PURPOSE—The ever-growing electronic health records (EHRs) and biobanks offer unique 

opportunities to study Mendelian diseases. We described a novel approach to summarize clinical 

manifestations from patient EHRs into phenotypic evidence for cystic fibrosis (CF) with potential 

to alert unrecognized patients of the disease.

METHODS—We estimated genetically predicted expression (GReX) of CFTR and tested for 

association with clinical diagnoses in Vanderbilt biobank (N=9142 European descendants with 71 

cases of CF). The top associated EHR phenotypes were assessed in combination as a phenotype 

risk score (PheRS) for discriminating CF case status in additional 2.8 million patients from 

Vanderbilt University Medical Center (VUMC) and 125,305 adult patients including 25,314 CF 

cases from MarketScan, an independent external cohort.
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RESULTS—GReX of CFTR was associated with EHR phenotypes consistent with CF. PheRS 

constructed using the EHR phenotypes and weights discovered by the genetic associations 

improved discriminative power for CF over the initially proposed PheRS in both VUMC and 

MarketScan.

CONCLUSION—Our study demonstrates the power of EHRs for clinical description of CF and 

the benefits of using a genetics-informed weighing scheme in construction of a phenotype risk 

score. This research may find broad applications for phenomic studies of Mendelian disease genes.
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INTRODUCTION

Cystic fibrosis (CF) is a recessive Mendelian disease caused by a spectrum of pathogenic 

variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. As one of 

the most common Mendelian diseases, CF continues to pose challenges due to the highly 

variable clinical manifestations displayed among CF patients [1]. Part of the variability 

reflects the spectrum of pathogenic variants in the CFTR gene, which differ in impact on 

disease onset, severity and treatment [2-4]. However, the phenotypic variation in CF cannot 

be explained by the CFTR coding variants alone. A variety of studies have identified 

variants in other regions of the genome that impact the CF phenotypic variability [5-7]. It 

remains to know whether regulatory variants modulating the expression of CFTR might add 

to the phenotypic variability. Presumably, regulatory variation of Mendelian genes would 

cause milder phenotypes, in support of this, genome-wide association studies (GWAS) of 

common diseases revealed overrepresentation of Mendelian genes among the identified risk 

loci [8]. On the other hand, regulatory variants can also act to modify (reduce) the 

deleteriousness of coding variants, as shown in cancers and autism [9].

In this study, we proposed to interrogate the phenotypic consequences of regulatory variants 

of CFTR. The aggregate effects of multiple regulatory variants in a gene were determined by 

using genotypes to impute genetically regulated expression (GReX) from reference 

resources such as Genotype-Tissue Expression (GTEx) database [10, 11]. Clinical outcomes 

of predicted expression of CFTR were examined through a Phenome-Wide Association 

Study (PheWAS [12], an unbiased test of association of a genotype with a range of clinical 

diagnoses) in BioVU, an academic medical center-based biobank with genotypes linked to 

electronic health records (EHRs) [13]. Moreover, we evaluated in an independent dataset 

containing EHRs from 2.8 million patients how well the identified EHR phenotypes in 

aggregate predicted clinical diagnosed CF.

MATERIALS AND METHODS

Data sources

Data were obtained from Synthetic Derivative (SD), the clinical data warehouse at 

Vanderbilt University Medical Center (VUMC), and BioVU, the VUMC biobank. All the 

data were de-identified and our study was classified as “non-human subjects” research by 
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VUMC Institutional Review Board in accordance with the provisions of Title 45 Code 

Federal Regulations part 46. The genotype dataset contains genome-wide genotype data 

from 9142 BioVU participants of European ancestries. The genotypes were imputed and 

phased into Human Haplotype Reference Consortium reference panel (version r.1.1) [14, 15] 

using IMPUTE2 [16]. Samples of European ancestry were extracted for analysis based on 

ancestry principal component analysis (PCA). Our second dataset contains phenotype-only 

data from 2.8 million patients of SD (excluding the 9142 BioVU participants).

