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Abstract

The aim of this paper is to develop a low-rank linear regression model (L2RM) to correlate a high-

dimensional response matrix with a high dimensional vector of covariates when coefficient 

matrices have low-rank structures. We propose a fast and efficient screening procedure based on 

the spectral norm of each coefficient matrix in order to deal with the case when the number of 

covariates is extremely large. We develop an efficient estimation procedure based on the trace 

norm regularization, which explicitly imposes the low rank structure of coefficient matrices. When 

both the dimension of response matrix and that of covariate vector diverge at the exponential order 

of the sample size, we investigate the sure independence screening property under some mild 

conditions. We also systematically investigate some theoretical properties of our estimation 

procedure including estimation consistency, rank consistency and non-asymptotic error bound 

under some mild conditions. We further establish a theoretical guarantee for the overall solution of 

our two-step screening and estimation procedure. We examine the finite-sample performance of 

our screening and estimation methods using simulations and a large-scale imaging genetic dataset 

collected by the Philadelphia Neurodevelopmental Cohort (PNC) study.
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1 Introduction

Multivariate regression modeling with a matrix response Y ∈ ℝp × q and a multivariate 

covariate x ∈ ℝs is an important statistical tool in modern high-dimensional inference, with 

wide applications in various large-scale applications, such as imaging genetic studies. 

Specifically, in imaging genetics, matrix responses (Y) as phenotypic variables often 

represent the weighted (or binary) adjacency matrix of a finite graph for characterizing 

structural (or functional) connectivity pattern, whereas covariates (x) include genetic 

markers (e.g., single nucleotide polymorphisms (SNPs)), age, and gender, among others. 

The joint analysis of imaging and genetic data may ultimately lead to discoveries of genes 

for many neuropsychiatric and neurological disorders, such as schizophrenia (Scharinger et 

al., 2010; Peper et al., 2007; Chiang et al., 2011; Thompson et al., 2013; Medlan et al., 

2014). This motivates us to systematically investigate a statistical model with a multivariate 

response Y and a multivariate covariate x.

Let {(xi, Yi) : 1 ≤ i ≤ n} denote independent and identically distributed (i.i.d.) observations, 

where xi = (xi,1, …, xis)T is a s × 1 vector of scalar covariates (e.g., clinical variables and 

genetic variants) and Yi is a p × q response matrix. Without loss of generality, we assume 

that xil has mean 0 and variance 1 for every 1 ≤ l ≤ s, and Yi has mean 0. Throughout the 

paper, we consider a L2RM, which is given by

Yi = ∑
l = 1

s
xil ∗ Bl + Ei, (1)

where Bl is a p × q coefficient matrix characterizing the effect of the lth covariate on Yi and 

Ei is a p × q matrix of random errors with mean 0. The symbol “ * “ denotes the scalar 

multiplication. Model (1) differs significantly from the existing matrix regression, which 

was developed for matrix covariates and univariate responses (Leng and Tang, 2012; Zhao 

and Leng, 2014; Zhou and Li, 2014). Our goal is to discover a small set of important 

covariates from x that strongly influence Y.

We focus on the most challenging setting that both the dimension of Y (or pq) and that of x 
(or s) can diverge with the sample size. Such a setting is general enough to cover high-

dimensional univariate and multivariate linear regression models in the literature (Negahban 

et al., 2012; Fan and Lv, 2010; Buhlmann and van de Geer, 2011; Tibshirani, 1997; Yuan et 

al., 2007; Candes and Tao, 2007; Breiman and Friedman, 1997; Cook et al., 2013; Park et 

al., 2017). In the literature, there are two major categories of statistical methods for jointly 

analyzing high-dimensional matrix Y and high-dimensional vector x.

The first category is a set of mass univariate methods. Specifically, it fits a marginal linear 

regression to correlate each element of Yi with each element of xi, leading to a total of pqs 
massive univariate analyses and an expanded search space with pqs elements. It is also 

called voxel-wise genome-wide association analysis (VGAWS) in the imaging genetics 

literature (Hibar et al., 2011; Shen et al., 2010; Huang et al., 2015; Zhang et al., 2014; 

Medland et al., 2014; Zhang et al., 2014; Thompson et al., 2014; Liu and Calhoun, 2014). 

For instance, Stein et al. (2010) used 300 high performance CPU nodes to run approximately 
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27 hours to carry out a VGWAS analysis on an imaging genetic dataset with only 448,293 

SNPs and 31,622 imaging measures for 740 subjects. Such computational challenges are 

becoming more severe as the field is rapidly advancing to the most challenging setting with 

large pq and s. More seriously, for model (1), the massive univariate method can miss some 

important components of x that strongly influence Y due to the interaction among x.

The second category is to fit a model accommodating all (or part of) covariates and 

responses (Vounou et al., 2010, 2012; Zhu et al., 2014; Wang et al., 2012a,b; Peng et 

al.,2010). These methods use regularization methods, such as Lasso or group Lasso, to select 

a set of covariate-response pairs. However, when the product pqs is extremely large, it is 

very difficult to allocate computer memory for such an array of size pqs in order to 

accommodate all coefficient matrices Bls, rendering all these regularization methods being 

intractable. Therefore, almost all existing methods in this category have to use some 

dimension reduction techniques (e.g., screening methods) to reduce both the number of 

responses and that of covariates. Subsequently, these methods fit a multivariate linear 

regression model with the selected elements of Y as new responses and those of x as new 

covariates. However, this approach can be unsatisfactory, since it does not incorporate the 

matrix structural information.

The aim of this paper is to develop a low-rank linear regression model (L2RM) as a novel 

extension of both VGAWS and regularization methods. Specifically, instead of repeatedly 

fitting a univariate model to each covariate-response pair, we consider all elements in Yi as a 

high-dimensional matrix response and focus on the coefficient matrix of each covariate, 

which is approximately low-rank (Candès and Recht, 2009). There is a literature on the 

development of matrix variate regression (Ding and Cook, 2014; Fosdick and Hoff, 2015; 

Zhou and Li, 2014), but these papers focus on the case when covariates have a matrix 

structure. In contrast, there is a large literature on the development of various function-on-

scalar regression models that emphasize the inherent functional structure of responses. See 

Chapter 13 of Ramsay and Silverman (2005) for a comprehensive review on this topic. 

Variable selection methods have been developed for some function-on-scalar regression 

models (Wang et al., 2007; Chen et al., 2016), but these methods focus on one-dimensional 

functional response rather than two-dimensional matrix response. Recently, there has been 

some literature considering matrix or tensor responses regression (Ding and Cook, 2018; Li 

and Zhang, 2017; Raskutti and Yuan, 2018; Rabusseau and Kadri, 2016), but they only 

consider the case when the dimension of the covariates is fixed or slowly diverging with the 

sample size.

In this paper, we aim at efficiently correlating matrix responses with a high dimensional 

vector of covariates. Four major methodological contributions of this paper are as follows.

• We introduce a low-rank linear regression model to fit high-dimensional matrix 

responses with a high dimensional vector of covariates, while explicitly 

accounting for the low-rank structure of coefficient matrices.

• We introduce a novel rank-one screening procedure based on the spectral norm 

of the estimated coefficient matrix to eliminate most “noisy” scalar covariates 

and show that our screening procedure enjoys the sure independence screening 
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property (Fan and Lv, 2008) with vanishing false selection rate. The use of such 

spectral norm is critical for dealing with a large number of noisy covariates.