Imputing CFTR expressions from genotypes

Expression imputation models were previously trained on the GTEx reference panel (version 

2015) [17]. GReX of CFTR in each tissue was calculated as a weighted sum of the 

composite alleles in the prediction model. Of the 20 tissue-specific prediction models 

available for CFTR, we focused on the models with modest prediction performance (i.e., 

correlation of at least 0.1 between predicted and measured expression), and applied the 

models to the individual-level genotypes of BioVU samples to calculate GReX. We further 

used phasing information of the genotype data to impute GReX at haplotype-level (hGReX) 

for tissue ‘brain hypothalamus’.

PheWAS

PheWAS of the GReX of CFTR was performed in each tissue separately via logistic 

regression, adjusting for age, gender, three principal components of ancestry and arrays/

batches. The binary phenotypes (‘phecode’) were derived from billing codes of electronic 

health records as described previously [12, 18] with the use of the PheWAS package [19]. 

Each phecode has defined case, control and exclusion criteria and we required two codes on 

different visit days to instantiate a case for each phecode. Only phecodes with at least 20 

cases were included in analysis. Effect sizes were reported by the beta estimates from the 

regression.

LD-proxy of DF508

DF508 (CFTR p.Phe508del) is a 3-basepair deletion (rs113993960, 7:117199645-ATCT-A) 

on the 508th codon of the CFTR gene. Since DF508 was not directly genotyped in initial 

genotyping arrays, we used the linkage disequilibrium (LD)-proxy allele to tag it 

(rs111309367_T, r2=0.4, D’=1). While D’=1, DF508 is less common than this proxy allele, 

we have P(proxy=1 ∣ DF508=1)=1 and P(DF508=0 ∣ proxy=0)=1. The latter condition 

indicates 100% specificity of the proxy allele (i.e., non-carriers of DF508proxy are also non-

carriers of DF508). The former condition can be used to simply the calculation of sensitivity 

(of the proxy allele to tag DF508) into a ratio of two allele frequencies (AF):

Sensitiviy = P(DF508 = 1 ∣ proxy = 1) = P(DF508 = 1 & proxy = 1)
P(proxy = 1)

= P(proxy = 1 ∣ DF508 = 1) ⋅ P(DF508 = 1)
P(proxy = 1) =

1 ⋅ AFDF508
AFproxy

With 1 in 2500 new born with an incidence of CF in European descent [20] and DF508 

being present on 69% to 76% of cystic fibrosis chromosomes in north American CF patients 
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[21, 22], we estimated that the allele frequency of DF508 in population of European ancestry 

is approximately 1.67%. This is derived as follows: 

proption_of_CF_patients_with_DF508=p2 + 2p(0.5p) = 2p2, and the 

proportion_of_CF_patients_with_DF508 also equals to 1
2500 (0.7). So 2p2 = 1

2500 (0.7), thus 

p2=sqrt(1/2500*0.7)=1.67%. Given an AF of 2% for the proxy allele in (non-Finnish) 

European descent (gnomAD, gnomad.broadinstitute.org/; haploreg4 pubs.broadinstitute.org/

mammals/haploreg/haploreg.php), the sensitivity was estimated ~80% (=1.67%/2%). This 

implies that carriers of DF508proxy are not necessarily also carriers of DF508 – a portion of 

the homozygotes (heterozygotes) of DF508proxy are actually heterozygous (non-) carriers of 

DF508. We denote this proxy allele as DF508proxy.

GReX of CFTR between carriers and non-carriers of CF pathogenic alleles

In addition to DF508, we interrogated additional CF pathogenic alleles (according to 

ClinVar [version 2017]) that were covered by our genotype data, collectively denoted as 

‘other’ CF alleles. Heterozygous carriers of these ‘other’ CF alleles were carefully 

determined as carriers of one of these ‘other’ CF pathogenic alleles who neither carry 

DF508proxy nor ii) a diagnosis of CF. The condition ii) was to exclude potential compound 

heterozygotes who carry CF pathogenic alleles uncovered by our genotyping arrays. We 

tested for difference in hGReX between heterozygous carriers and non-carriers of i) DF508 

and ii) ‘other’ CF pathogenic alleles using non-parametric Wilcoxon signed rank test.

Measured expression of CFTR in relation to DF508

We examined the measured expression of CFTR stratified by the dosage of DF508 using the 

expression data (RNA-seq) and matched genome sequencing data from GTEx (V8 release). 

We focused on tissues with an averaged expression level of CFTR above a threshold 

(transcript per million (TPM) ≥ 0.01 in GTEx v7). Gene expressions in each tissue were 

processed according to [23], including steps of quantile-normalization, adjustment for 

covariates (gender, platform, first five principal components (PCs), and PEER factors to 

remove hidden batch effects and other confounders in the expression data), and regression of 

the expression residuals against the dosage of DF508.

Phenotype risk score construction and performance evaluation

In a dataset (‘validation set’) that contains EHRs from 2.8 million patients (excluding the 

9142 participants of the discovery set) from the SD of VUMC, we constructed and evaluated 

three phenotype risk scores (PheRSs). The EHR phenotypes and weights used to construct 

each PheRS (PheRSmapping, PheRSassoc, and PheRShybrid) were shown in Supplementary 

Table S2. The weights for PheRSmapping were extracted from the original paper [12] based 

on disease prevalence estimated in VU individuals of European ancestry. Since only the 

relative values matter for the weights, we normalized the weights to have the sum equal to 1. 

Both the weights of PheRSassoc and PheRShybrid were beta (effect size) values from GReX-

phenotype associations and normalized to sum up to 1.

The performance of the PheRSs for differentiating CF cases (defined as having the CF 

diagnosis code in EHRs) from controls was assessed via logistic regression to obtain the 
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probability of the disease occurrence. Because of the highly unbalanced data (~0.1% of CF 

cases), we calculated the average precision rate (i.e. the area under precision-recall curve) to 

measure model performance. Each time, 150,000 patients were randomly selected from the 

validation set, and the average precision was evaluated for both methods (PheRSassoc vs. 

PheRSmapping). We repeated this process 10 times and compared the performance.

Evaluation of PheRSs in MarketScan

The MarketScan dabases, owned by IBM Watson Health, are a suite of administrative 

claims-based databases that comprise inpatient and outpatient claims, medical procedure 

claims, prescription claims, clinical utilization records, and healthcare expenditures. These 

data are collected from employers, managed care organizations, health plan providers, and 

state Medicaid agencies. The covered patient population includes more affluent, privately-

insured segments of US society [24, 25]. The MarketScan databases describe over half of 

US population in terms of comprehensive and high-quality coding of diagnoses, procedures, 

and drug prescriptions. There have been more than 900 peer-reviewed publications since the 

launch of these databases in 1995, and this number increases even more rapidly in recent 

years [26, 27].

Here, in order to further evaluate the proposed PheRSs in this study, we used one of the 

MarketScan databases—the MarketScan Commercial Claims and Encounters database [28]. 

This Commercial database contains medical claims, outpatient prescription drug claims, and 

person-level enrollment information. We identified 25,314 CF cases whose first CF 

diagnosis appearing in the database were at age of 30 years or older and randomly selected 

99,991 non-CF controls that are age- and gender-matched (to the CF cases), out of a total of 

151 million unique individuals enrolled in the database during the years between 2003 and 

2013.

RESULTS

The workflow of the study is described in Figure 1.

EHR phenotypes associated with genetically determined expression of CFTR

Using the expression imputation models previously trained on the GTEx reference panel 

[17], we estimated tissue-specific GReX of CFTR in 10 tissues with modest prediction 

performance (R2 of at least 0.01; Supplementary Table S1). Phenome-wide scan of the 

GReX of CFTR was performed in BioVU participants of European ancestry (n=9142). In 

brain hypothalamus, the GReX was associated with clinically diagnosed cystic fibrosis 

(P=2.3×10−39). Other top-ranked associations reflect clinical symptoms in respiratory, 

endocrine and metabolic, and gastrointestinal systems (Table 1). These phenotypes capture 

key classic features of CF, such as ‘Pseudomonal pneumonia’ (P=1.6×10−26), ‘MRSA 

pneumonia’ (i.e. Methicillin susceptible pneumonia due to Staphylococcus aureus, 

P=1.3×10−20), ‘bronchopneumonia and lung abscess’ (P=8.4×10−14), and ‘bacterial 

pneumonia’ (P=6.2×10−12) for respiratory manifestations; ‘disease of pancreas’ 