• When the number of covariates is relatively small, we propose a low rank 

estimation procedure based on trace norm regularization, which explicitly 

characterizes the low-rank structure of coefficient matrices. An efficient 

algorithm for solving the optimization problem is developed. We systematically 

investigate some theoretical properties of our estimation procedure, including 

estimation and rank consistency when both p and q are fixed and an non-

asymptotic error bound when both p and q are allowed to diverge.

• We investigate how incorrectly screening results can affect the low-rank 

regression model estimation both numerically and theoretically. We establish a 

theoretical guarantee for the overall solution, while accounting for the 

randomness of the first-step screening procedure.

The rest of this paper is organized as follows. In Section 2, we introduce a rank-one 

screening procedure to deal with a high dimensional vector of covariates and describe our 

estimation procedure when the number of covariates is relatively small. Section 3 

investigates the theoretical properties of our method. Simulations are conducted in Section 4 

to evaluate the finite-sample performance of the proposed two-step screening and estimation 

procedure. Section 5 illustrates an application of L2RM in the joint analysis of imaging and 

genetic data from the Philadelphia Neurodevelopmental Cohort (PNC) study discussed 

above. We finally conclude with some discussions in Section 6.

2 Methodology

Throughout the paper, we focus on addressing three fundamental issues for L2RM as 

follows:

• (I) The first one is to eliminate most ‘noisy’ covariates xil when the number of 

candidate covariates and that of response matrix are much larger than n, that is 

min(s, pq) >> n.

• (II) The second one is to estimate the coefficient matrix Bl when Bl does have a 

low-rank structure.

• (III) The third one is to investigate some theoretical properties of the screening 

and estimation methods.

2.1 Rank-one Screening Method

We consider the case that both pq and s diverge at an exponential order of n, and we also 

denote s by sn. To address (I), it is common to assume that most scalar covariates have no 

effects on the matrix responses, that is, Bl0 = 0 for most 1 ≤ l ≤ sn, where Bl0 is the true 

value for Bl. In this case, we define the true model and its size as

ℳ = {1 ≤ l ≤ sn:Bl0 ≠ 0} and s0 = ∣ ℳ ∣ < n . (2)
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Our aim is to estimate the set ℳ and coefficient matrices Bl. Simultaneously estimating ℳ
and Bl is difficult since it is computationally infeasible to fit a model when both sn and pq 
are quite high. For example, in the PNC data, we have pq = 692 = 4, 761 and sn ≈ 5 × 106. 

Therefore, it may be imperative to employ a screening technique to reduce the model size. 

However, developing a screening technique for model (1) can be more challenging than 

many existing screening methods, which focus on univariate responses (Fan and Lv, 2008; 

Fan and Song, 2010).

Similar to Fan and Lv (2008) and Fan and Song (2010), it is assumed that all covariates have 

been standardized so that

E(xil) = 0 and E(xil
2) = 1 for l = 1, …, sn .

We also assume that every element of Yi = (Yi,jk) has been standardized, that is,

E(Yi, jk) = 0 and E(Y i, jk
2 ) = 1 for j = 1, …, p and k = 1, …, q .

We propose to screen covariates based on the estimated marginal ordinary least squares 

(OLS) coefficient matrix Bl
M = n−1∑i = 1

n xil ∗ Yi for l = 1, …, sn. Although the 

interpretations and implications of the marginal models are biased from the joint model, the 

nonsparse information about the joint model can be passed along to the marginal model 

under a mild condition. Hence it is suitable for the purpose of variable screening (Fan and 

Song, 2010). Specifically, we calculate the spectral norm (operator norm or largest singular 

value) of Bl
M

, denoted as Bl
M

op, and define a submodel as

ℳγn = {1 ≤ l ≤ sn: Bl
M

op ≥ γn}, (3)

where γn is a prefixed threshold.

The key advantage of using Bl
M

op is that it explicitly accounts for the low-rank structure 

of Bl0s for most noisy covariates, while being robust to noise and more sensitive to various 

signal patterns (e.g., sparsely strong signals and low rank weak signals) in coefficient 

matrices. In our screening step, we use the marginal OLS estimates of the coefficient 

matrices, which can be regarded as the true coefficient matrices corrupted with some noise. 

One may directly use some other summary statistics of Bl
M

 based on the component-wise 

information of Bl
M

, such as Bl
M

1 (sum of the absolute value of all the elements), Bl
M

F , 

or the global Wald-type statistic used in Huang et al. (2015). It is well known that those 

summary statistics are sensitive to noise and suffer from the curse of dimensionality. This is 

further confirmed in our simulation studies that our rank-one screening based on Bl
M

op is 

more robust to noise and sensitive to small signal regions. Moreover, the other advantage of 

using Bl
M

op is that it is computationally efficient. In contrast, we may calculate some other 
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regularized estimates (e.g., Lasso or fused Lasso) for screening, but it is computationally 

infeasible for L2RM when sn is much larger than the sample size.

A difficult issue in (3) is how to properly select γn. As shown in Section 3.1, when γn is 

chosen properly, our screening procedure enjoys the sure independence property (Fan and 

Lv, 2008). However, it is difficult to precisely determine γn in practice since it involves in 

two unknown positive constant terms C1 and α as shown in Theorem 1, which cannot be 

easily determined for finite sample. We propose to use random decoupling to select γn, 

which is similar to that used in Barut et al. (2016). Let {xi∗, i = 1, …, n} be a random 

permutation of the original data (xi = 1, …, n}. We apply our screening procedure on the 

random decoupling data {xi∗, Yi}i = 1
n . As the original association between xi and Yi is 

destroyed by random decoupling, when we perform screening using {xi∗, Yi}i = 1
n , it mimics 

the null model, e. the model when there is no association. We obtain the estimated marginal 

coefficient matrix (Bl
M)∗, which is a statistical estimate of zero matrix, and the 

corresponding operator norm (Bl
M)∗ op for all 1 ≤ l ≤ sn. Define νn = max1≤l≤sn (Bl

M)∗ op, 

which is the the minimum thresholding parameter that makes no false positives. Since νn 

depends on the realization of the permutation, we set the threshold value γn as the median of 

these threshold values {νn(k), 1 ≤ k ≤ K} from K different random permutations, where νn(k) is 

the threshold value for the kth permutation. We set K = 10 in this paper.

2.2 Estimation Method

To address (II), we consider the estimation of B when the true coefficient matrices Bl0s truly 

have a low-rank structure. The following refined estimation step can be applied after the 

screening step when the number of covariates is relatively small. For simplicity, we denote 

the set selected by the screening step ℳγn by ℳ. Suppose ℳ = {l1, …, l ∣ ℳ ∣ }, where 

1 ≤ l1 < … < l ∣ ℳ ∣ ≤ sn. Define B = [Bl, l ∈ ℳ] = [Bl1, …, Bl ∣ ℳ ∣ ] ∈ ℝp × q ∣ ℳ ∣ .

Recently, the trace norm regularization ∥Bl∥* = ∑k σk(Bl) has been widely used to recover 

the low-rank structure of Bl due to its computational efficiency, where αk (Bl) is the kth 

singular value of Bl. For instance, the trace norm has been used for matrix completion 

(Candès and Recht, 2009), for matrix regression models with matrix covariates and 

univariate responses (Zhou and Li, 2014), and for multivariate linear regression with vector 

responses and scalar covariates (Yuan et al., 2007). Similarly, we propose to calculate the 

regularized least squares estimator of B by minimizing

Q(B) = 1
2n ∑

i = 1

n
Yi − ∑

l ∈ ℳ
xil ∗ Bl

F

2
+ λ ∑

l ∈ ℳ
Bl

∗
, (4)

where ∥ · ∥F is the Frobenius norm of a matrix and λ is a tuning parameter. The low rank 

structure can be regarded as a special spatial structure, since it is very similar to functional 

principal component analysis. We use the five-fold cross validation to select the tuning 
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parameter λ. Ideally, we may choose different tuning parameters for different Bl, but it can 

dramatically increase computational complexity.