(P=2.1×10−17) and ‘secondary diabetes’ (P=5.0×10−9) for endocrine and metabolic 

manifestations; and ‘nutritional marasmus’ (low weight in infant/child) (P=1.1×10−8), 
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‘intestinal malabsorption (non-celiac)’ (P=1.1×10−7), ‘severe protein-calorie malnutrition’ 

(P=0.0001), ‘failure to thrive in childhood’ (P=1.2×10−6), and ‘lack of normal physiological 

development’ (P=6.7×10−6) for gastrointestinal manifestations (Table 1). The top 

associations also include rarer phenotypes such as ‘bronchiectasis’ (P=4.9×10−19), 

‘hemoptysis’ (coughing up blood or blood-stained mucus, P=1.6×10−5), as well as common 

phenotypes including ‘nasal polyps’ (P=2.6×10−5), ‘abnormal sputum’ (P=2.6×10−5), and 

‘chronic sinusitis’ (P=8.5×10−5). These milder symptoms are consistent with previously 

reported symptoms in CF cases with adult onset [29-32].

We denoted the top 20 associated EHR phenotypes (excluding CF diagnosis) detected in 

hypothalamus collectively as the ‘CF-phenome’ (Table 1). Notably, the direction of 

association was concordantly negative for these top associations (i.e., risk of symptoms was 

inversely related to the GReX level of CFTR in hypothalamus). Similar phenome 

associations (but less comprehensive) were also detected in two other tissues (brain 

hippocampus, heart left ventricle) (Supplementary Table S2).

GReX of CFTR captures underlying CF coding alleles

Given that the GReX associations captured CF and many of its clinical manifestations, we 

asked whether the GReX reflects a genuine effect of regulatory variants independent of 

coding variants, or mainly captures the coding variants in CFTR due to linkage 

disequilibrium (LD). We first conditioned our analysis on DF508, the most common CF-

pathogenic variants in European descent. Since DF508 was not directly genotyped in our 

genotyping arrays, we used the LD-proxy allele (rs111309367, r2=0.4, D’=1) that tags 

DF508 with 100% specificity and ~80% sensitivity (Methods). We denoted this proxy allele 

as DF508proxy.

After conditioning on the dosage of DF508proxy, the association of GReX of CFTR (in 

hypothalamus) with the ‘CF-phenome’ attenuated sharply (Table 1). Indeed, GReX of CFTR 
was correlated with the dosage of DF508proxy, showing a dosage-dependent trend with 

respect to DF508proxy (Figure 2A). None of the individual SNPs that comprise the GReX in 

hypothalamus are, however, in strong LD with DF508proxy (r2<0.2) (Supplementary Fig. 

S1). We hypothesized that it is the combination of the noncoding alleles on haplotypes that 

effectively capture DF508proxy. To investigate this, we decomposed the GReX into the sum 

of two haplotype-level predicted gene expression (hGReX) assuming an additive model 

(Methods). With phased genotype data, we observed that in heterozygotes of DF508proxy 

(n=414, excluding CF patients), the haplotype carrying DF508proxy almost exclusively 

(98.7%) had lower hGReX than the other (‘wild type’) haplotype (Wilcoxon signed-rank test 

P<2.2×10−16; Figure 2B).

We then checked whether the expression reduction was also seen in haplotypes carrying CF 

alleles other than DF508. There are 16 additional CF alleles (according to ClinVar [version 

2017]) covered either by our direct genotyping or genotype imputation (Supplementary 

Table S3). With the allele frequency ranging from 0.001% to 0.2% in BioVU samples, we 

observed that individuals either carry zero or a single CF allele. Of the carriers (n=121), a 

few were positive for DF508proxy (n=14) or CF case status (n=4); after exclusion of these 

individuals, we obtained 103 heterozygous carriers for one of these 16 CF alleles who were 
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without diagnosis of CF (Figure 3A). In these heterozygotes, the haplotype carrying a CF-

allele on average had lower hGReX than the ‘wild-type’ haplotype (Wilcoxon signed-rank 

test; P<4.7×10−12; Figure 3B), similar to the observation of DF508proxy. In contrast, the load 

of intronic variants was not correlated with the level of hGReX (P=0.8).