We apply the Nesterov gradient method to solve problem (4) even though Q(B) is non-

smooth (Nesterov, 2004; Beck and Teboulle, 2009). The Nesterov gradient method utilizes 

the first-order gradient of the objective function to obtain the next iterate based on the 

current search point. Unlike the standard gradient descent algorithm, the Nesterov gradient 

algorithm uses two previous iterates to generate the next search point by extrapolating, 

which can dramatically improve the convergence rate. Before we introduce the Nesterov 

gradiant algorithm, we first state a singular value thresholding formula for the trace norm 

(Cai et al., 2010).

Proposition 1. For a matrix A with {ak}1≤k≤r being its singular values, the solution to

min
B

{1
2‖B − A‖F

2 + λ‖B‖∗} (5)

shares the same singular vectors as A and its singular values are bk = (ak – λ)+ for k = 1, …, 

r.

We present the Nesterov gradient algorithm for problem (4) as follows. Denote 

R(B) = (2n)−1∑i = 1
n Yi − ∑l ∈ ℳxil ∗ Bl F

2
 and J(B) = λ∑l ∈ ℳ Bl ∗. We also define

g(B ∣ S(t), δ) = R(S(t)) + < ∇R(S(t)), B − S(t) > + (2δ)−1 B − S(t) F
2 + J(B)

= (2δ)−1 B − [S(t) − δ∇R(S(t))] F
2 + J(B) + c(t),

where ∇R(S(t)) denotes the first-order gradient of R(S(t)) with respect to S(t), S(t) is an 

interpolation between B(t) and B(t–1) and will be defined below, c(t) denotes all terms that are 

irrelevant to B, and δ > 0 is a suitable step size. Given a previous search point S(t), the next 

search point S(t+1) would be the minimizer of g(B∣S(t), δ). For the search point S(t), it can be 

generated by linearly extrapolating two previous algorithmic iterates. A key advantage of 

using the Nestrov gradient method is that it has an explicit solution at each iteration. 

Specifically, let Bld, Sld
(t), and ∇R(S(t))ld be the (dq – q + 1)th to the dqth columns of the 

corresponding p × q ∣ ℳ ∣ matrices B, S(t), and ∇R(S(t)), respectively. Minimizing 

(2δ)−1 B − [S(t) − δ∇R(S(t))] F
2 + λ∑l ∈ ℳ Bl ∗ is equivalent to solving ∣ ℳ ∣ sub-problems, 

each of which minimizes (2δ)−1 Bld − [Sld
(t) − δ∇R(S(t))ld] F

2 + λ Bld ∗ for d = 1, …, ∣ ℳ ∣, 

while each sub-problem can be exactly solved by using the singular value thresholding 

formula given in Proposition 1.

Define Xℳ = (xil)1 ≤ i ≤ n, l ∈ ℳ is an n × ∣ ℳ ∣ matrix and λmax(·) denotes the largest 

eigenvalue of a matrix. Our algorithm can be stated as follows:

1. Initialize B(0) = B(1), α(0) = 0 and α(1) = 1, t = 1, and δ = n ∕ λmax{(Xℳ)TXℳ}.
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2. Repeat

S(t) = B(t) + (α(t) − 1
α(t) )(B(t) − B(t − 1));

for d = 1: ∣ ℳ ∣ ,

i . (Atemp)ld = Sld
(t) − δ∇R(S(t))ld;

ii . compute singular value decomposition(SVD)(Atemp)ld = Ulddiag(ald)Vld
T ;

iii . bld = ald − λδ ∗ 1;

iv . (Btemp)ld = Ulddiag(bld)Vld
T ;

end
Combine {(Btemp)ld, 1 ≤ d ≤ ∣ ℳ ∣ } sub − matrices and get the entire matrixBtemp;

B(t + 1) = Btemp;

α(t + 1) = {1 + 1 + (2α(t))2} ∕ 2;
t = t + 1;

3. until objective function Q(B(t)) converges.

For the above p × q ∣ ℳ ∣ matrices Atemp and Btemp, (Atemp)ld and (Btemp)ld denote the (dq – 

q + 1)th to the (dq)th columns of the corresponding matrices, respectively.

A sufficient condition for the convergence of {B(t)}t≥1 is that the step size δ should be 

smaller than or equal to 1/L(R), where L(R) is the smallest Lipschitz constant of the function 

R(B) (Beck and Teboulle, 2009; Facchinei and Pang, 2003). In our case, L(R) is equal to 

n−1λmax{(Xℳ)TXℳ}.

Remarks: For model (1), it is assumed that xil has mean 0 and variance 1 for every 1 ≤ l ≤ s, 

and Yi has mean 0 throughout the paper. If these assumptions are not valid in practice, a 

simple solution is to carry out a standardization step including standardizing covariates and 

centering responses. We use this approach in simulations and real data analysis. An 

alternative approach is to introduce an intercept matrix term B0 in model (1). Our screening 

procedure is invariant to such standardization step if we calculate Bl, jk
M , the (j, k)–th element 

of Bl, as the sample correlation between xil and Yi,jk. In the Supplementary Material, we 

present a modified algorithm of our estimation procedure and evaluate the effects of the 

standardization step on estimating Bl by using simulations. According to our experience, 

scaling covariates is necessary in order to ensure that all covariates are at the same scale, 

whereas centering covariates and responses is not critical.

3 Theoretical Properties

To address (III), we systematically investigate several key theoretical properties of the 

screening procedure and the regularized estimation procedure as well as a theoretical 

guarantee of our two-step estimator. First, we investigate the sure independence screening 

property of the rank-one screening procedure when s (also denoted by sn) diverges at an 

exponential rate of the sample size. Second, we investigate the estimation and rank 
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consistency of our regularized estimator when both p and q are fixed. Third, we derive the 

non-asymptotic error bound for our estimator when both p and q are diverging. Finally, we 

establish an overall theoretical guarantee for our two-step estimator. We state the following 

theorems, whose detailed proofs can be found in the Appendix B.

3.1 Sure Screening Property

The following assumptions are used to facilitate the technical details, even though they may 

not be the weakest conditions but help to simplify the proof.

(A0) The covariates Xi are i.i.d from a distribution with mean 0 and covariance matrix ∑x. 

Define σl
2 = (Σx)ll. The vectorized error matrices vec(Ei) are i.i.d from a distribution with 0 

and covariance matrix ∑e, where vec(·) denotes the vectorization of a matrix. Moreover, xi 

and Ei = (Ei,jk) are independent.

(A1) There exist some constants C1 > 0, b > 0, and 0 < κ < 1/2 such that

min
l ∈ ℳ

‖cov( ∑
l′ ∈ ℳ

xil′ ∗ Bl′0, xil)‖op ≥ C1(pq)1 ∕ 2n−κ and max
l ∈ ℳ

‖Bl0‖∞ < b,

where cov(∑l′ ∈ ℳxil′ ∗ Bl′0, xil) is a p × q matrix with the (j, k)th element being 

cov(∑l′ ∈ ℳxil′ ∗ Bl′0, jk, xil), and Bl0 ∞ = max1 ≤ j ≤ p, 1 ≤ k ≤ q ∣ Bl0, jk ∣.