Measured expression of CFTR in carriers of DF508

Using the genome sequencing from more than 800 individuals of GTEx database (release 

V8), we examined the measured gene expression in relation to DF508 in three tissues 

(hypothalamus, hippocampus, and heart left ventricle) where CF-phenome were detected. 

The number of carriers of DF508 is small in all three tissues (6 to 8 heterozygous carriers). 

In brain hippocampus we detected expression reduction of CFTR in carriers of DF508 

(Wilcoxon rank sum test; P=0.006), while no difference were detected in the other two 

tissues (Supplementary Fig. S2), likely due to the better correlation between GReX and the 

actual expressions in hippocampus (r2=0.074) than in hypothalamus (r2 =0.011) or heart left 

ventricle hypothalamus (r2 =0.025).

Scoring individuals based on EHR phenotypes identified by GReX associations

Since our GReX-associated phenotypes are consistent with clinical features of CF, we 

assessed whether these EHR phenotypes can be combined to construct a phenotype score to 

express how close an individual’s EHRs phenotypes are to clinically diagnosed CF. Earlier 

attempts have built a phenotype risk score for CF by mapping clinical description of 

Mendelian diseases to EHR phenotypes and then aggregating the relevant EHR phenotypes 

into a weighted sum with the weights determined by the inverse prevalence of the 

phenotypes in EHRs [33]. We denoted this score as PheRSmapping (for the composite EHR 

phenotypes and weights, see Supplementary Table S4).

Here, we constructed an alternative PheRS for CF: we combined the GReX-discovered ‘CF-

phenome’ (20 phecodes, excluding CF diagnosis, phecode 499) using weights informed by 

the effect size estimates from the GReX-phenotype associations (Methods; Supplementary 

Table S5). This phenotype risk score, denoted as PheRSassoc, scored CF patients higher than 

controls (Wilcoxon rank sum test; P<2.2×10−16) in samples independent of those used 

discovering the ‘CF-phenome’ (N=31,537 EUs, with 131 CF cases), validating PheRSassoc 

as a phenotype score for CF (Methods).

Next, we compared the performance of PheRSassoc to PheRSmapping using de-identified 

EHRs from 2.8 million patients of VUMC (~0.1% were diagnosed as CF cases), 

independent of the discovery dataset. The precision and recall rates were compared side by 

side for the scores for ten iterations, and each time a random sample of 150,000 individuals 

(EHRs) was selected from the total pool (Methods). For each of the 10 datasets, the average 

precision rate (i.e. area under the precision-recall curve) of PheRSassoc is better than 

PheRSmapping, ranging 20%~36% for the former as opposed to 3%~12% for the latter 

(Figure 4; Supplementary Fig. 3; Supplementary Table S6). Consistently, the precision and 

recall of predicted ‘high-risk’ patients (defined as the top 100 high-scoring individuals) of 

PheRSassoc were better than PheRSmapping across all 10 iterations (Supplementary Table S7).
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Since the number of phecodes used in constructing each PheRS is similar (21 phecodes in 

PheRSmapping vs. 20 phecodes in PheRSassoc, and four shared phecodes between the two 

scores), we hypothesized that the different weighting schemes may have contributed to the 

performance difference. To test this, for the PheRSmapping, we kept the constitutive 

phenotypes unchanged but replaced the original weights by the weights derived from the 

GReX-phenotype associations detected in hypothalamus (Table 4A), the performance of the 

resulting PheRS (we denote it as PheRShybrid) almost tripled in the precision-recall rate, 

ranging from 11% to 23% (Figure 4B). This indicates that the genetics-informed weights 

substantially outperformed the prevalence-based weights for predicting case status of CF. In 

addition, the constitutive codes of PheRSassoc generally have better discriminative power for 

CF than the codes of PheRSmapping, as indicated by the logistic regression of each code 

against CF status (affected vs. unaffected) that generated larger odds ratios of the codes of 

PheRSassoc (Supplementary Table S8).