(A2) There exist positive constants C2 and C3 such that

max(E{exp(C2xil
2)}, E{exp(C2Ei, jk

2 )}) ≤ C3

for every 1 ≤ l ≤ sn, 1 ≤ j ≤ p and 1 ≤ k ≤ q.

(A3) There exists a constant C4 > 0 such that log(sn) = C4nξ for ξ ϵ (0, 1 – 2κ).

(A4) There exist constants C5 > 0 and τ > 0 such that λmax(∑x) ≤ C5nτ.

(A5) We assume log(pq) = o(n1–2κ).

Remarks: Assumptions (A0)-(A5) are used to establish the theory of our screening 

procedure when sn diverges to infinity. Assumption (A1) is analogous to Condition 3 in Fan 

and Lv (2008) and equation (4) in Fan and Song (2010), in which κ controls the rate of 

probability error in recovering the true sparse model. Assumption (A2) is analogous to 

Condition (D) in Fan and Song (2010) and Condition (E) in Fan et al. (2011). Assumption 

(A2) requires that xil and Ei,jk are sub-gaussian, which ensures the tail probability to be 

exponentially light. Assumption (A3) allows the dimension sn to diverge at an exponential 

rate of the sample size n, which is analogous to Condition 1 in Fan and Lv (2008). 

Assumption (A4) is analogous to Condition 4 in Fan and Lv (2008), which rules out the case 

of strong collinearity. Assumption (A5) allows the product of the row and column 

dimensions of the matrix pq to diverge at an exponential rate of the sample size n.
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The following theorems show the sure screening property of the screening procedure. We 

allow p and q to be either fixed or diverging with sample size n.

Theorem 1. Under Assumptions (A0)-(A3) and (A5), let γn = αC1(pq)1/2n−κ with 0 < α < 

1, then we have P(ℳ ⊆ ℳγn) 1 as n → ∞.

Theorem 1 shows that if γn is chosen properly, then our rank-one screening procedure will 

not miss any significant variables with an overwhelming probability. Since the screening 

procedure automatically includes all the significant covariates for small values of γn, it is 

necessary to consider the size of ℳγn when γn = αC1(pq)1/2n−κ holds.

Theorem 2. Under Assumptions (A0)-(A5), we have P( ∣ ℳγn ∣ = O(n2κ + τ)) 1 for γn = 

αC1(pq)1/2n−κ with 0 < α < 1 as n → ∞.

Theorem 2 indicates that the selected model size with the sure screening property is only at a 

polynomial order of n, even though the original model size is at an exponential order of n. 

Therefore, the false selection rate of our screening procedure vanishes as n → ∞.

3.2 Theory for Estimation Procedure

From this subsection, we will denote ℳγn by ℳ for notation simplicity. We first provide 

some theoretical results for our estimation procedure. We assume that we can exactly select 

all the important variables in ℳ, i.e. ℳ = ℳ, and s0 = ∣ ℳ ∣ is fixed. The results are also 

applicable if our original s is fixed, in which we only need to apply our estimation 

procedure.

We need more notations before we introduce more assumptions. Suppose the rank of Bl0 is 

rl. For every l = 1, …, sn, we denote Ul0 ϴl0 Vl0
T  as the singular value decomposition of Bl0 

and use Ul0
⊥  and Vl0

⊥  to denote the orthogonal complements of Ul0 and Vl0, respectively. 

Define Σℳ as the covariance matrix for xi, ℳ, where xi, ℳ = (xil)l ∈ ℳ ∈ ℝ ∣ ℳ ∣ . We further 

define A = Σℳ ⊗ Ipq × pq, Kl = Vl0
⊥ ⊗ Ul0

⊥  and dl = − vec(Ul0Vl0
T ) for l ∈ ℳ, where ⊗ denotes 

the Kronecker product. Let d = (dl1
T , …, dl ∣ ℳ ∣

T )T and K = diag{Kl1, …, Kl ∣ ℳ ∣ }. We define 

Λl ∈ ℝ(p − rl) × (q − rl) for l ∈ ℳ such that 

vec(Λ) = (vec(Λl1)T, …, vec(Λl ∣ ℳ ∣ )T)T = (KTA−1K)−1KTA−1d. The Λl has some interesting 

interpretation. For instance, it can be shown that it is the Lagrange multiplier of an 

optimization problem. We include more interpretation of Λl in the Appendix C.

We then state additional assumptions that are needed to establish the theory of our 

estimation procedure when both p and q are assumed to be fixed.

The following assumptions (A6)-(A8) are needed.

(A6) The Σℳ is nonsingular.
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(A7) The maxl{rank(Bl0): l ∈ ℳ} < min(p, q) holds.

(A8) For every l ∈ ℳ, we assume ∥Λl∥op < 1.

Remarks: Assumption (A6) is a regularity condition in the low dimensional context, which 

rules out the scenario when one covariate is exactly a linear combination of other covariates. 

Assumption (A7) is used for rank consistency. Assumption (A8) can be regarded as the 

irrepresentable condition of Zhao and Yu (2006) in the rank consistency context. A similar 

condition can be found in Bach (2008).

Define Bl the regularized low rank estimator of Bl for l ∈ ℳ. We have the following 

consistent results when the tuning parameter converges in different rates when both p and q 
are fixed.

Theorem 3. (Estimation Consistency) Under Assumptions (A0) and (A6), we have

(i) if n1/2 λ → ∞ and λ → 0, then λ−1(Bl − Bl0) = Op(1) for all l ∈ ℳ ;

(ii) if n1/2 λ → ρ ϵ [0, ∞) and n → ∞, then n1 ∕ 2(Bl − Bl0) = Op(1) for all l ∈ ℳ.

Theorem 3 reveals an interesting phase-transition phenomenon. When λ is relatively small 

or moderate, the convergence rate of Bl − Bl0 is of order n−1/2, whereas as γ gets large, the 

convergence rate of Bl − Bl0 can be approximated as the order of λ. Although we have 

established the consistency of Bl as λ → 0, the next question is whether the rank of Bl is 

consistent under the same set of conditions. It turns out that such rank consistency only 

holds for relatively large λ, whose convergence rate is slower than n−1/2.

Theorem 4. (Rank Consistency) Under Assumptions (A0) and (A6)-(A8), if λ → 0 and 
n1/2λ → ∞ hold, we have that P(rank(Bl) = rank(Bl)) 1 for all l ∈ ℳ.

Theorem 4 establishes the rank consistency of our regularized estimates. Theorems 3 and 4 

reveal that both of the element consistency and the rank consistency hold only for λ → 0 

and n1/2λ → ∞. This phenomenon is similar to that for the Lasso estimator. Specifically, 

although the Lasso estimator can achieve model selection consistency, the convergence rate 

of the Lasso estimator cannot achieve the rate of n−1/2 when selection consistency is satisfied 

(Zou, 2006).

We then consider the case when p and q are assumed to be diverging. The following 

assumptions (A9)-(A12) are needed.

(A9) There exist positive constants CL and CM such that 

0 < CL ≤ λmin(Σℳ) ≤ λmax(Σℳ) ≤ CM < ∞.

(A10) We assume that xi, ℳ are i.i.d multivariate normal with mean 0 and covariance matrix 

Σℳ.

(A11) The vectorized error matrices vec(Ei) are i.i.d N(0, ∑e), where λmax(Σe) ≤ CU2 < ∞.
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(A12) We assume max(p, q) → ∞ and max(p, q) = o(n) as n → ∞.

Remarks: Assumptions (A9)-(A12) are needed for our estimation procedure when both p 
and q are diverging with the sample size n. Assumption (A9) assumes the largest eigenvalue 

of Σℳ is bounded and the smallest eigenvalue of Σℳ is greater than 0. Assumption (A10) 

assumes that the covariates xils are gaussian. Assumption (A11) assumes that the largest 

eigenvalue of ∑e is bounded. Assumption (A12) allows p and q to diverge slower than n, but 

it does allow that pq > n.

We then show the following non-asymptotic bound for our estimation procedure when both 

p and q are diverging.

Theorem 5. (Nonasymptotic bound when both p and q diverge) Under Assumptions 

(A9)-(A12), when λ ≥ 4CUCM
1 ∕ 2n−1 ∕ 2(p1 ∕ 2 + q1 ∕ 2), there exist some positive constants c1, 

c2 and c3 such that with probability at least 1 – c1 exp{−c2(p + q)} – c3 exp(−n), we have

‖B − B0‖F
2 ≤ C( ∑

l ∈ ℳ
rl)λ2CL

−2

for some constant C > 0.

Theorem 5 implies that when {rl, l ∈ ℳ} and ∣ ℳ ∣ are fixed and λ ≍ n−1/2(p1/2 + q1/2), the 

estimator B would be consistent with probability going to 1. The convergence rate of the 

estimator in Theorem 5 coincides with that in Corollary 5 of Negahban et al. (2009), where 

they studied the low-rank matrix learning problem using the trace norm regularization. 

Although considering different models, they also require the dimension of the matrix max(p, 

q) = o(n). It differs significantly from the L1 regularized problem, where the dimension of 

the matrix may diverge at the exponential order of the sample size. The result in this theorem 

can also be regarded as a special case of the result in Raskutti and Yuan (2018), where they 

derived non-asymptotic error bound in a class of tensor regression model with sparse or low-

rank penalties.

3.3 Theory for Two-step Estimator

In this section, we give a unified theory for our two-step estimator. In particular, we derive 

the non-asymptotic bound for our final estimate. To begin with, we first introduce some 

notations. For simplicity, we will use ℳ to denote ℳγn, which is the set selected from the 

first step. Define Bℳ = [Bl, l ∈ ℳ] ∈ ℝp × q ∣ ℳ ∣  and the true value of BM as 

B0
M = [Bl0, l ∈ ℳ] ∈ ℝp × q ∣ ℳ ∣ . Define Bℳ = [Bl, l ∈ ℳ] ∈ ℝp × q ∣ ℳ ∣  as the solution of 

the regularized trace norm penalization problem given by

min
Bℳ

Q(Bℳ) = min
Bℳ

{ 1
2n ∑

i = 1

n
Yi − ∑

l ∈ ℳ
xil ∗ Bl

F

2
+ λ ∑

l ∈ ℳ
Bl

∗
} . (6)
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We need the following assumptions.

(A13) Assume 2κ + τ < 1. Define ıL ≔ min δ 0 ≤ m, δ ≠ 0δT(n−1∑i = 1
n xixiT)δ ∕ δ 2

2
 for any m 

= O(n2κ+τ) and δ ∈ ℝs. We further assume ιL > 0.

(A14) Assume max(p, q)/ log(n) → ∞ and max(p, q) = o(n1–2τ) as n → ∞ with τ < 1/2.

Theorem 6. (Nonasymptotic bound for two-step estimator) Under Assumptions (A0)-
(A5), (A10), (A11), (A13), and (A14), when λ ≥ 4C5nτ–1/2(p1/2 + q1/2), there exist some 
positive constants c1, c2, c3, c4, c5 such that with probability at least 1–c1n2κ+τ exp{−c2(p
+q)} – c3n2κ+τ exp(−n) – c4 exp(−c5n1−2κ), we have

Bℳ − B0
ℳ

F

2
≤ C( ∑

l ∈ ℳ
rl)λ2ıL

−2

for some constant C > 0.

Theorem 6 implies that when {rl: l ∈ ℳ} and ∣ ℳ ∣ are fixed and ιL is fixed, the estimator 

Bℳ
 is consistent with probability going to 1 when λ ≍ nτ–1/2(p1/2+q1/2). Theorem 6 gives an 

overall theoretical guarantee for our two-step estimator by considering the random selection 

procedure in the first step. A key fact that we use in the proof of Theorem 6 is that our first-

step screening procedure enjoys the sure independence property. In this case, we only need 

to derive the non-asymptotic bound for the case when we exactly select or over-select the 

important variables as it holds with overwhelming probability.

4 Simulations

We conduct simulations to examine the finite sample performance of the proposed 

estimation and screening procedures. For the sake of space, we include additional simulation 

results in the Supplementary Material.

4.1 Regularized Low-rank Estimate

In the first simulation, we simulate 64 × 64 matrix responses according to model (1) with s = 

4 covariates. We set the four true coefficient matrices to be a cross shape (B10), a square 

shape (B20), a triangle shape (B30), and a butterfly shape (B40). The images of Bl0 are shown 

in Figure 1, and each of them consists of a yellow region of interest (ROI) containing ones 

and a blue ROI containing zeros.

We independently generate all scalar covariates xi from N(0, ∑x), where ∑x = (σx,ll′) is a 

covariance matrix with an autoregressive structure such that σx, ll′ = ρ1
∣ l − l′ ∣  holds for 1 ≤ l,l

′ ≤ s with ρ1 = 0.5. We independently generate vec(Ei) from N(0, ∑e). Specifically, we set 

the variances of all elements in Ei to be σe2 and the correlation between Ei,jk and Ei,j′k′ to be 

ρ2
∣ j − j′ ∣ + ∣ k − k′ ∣  for 1 ≤ j, k, j′, k′ ≤ 64 with ρ2 = 0.5. We consider three different sample 

sizes including n = 100, 200, and 500, and set σe2 to be 1 and 25.
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We use 100 replications to evaluate the finite sample performance of our regularized low-

rank (RLR) estimates Bl defined as Bl − Bl0 F
2

. To evaluate the estimation accuracy, we 

compute the mean squared errors of Bl, denoted by MSE(Bl), for all 1 ≤ l ≤ 4. We also 

calculate the prediction errors (PE) by generating ntest = 500 independent test observations.

We compare our method with OLS, Lasso, fused Lasso and tensor envelope method (Li and 

Zhang, 2017). For fair comparison, we also use five-fold cross validation to select 

regularization parameters of Lasso and fused Lasso and the envelope dimension of the tensor 

envelope method. The results are shown in Table 1. We also plot the RLR, OLS, Lasso, 

fused Lasso and tensor envelope estimates of (Bl, 1 ≤ l ≤ 4} obtained from a randomly 

selected data set with n = 500 and σe2 = 25 in Figure 2.

Inspecting Figure 2 and Table 1 reveals the following findings. First, our method always 

outperforms OLS and envelope method. Second, when the images are of low rank (cross and 

square), our estimation method truly outperforms Lasso. Third, our method outperforms 

fused Lasso when either the sample size is small or the noise variance is large, whereas 

fused Lasso outperforms our method in other cases. Fourth, when the images are not of low 

rank (triangle and butterfly), fused Lasso performs best in most cases, whereas our method 

outperforms Lasso when either noise level is high or sample size is small.

These findings are not surprising. First, in all settings, since all the true coefficient matrices 

are piecewise sparse, the fused Lasso method is expected to perform well. Second, Lasso 

works reasonably well since it still imposes sparse structure. Third, since our method is 

designed for low rank cases, it performs well for the low rank cross and square cases, 

whereas it performs relatively worse for the triangle and butterfly cases.