Applying PheRSassoc to the case presentation of a 47-year-old woman who received 

diagnosis of CF in adulthood [29], the woman ranked 99.9th percentile for CF among 2.8M 

VUMC patients (Supplementary Table S9), suggesting the potential of our PheRSassoc to 

effectively alert possible CF cases with adult onset. As a comparison, the PheRSmapping 

scoring ranked the same woman as 98th percentile for CF [34]. Case presentations of the 

woman fit 9 out of 20 phenotype components of PheRSassoc, including sinusitis, cough and 

abnormal sputum, which were not part of the components of PheRSmapping.

We further evaluated the PheRSs in MarketScan, an independent database that contains 

national-level electronic health records from nearly half of the US population [28] 

(Methods). After mapping the ICD codes to phecodes, we applied the scoring algorithms to 

adults aged 30 years or older (Methods). We found: i) PheRSassoc can distinguish CF cases 

from non-CF controls (one-sided Wilcoxon-rank sum test, P<3.2E-249); and ii) PheRSassoc 

consistently performed better than PheRSmapping (Supplementary Table S10).

DISCUSSION

In this work, we demonstrate that the genetically regulated expression of a gene (CFTR) 

causing a Mendelian disease can be used as a genetic instrument to identify EHR 

phenotypes consistent with the Mendelian disease (CF). The associated EHR phenotypes 

can be combined effectively into a PheRS to summarize the evidence of phenotype overlap 

with CF. The novel weighting scheme guided by the phenotypic associations enhanced the 

accuracy of PheRS for predicting CF case status. Given that each family doctor is estimated 

to encounter 2-3 cases of CF during clinical practice [35], it is important to recognize CF 

cases in adults whose clinical manifestations tend to deviate from those with early onset. 

The potential of our PheRS to identify possible CF with onset in adulthood points to the 

clinical utility of this study. With continuous expansion of EHRs and biobanks, our 

phenotype risk score will continue to evolve, and may eventually facilitate earlier 

identification of adult onset of CF.

It has been established that specific cells in lung, ionocytes, a minority cell type in lung, 

express CFTR proteins leading to the canonical lung phenotypes associated with CF [36, 
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37]. It is therefore not surprising that we did not detect CF-phenome associations from lung 

which contains bulk expressions of various cell types. In human brain, hypothalamus is the 

first site of brain discovered for CFTR expression [38], and only neurons were found to 

express CFTR proteins [39, 40]. Lineage relationship traces neurons back to intermediate 

neuronal progenitors (a form of basal progenitor) [41] and basal progenitors are known to 

also generate ionocytes [39, 40]. We speculate that brain hypothalamus includes a cell type 

that shares a developmental lineage with ionocytes in lung and that similar such cell types 

are present in the other tissues for which we see strong associations to CFTR phenotype. 

This implies that the cell types expressing CFTR in brain hypothalamus, and the other 

tissues we observed to show strong associations to CF phenotypes also have higher 

proportions of cells with a potentially related developmental ontology to the lung ionocytes 

implicated in CF.

We presented a de novo approach that simultaneously identifies the components required for 

a phenotype risk score: clinical phenotypes and their corresponding weights. The 

constitutive codes of PheRSassoc in general have a better discriminative power for CF than 

the codes of PheRSmapping. The weights, which are proportional to the effect sizes, reflect 

the relative importance of each component EHR phenotype on CF diagnosis (bi/bCF) as they 

were measured by a common genetic instrument (genetically determined expression). The 

genetics-informed weights perform better than the prevalence-based weights as the latter 

does not capture such relational importance to EHR-based CF diagnosis.

Another contributing factor to the improved performance of our de novo approach is that our 

approach exploits the rich and detailed EHR phenotypes. For example, pneumonia is among 

the clinical description of CF, and was mapped to EHR ‘pneumonia’ (phecode 480). Our 

association analysis revealed additional forms of pneumonia, such as ‘bacterial pneumonia 

(phecode 480.1), ‘pseudomonal pneumonia’ (phecode 480.12) and ‘Methicillin susceptible 

pneumonia due to Staphylococcus aureus’ (phecode 480.13). These pneumonia terms were 

all more strongly associated with GReX of CFTR (P<7×10−11) than the general term 

‘pneumonia’ (P=0.02). This indicates that our de novo approach circumvents some of the 

difficulties in mapping clinical description terms to EHR phenotypes which are structured 

hierarchically.

Our results do not support a causal role of predicted expression of CFTR on CF phenotypes. 

The lowest predicted expression was also seen in controls; but in CF patients, there was an 

overrepresentation of the low levels of GReX. Additionally, when we repeated the analysis 

by excluding the 71 individuals with CF diagnosis (the remaining 9071 patients), all the 

association signals regarding the ‘CF-phenome’ disappeared (data not shown), suggesting 

the predicted expression of CFTR is unlikely an independent or significant contributor to CF 

phenotypes, at least at these sample sizes. The observed coupling of CF variants with 

expression-reducing alleles is consistent with the hypothesis that natural selection favors 

haplotypes whose composite regulatory alleles reduce the functional impact of the 

deleterious variants [9]. In line with this explanation, the haplotypes harboring a severe CF 

allele such as DF508 demonstrated a lower GReX than the haplotypes harboring a less 

severe CF-allele (Figure 3B). In this regard, since the level of GReX co-evolves with the 

deleteriousness of total underlying CF alleles due to natural selection, the effect size 
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estimates based on GReX in fact capture the impact of underlying CF pathogenic alleles in 

aggregate.

Finally, the success of our de novo approach of building a phenotype risk score of CF relies 

on several aspects of CF. The number of CF cases in the discovery dataset (71 CF cases out 

of ~10K European descent) has empowered our genetic association studies to reveal 

phenotypes that broadly cover clinical manifestations of CF. These EHR phenotypes 

comprise the basis for building PheRSassoc, with some being highly specific to CF (e.g. 

MRSA pneumonia). The availability of the CF diagnosis code in EHRs also made it easier to 

assign CF case status. CF is the most common recessive Mendelian disease in populations 

with European ancestries, and was diagnosed in ~0.1% of the patient population of our 

validation dataset that contains ~2.8 million patients. While it is unclear that CF results can 

be extended to rarer recessive Mendelian diseases, we believe such investigations may have 

value for more automated identification of patients with undiagnosed Mendelian diseases 

and for more complete cataloging of EHR-based phenotypic descriptions of Mendelian 

diseases.

The study had several limitations. First, the PheRS construction used phecodes derived from 

ICD billing codes. Although ICD billing codes are ubiquitous and easily shared across 

health systems, the mapping task from ICD codes to phecodes is not trivial and rather a 

growing burden. As the massive EHR data continue to accumulate, PheRS constructed using 

ICD codes directly would simplify the process to adopt PheRS in another health system. 

Second, there are correlations among the constitutive codes of PheRS that have not yet been 

systematically handled in the development of PheRS. Although the correlations are weak, 

taking into account the correlation in PheRS can further increase its performance. Third, 

there are individuals without cystic fibrosis who scored high (at population level) due to 

another disease (e.g. septicemia) when the disease manifestations (e.g. pneumonia, bacterial 

infection) overlap some of the scoring conditions (Supplementary Tables S11-14). Future 

development of PheRS may consider a more sophisticated machine learning approach to 

find a better weighting scheme to alleviate these problems. Finally, our study suggests that 

PheRS could be a valuable tool to stimulate clinical suspicion of patients who may be 

affected by CF, however, the ultimate utility of PheRS in clinical practice would require 

prospective studies for further evaluation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow of the study.
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Figure 2. 
Genetically regulated expression (GReX) of CFTR in brain hypothalamus correlates with 

dosage of DF508proxy. (A) GReX stratified by the dosage of DF508proxy. (B) Haplotype-

level GReX (hGReX) in heterozygous carriers of DF508proxy who were not diagnosed as CF 

(n=414). Each heterozygote is represented by a pair of dots, with red referring to the 

haplotype carrying DF508proxy and black the other ‘wild-type’ haplotype.
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Figure 3. 
Haplotype-level GReX (hGReX) of CFTR stratified by the presence of CF alleles. (A) 