We then conduct the second simulation study when the images only have low rank structure, 

but no sparse structure. Specifically, we simulate 64 × 64 matrix responses according to 

model (1) with s = 2 covariates. We set the two true coefficient matrices as 

B10 = ∑j = 1
10 λ1, ju1, jv1, j

T  and B20 = ∑j = 1
5 λ2u2, jv2, j

T , where λ1 = (λ1,1, …, λ1,10
T) = (2, 1.8, 

1.6, 1.4, 1.2, 1, 0.8, 0.6, 0.4, 0.2)T, λ2 = (λ2,1, λ2,2, λ2,3, λ2,4, λ2,5)T = (2, 1.6, 1.2, 0.8, 

0.4)T, and u1,j, u2,j, v1,j, v1,j, are column vectors of dimension 64. For U1 = (u1,1, …, u1,10) 

and V1 = (v1,1, …, v1,10), each of them is generated by orthogonalizing a 64 × 10 matrix 

with all elements being i.i.d standard normal. For U2 = (u2,1, …, u2,5) and V2 = (v2,1, …, 

v2,5), each of them is generated by orthogonalizing a 64 × 5 matrix with all elements being 

i.i.d standard normal. For all other settings, they are the same as those in Section 4.1. Table 2 

summarizes the obtained results. Our method outperforms all the comparison methods when 

the true coefficient matrices are of low rank structure, but of no sparse structure.

4.2 Rank-one Screening using SNP Covariates

We generate 64 × 64 matrix responses according to model (1). We use the same method as 

Section 4.1 to generate Ei with ρ2 = 0.5 and σe2 = 1 or 25. We generate genetic covariates by 

mimicking the SNP data used in Section 5. Specifically, we use Linkage Disequilibrium 

(LD) blocks defined by the default method (Gabriel et al., 2002) of Haploview (Barrett et al., 

Kong et al. Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2021 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2005) and PLINK (Purcell et al., 2007) to form SNP-sets. To calculate LD blocks, n subjects 

are simulated by randomly combining haplotypes of HapMap CEU subjects. We use PLINK 

to determine the LD blocks based on these subjects. We randomly select sn/10 blocks, and 

combine haplotypes of HapMap CEU subjects in each block to form genotype variables for 

these subjects. We randomly select 10 SNPs in each block, and thus we have sn SNPs for 

each subject. We set sn = 2, 000 and 5, 000 and choose the first 20 SNPs as the significant 

SNPs. That is, we set the first 20 true coefficient matrices as nonzero matrices B1,0 = … = 

B20,0 = Btrue, and the remaining coefficient matrices as zero. We consider three types of 

coefficient matrices Btrue with different significant regions, i.e. (ps, qs) = (4,4), (8, 8), and 

(16, 16), where ps and qs denote the true size of the significant regions of interest. Figure 

presents the true images Btrue and each of them contains a yellow ROI containing ones and a 

blue ROI containing zeros.

In this subsection, we evaluate the effect of using different γn on the finite sample 

performance of the screening procedure. We will investigate the proposed random 

decoupling in the next subsection. Specifically, by sorting the magnitude of Bl
M

op in 

descending order, we define ℳk
 as

ℳk = {1 ≤ l ≤ sn: Bl
M

op is among the first k largest of all covariates} . (7)

We apply our screening procedure to each simulated data set and then report the average true 

nonzero coverage proportion as k varies from 1 to 200. In this case, ℳ = {1, 2, …, 20} is the 

set of all true nonzero indices, and ℳk
 is the selected index set by using our screening 

method. The true nonzero coverage proportion is defined as ∣ ℳk ∩ ℳ ∣ ∕ ∣ ℳ ∣. We consider 

three different sample sizes including n = 100, 200, and 500. We run 100 Monte Carlo 

replications for each scenario.

We consider four screening methods including the rank-one screening method, the L1 

entrywise norm screening, the Frobenius norm screening, and the global Wald test screening 

proposed in Huang et al. (2015). The curves of percentage of the average true nonzero 

coverage proportion for different threshold values are presented for the case (σe2, sn) = (1, 

2000) in Figure 4 and for the case (σe2, sn) = (25, 2000) in Figure 5. Inspecting Figures 4 and 

5 reveals that the rank-one screening significantly outperforms all other three methods, 

followed by the Frobenius norm screening. As expected, increasing the sample size n and/or 

k increases the true nonzero coverage proportion of all four methods. We also include 

additional simulation results for the cases (σe2, sn) = (1, 5000) in Figure S1 and (σe2, sn) = (25, 

5000) in Figure S2 in the Supplementary Material. The findings are similar. Overall, the 

rank-one screening method is more robust to noise and signal region size.

4.3 Simulation study for two-step procedure

In this subsection, we perform a simulation study to evaluate our two-step screening and 

estimation procedure. We simulate 64 × 64 matrix responses according to model (1) with sn 

covariates. We set the first four true coefficient matrices to be a cross shape (B10), a square 
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shape (B20), a triangle shape (B30), and a butterfly shape (B40) shown in Figure 1. For the 

remaining coefficient matrices {Bl0, 5 ≤ l ≤ sn}, we set them as zero matrices. We consider 

sn = 2000 and 5000.

We independently generate all scalar covariates xi from N(0, ∑x), where ∑x = (σx,ll′) is a 

covariance matrix with an autoregressive structure such that σx, ll′ = ρ1
∣ l − l′ ∣  holds for 1 ≤ l,l

′ ≤ s with ρ1 = 0.5. We independently generate vec(Ei) from N(0, ∑e). Specifically, we set 

the variances of all elements in Ei to be σe2 and the correlation between Ei,jk and Ei,j′k′ to be 

ρ2
∣ j − j′ ∣ + ∣ k − k′ ∣  for 1 ≤ j, k, j′, k′ ≤ 64 with ρ2 = 0.5. We consider three different sample 

sizes including n = 100, 200, and 500, and set σe2 to be 1 and 25.

First, we evaluate the finite sample performance of the random decoupling. We perform our 

screening procedure based on the random decoupling and then apply our regularized low 

rank estimation procedure. We report the MSEs of Bl (l = 1, 2, 3, 4), model size, and 

prediction error based on 100 replications in Table 3. We report the proportion of times that 

we exactly select the true model ℳ = {1, 2, 3, 4}, the proportion that we over-select some 

variables, but include all the true ones, and the proportion that we miss some of the 

important covariates in Table 4. The proposed random decoupling works pretty well in 

choosing γn, since the selected covariate set based on γn includes the true covariates with 

high probabilities in all scenarios.

Second, we consider over-selecting and/or missing some covariates. For each of the three 

above cases, we report the MSEs of Bl (l = 1, 2, 3, 4) and the prediction error in Table 4. 

When the screening procedure over-selects more irrelevant variables, the MSEs of the true 

non-zero coefficient matrices and prediction error of the fitted model are similar to those 

obtained from the model with the correct set of covariates. In contrast, if the screening 

procedure misses several important variables, then the estimates corresponding to these 

missed variables completely fail since the corresponding coefficient matrices are estimated 

zero. However, according to the simulation results, the MSEs corresponding to those 

important variables that have been selected, are similar to those obtained from the model 

with the correct set of covariates. The prediction error increases due to missing some 

important variables.

5 The Philadelphia Neurodevelopmental Cohort

5.1 Data Description and Preprocessing Pipeline

To motivate the proposed methodology, we consider a large database with imaging, genetic, 

and clinical data collected by the Philadelphia Neurodevelopmental Cohort (PNC) study. 

This study was a collaboration between the Center for Applied Genomics (CAG) at 

Children’s Hospital of Philadelphia (CHOP) and the Brain Behavior Laboratory at the 

University of Pennsylvania (Penn). The PNC cohort consists of youths aged 8-21 years in 

the CHOP network and volunteered to participate in genomic studies of complex pediatric 

disorders. All participants underwent clinical assessment and a neuroscience based 

computerized neurocognitive battery (CNB) and a subsample underwent neuroimaging. We 
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consider 814 subjects with 429 females and 385 males. The age range of the 814 participants 

is 8-21 (years) with mean value 14.36 (years) and standard deviation 3.48 (years). 

Specifically, each subject has a resting state functional magnetic resonance imaging (rs-

fMRI) connectivity matrix, which is represented as a 69×69 matrix, and a large genetic data 

set with around 5, 400, 000 genotyped and imputed single-nucleotide polymorphisms 

(SNPs) on all of the 22 chromosomes. Other clinical variables of interest include age and 

gender, among others. Our primary question of interest is to identify novel genetic effects on 

the local rs-fMRI connectivity changes.

We preprocess the resting state fMRI data using C-PAC pipeline. First, we register the fMRI 

data to the standard MNI 2mm resolution level and did segmentation using the C-PAC 

default setting. Next, we do motion correction using the Friston 24-parameter method. We 

also perform nuisance signal correction by regressing out the following variables: top 5 

principle components in the noise regions of interest (ROIs), Cerebrospinal fluid (CSF), 

motion parameters, and the linear trends in time series. Finally, we extract the ROI time 

series by taking the average of voxel-wise time series in each ROI. The atlases that we use 

are HarvardOxford Cortical Atlas (48 regions) and HarvardOxford Subcortical Atlas (21 

regions), which could be found in FSL. In total, we extract time series for each of the 69 

regions and each time series has 120 observations after deleting the first and last 3 scans.

5.2 Analysis and Results

We first fit model (1) with the rs-fMRI connectivity matrices from 814 subjects as 69 × 69 

matrix responses and age and gender as clinical covariates. We also include the first 5 

principal component scores based on the SNP data as covariates to correct for population 

stratification. We first calculate the ordinary least squares estimates of coefficient matrices 

and then compute the corresponding residual matrices for the brain connectivity response 

matrix after adjusting the effects of the clinical covariates and the SNP principal component 

scores.

Second, we apply the rank-one screening procedure by using the residual matrices as 

responses to select important SNPs from the whole set of 5, 354, 265 SNPs that are highly 

associated with the residual matrices. We use the random decoupling method described in 

Section 2.1 to choose the thresholding value γn and select all those indices whose Bl op is 

the larger than γn. Finally, seven covariates are selected, where the names are shown in 

Table 5. Among these seven SNPS, the first three ones on Chromosome 5 have exactly the 

same genotypes for all the subjects and the next four ones on Chromosome 10 have exactly 

the same genotypes for all the subjects.

Finally, we examine the effects of these selected SNPs on our matrix response. We first fit 

the OLS to these 7 SNPs. Since the first three ones have exactly the same genotypes and the 

next four ones have exactly the same genotypes, we regress our matrix response on the first 

selected SNP and the fourth selected SNP, yielding two coefficient matrix estimates B(1)
ols

 and 

B(2)
ols

. The OLS estimates for the 7 SNPs are defined as B(1)
ols = B(2)

ols = B(3)
ols = B(1)

ols ∕ 3 and 

B(4)
ols = B(5)

ols = B(6)
ols = B(7)

ols = B(2)
ols ∕ 4. We then calculate the singular values of these 7 OLS 
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estimates and plot these singular values in decreasing order in Figure 6. Inspecting Figure 6 

reveals that these estimated coefficient matrices have a clear low rank pattern since the first 

few singular values dominate the remaining ones. This motivates us to apply our RLR 

estimation procedure to estimate the coefficient matrices corresponding to these 7 SNP 

covariates. Figure 7(a)-(g) presents the coefficient matrix estimates associated with these 

SNPs. The coefficient matrices corresponding to the first three selected SNPs are the same 

and the coefficient matrices corresponding to next four selected SNPs are the same. The 

estimated ranks of these seven coefficient matrices are given by 11, 11, 11, 8, 8, 8, and 8, 

respectively.

6 Discussion

Motivated from the analysis of imaging genetic data, we have proposed a low-rank linear 

regression model to correlate high-dimensional matrix responses with a high dimensional 

vector of covariates when coefficient matrices are approximately low-rank. We have 

developed a fast and efficient rank-one screening procedure, which enjoys the sure 

independence screening property as well as vanishing false selection rate, to reduce the 

covariate space. We have developed a regularized estimate of coefficient matrices based on 

the trace norm regularization, which explicitly incorporates the low-rank structure of 

coefficient matrices, and established its estimation consistency. We have further established 

a theoretical guarantee for the overall solution obtained from our two-step screening and 

estimation procedure. We have demonstrated the efficiency of our methods by using 

simulations and the analysis of PNC dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A: Auxiliary Lemmas

In this section, we include the auxiliary lemmas needed for the theorems and their proofs.

Lemma 1. (Bernstein’s inequality) Let Z1, …, Zn be independent random variables with 
zero mean such that E∣Zi∣m ≤ m!Mm–2vi/2 for every m ≥ 2 (and all i) and some positive 
constants M and vi. Then P(∣Z1 + … + Zn∣ > x) ≤ 2 exp[−x2 / {2(v + Mx)}] for v ≥ v1 + … + 

vn.
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This lemma is Lemma 2.2.11 of van der Vaart and Wellner (2000), and we omit the proof.

Lemma 2. Under Assumptions A0-A2, for arbitrary t > 0 and every l, l′, j, k, we have that

P( ∣ ∑
i = 1

n
{xilxil′ − E(xilxil′)} ∣ ≥ t) ≤ 2 exp{ − t2

2(2nC2
2eC2C3 + t ∕ C2)

},

and

P( ∣ ∑
i = 1

n
(xilEi, jk) ∣ ≥ t) ≤ 2 exp{ − t2

2(2nC2
2eC2C3 + t ∕ C2)

} .

Proofs of Lemma 2: By Assumptions A1 and A2, we have

E exp{C2 ∣ xilxil′ − E(xilxil′) ∣ } ≤ eC2 ∣ E(xilxil′) ∣ E{eC2 ∣ xilxil′ ∣ }

≤ eC2E{eC2xil
2 ∕ 2eC2xil′

2 ∕ 2} ≤ eC2 E{eC2xil
2

}E{eC2xil′
2

}
1 ∕ 2

≤ eC2C3 .

For every m ≥ 2, one has

E{ ∣ xilxil′ − E(xilxil′) ∣m } ≤ m!C2
−mE{exp(C2 ∣ xilxil′ − E(xilxil′) ∣ )} ≤ m!C2

−meC2C3 .

It follows from Lemma 1 that we have

P( ∣ ∑
i = 1

n
{xilxil′ − E(xilxil′)} ∣ ≥ t) ≤ 2 exp{ − t2

2(2nC2
2eC2C3 + t ∕ C2)

} .

Similarly, we obtain

E{ exp(C2 ∣ xilEi, jk ∣ )} ≤ eC2E(eC2xil
2 ∕ 2eC2Ei, jk

2 ∕ 2)

≤ eC2 E(eC2xil
2

)E(eC2Ei, jk
2

)
1 ∕ 2

≤ eC2C3 .