Sample distribution by genotype and CF case status. Case is defined by the presence of CF 

diagnosis code in EHRs. ‘Other’ indicates one of 16 CF pathogenic alleles that are also 

covered by our genotype data. (B) hGReX of haplotypes harboring DF508proxy (n=414), of 

haplotypes harboring one of ‘other’ CF-pathogenic alleles (n=103), of ‘wild-type’ 

haplotypes from the same carriers (n=103), and of haplotypes from the remaining non-

carriers.
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Figure 4. 
Phenotype risk score (PheRS) construction for CF and performance evaluation. (A) 

Phecodes and weights used to construct PheRSassoc, PheRSmapping and PheRShybrid. Orange 

and blue indicate phecodes specific to PheRSassoc and PheRSmapping, respectively; gray 

indicates shared phecodes. PheRShybrid by design has the same constitutive phecodes as 

PheRSmapping with weights derived from GReX associations (NA indicates weights not 

available due to logistic regression not performed for case number <20). (B) Performance 

(area under precision-recall curves) across 10 iterations are shown, each with 150,000 

patients randomly sampled from a dataset containing de-identified EHRs from 2.8M patients 

that do not overlap the discovery dataset.
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Table 1.

Top associations of EHR phenotypes with GReX of CFTR in brain hypothalamus.

phecode desscription category n_cases n_controls
Unconditional Conditioning on DF508

beta p beta p

1 499 Cystic fibrosis respiratory 71 9033 −1.88 2.3E-39 −0.84 3.9E-06

2 480.12 Pseudomonal pneumonia respiratory 105 6217 −0.95 1.5E-26 −0.20 0.11

3 480.13 MRSA pneumonia respiratory 82 6217 −0.94 1.3E-20 −0.42 0.001

4 496.3 Bronchiectasis respiratory 124 6820 −0.71 4.9E-19 −0.19 0.07

5 277 Other disorders of metabolism endocrine/
metabolic 88 8608 −0.80 1.7E-17 −0.28 0.02

6 577 Diseases of pancreas digestive 337 8624 −0.43 2.1E-17 −0.17 0.005

7 480.5 Bronchopneumonia and lung 
abscess respiratory 71 6217 −0.80 8.2E-14 −0.25 0.08

8 480.1 Bacterial pneumonia respiratory 385 6217 −0.34 6.2E-12 −0.07 0.26

9 249 Secondary diabetes mellitus endocrine/
metabolic 80 4936 −0.58 5.0E-09 −0.17 0.20

10 260.22 Nutritional marasmus endocrine/
metabolic 72 6138 −0.59 1.6E-08 −0.10 0.48

11 510.2 Lung transplant respiratory 74 7177 −0.57 3.5E-08 −0.26 0.03

12 557 Intestinal malabsorption (non-
celiac) digestive 72 5956 −0.55 1.1E-07 −0.16 0.23

13 264.2 Failure to thrive (childhood) endocrine/
metabolic 73 6138 −0.51 1.2E-06 −0.07 0.61

14 264 Lack of normal physiological 
development

endocrine/
metabolic 147 6138 −0.35 6.7E-06 −0.08 0.41

15 516.1 Hemoptysis respiratory 182 8645 −0.30 1.6E-05 −0.10 0.24

16 471 Nasal polyps respiratory 49 6193 −0.54 2.6E-05 −0.16 0.31

17 516 Abnormal sputum respiratory 228 8645 −0.26 2.6E-05 −0.08 0.29

18 514.1 Abnormal results of function 
study of pulmonary system respiratory 24 7886 −0.71 6.3E-05 −0.34 0.13

19 475 Chronic sinusitis respiratory 589 6193 −0.16 8.5E-05 0.02 0.63

20 260.2 severe protein-calorie 
malnutrition

endocrine/
metabolic 434 6138 −0.18 1.2E-04 −0.09 0.08

21 041.9 Infection with drug-resistant 
microorganisms

infectious 
diseases 334 6607 −0.20 1.5E-04 −0.10 0.11

We used a LD-proxy (rs111309367, r2=0.4, D’=1, AF=2%) to tag DF508.

Beta indicates beta per standard deviation (=0.104) of GReX of CFTR in brain hypothalamus.
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