For every m ≥ 2, we have E ∣ xilEi, jk ∣m ≤ m!C2
−mE{exp(C2 ∣ xilEi, jk ∣ )} ≤ m!C2

−meC2C3. 

Therefore, it follows from Lemma 1 that we have

P( ∣ ∑
i = 1

n
(xilEi, jk) ∣ ≥ t) ≤ 2 exp{ − t2

2(2nC2
2eC2C3 + t ∕ C2)

} .

This completes the proof of Lemma 2.
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The next lemma is about the subdifferential and directional derivatives of the trace norm. For 

more details about this lemma and its proof, please refer to Recht et al. (2010) and Borwein 

and Lewis (2010).

Lemma 3. For an arbitrary matrix W, its singular value decomposition is denoted by W = 

UDVT, where U ∈ ℝp × m and V ∈ ℝq × m have orthonormal columns, D = diag(d1, …, dm), 

and d1 ≥ … ≥ dm > 0 are the singular values of W. Then the trace norm of W is 

W ∗ = ∑i = 1
m di and its subdifferential is equal to

∂ W ∗ = {UDVT + N, sucℎ tℎat N op ≤ 1, UTN = 0,NV = 0} .

The directional derivative at W is

lim
ϵ 0+

W+ ϵΥ ∗ − W ∗
ϵ = tr(UTΥV) + (U⊥)TΥV⊥

∗
,

where U⊥, V⊥ are the orthonormal complements of U and V.

The following lemma is a standard result called Gaussian comparison inequality (Anderson, 

1955).

Lemma 4. Let X and Y be zero-mean vector Gaussian random vectors with covariance 
matrix ∑X and ∑Y respectively. If ∑X – ∑Y is positive semi-definite, then for any convex 
symmetric set C, P(X ∈ C) ≤ P(Y ∈ C).

B: Proof of Theorems

Proof of Theorem 1: Recall that Bl0
M = cov(∑l′ ∈ ℳxil′ ∗ Bl′0, xil). For every 1 ≤ j ≤ p, 1 ≤ k 

≤ q and 1 ≤ l ≤ sn, we have

Bl, jk
M − Bl0, jk

M = n−1 ∑
i = 1

n
{xilY i, jk − E(xilY i, jk)} .

It follows from Assumptions (A0) (A1) (A2) and Lemma 2 that for any t > 0, we have

P( ∣ Bl, jk
M − Bl0, jk

M ∣ ≥ t) = P( ∣ ∑
i = 1

n
{xilY i, jk − E(xilY i, jk)} ∣ ≥ nt)

= P( ∣ ∑
l′ ∈ ℳ

∑
i = 1

n
{xilxil′ − E(xilxil′)}Bl′0, jk + ∑

i = 1

n
xilEi, jk ∣ ≥ nt)

≤ ∑
l′ ∈ ℳ

P( ∣ ∑
i = 1

n
{xilxil′ − E(xilxil′)} ∣ ≥ nt

b(s0 + 1)) + P( ∑
i = 1

n
∣ xilEi, jk ∣ ≥ nt

(s0 + 1))

≤ 2s0 exp{ −
nt2b−2(s0 + 1)−2

2(2C2
2eC2C3 + C2

−1b−1(s0 + 1)−1t)
} + 2 exp{ −

nt2(s0 + 1)−2

2(2C2
2eC2C3 + C2

−1(s0 + 1)−1t)
} .
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For every l ∈ ℳ, we have

P( Bl
M

op ≤ γn) ≤ P( Bl
M − Bl0

M
op ≥ (pq)1 ∕ 2(1 − α)C1n−κ)

≤ P( Bl
M − Bl0

M

F
≥ (pq)1 ∕ 2(1 − α)C1n−κ) = P(∑

j, k
∣ Bl, jk

M − Bl0, jk
M ∣2 ≥ pq{(1 − α)C1n−κ}2)

≤ ∑
j, k

P( ∣ Bl, jk
M − Bl0, jk

M ∣ ≥ (1 − α)C1n−κ)

≤ 2pq s0 exp{ −
n1 − 2κ[(1 − α)C1b−1(s0 + 1)−1]2

2{2C2
2eC2C3 + C2

−1b−1(s0 + 1)−1(1 − α)C1n−κ}
}

+ exp{ −
n1 − 2κ[(1 − α)C1(s0 + 1)−1]2

2{2C2
2eC2C3 + C2

−1(s0 + 1)−1(1 − α)C1n−κ}
}

≤ 2pq s0 exp{ −
n1 − 2κ[(1 − α)C1b−1(s0 + 1)−1]2

2{2C2
2eC2C3 + C2

−1b−1(s0 + 1)−1(1 − α)C1}
}

+ exp{ −
n1 − 2κ[(1 − α)C1(s0 + 1)−1]2

2{2C2
2eC2C3 + C2

−1(s0 + 1)−1(1 − α)C1}
} .

Let c1 = 2pq(s0 + 1),

c2 =
[(1 − α)C1b−1(s0 + 1)−1]2

2{2C2
2eC2C3 + C2

−1b−1(s0 + 1)−1(1 − α)C1}
, and

c3 =
[(1 − α)C1(s0 + 1)−1]2

2{2C2
2eC2C3 + C2

−1(s0 + 1)−1(1 − α)C1}
.

We have P( ∣ Bl
M ∣ ≤ γn) ≤ 2pq(s0 + 1)exp( − c0n1 − 2κ), where c0 = min{c2, c3}. By 

Assumption (A5), one has

P(ℳ ⊆ ℳγn) = P( ⋂
l ∈ ℳ

{ ∣ Bl
M ∣ > γn})

= 1 − P( ⋃
l ∈ ℳ

{ ∣ Bl
M ∣ ≤ γn}) ≥ 1 − ∑

l ∈ ℳ
P( ∣ Bl

M ∣ ≤ γn)

≥ 1 − s0c1 exp( − c0n1 − 2k) = 1 − 2pq(s0 + 1)s0 exp( − c0n1 − 2κ) 1 .

This completes the proof of Theorem 1.

Proof of Theorem 2: The proof consists of two steps. In Step 1, we will show that 

P(ℳγn ⊆ ℳo) 1, where ℳo = {1 ≤ l ≤ sn: Bl0
M

op ≥ γn ∕ 2}. It follows from the definition 

of ℳγn that we have

P(ℳγn ⊆ ℳo) ≥ P( ⋂
1 ≤ l ≤ sn

{ Bl
M − Bl0

M
op

≤ γn ∕ 2}),
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Moreover, we have

P( ⋂
1 ≤ l ≤ sn

{ Bl
M − Bl0

M
op

≤ γn ∕ 2}) = 1 − P( ⋃
1 ≤ l ≤ sn

{ Bl
M − Bl0

M
op

≥ γn ∕ 2})

≥ 1 − ∑
1 ≤ l ≤ sn

P( Bl
M − Bl0

M
op

≥ γn ∕ 2) ≥ 1 − ∑
1 ≤ l ≤ sn

P( Bl
M − Bl0

M

F
≥ γn ∕ 2)

≥ 1 − ∑
1 ≤ l ≤ sn

∑
j, k

P( ∣ Bl, jk
M − Bl0, jk

M ∣ ≥ C1n−κ ∕ 2)

≥ 1 − 2snpq s0 exp{ −
α2C1

2b−2(s0 + 1)−22−2n1 − 2κ

2(2C2
2eC2C3 + C2

−1b−1(s0 + 1)−1αC12−1n−κ)
}

+ exp{ −
α2C1

2(s0 + 1)−22−2n1 − 2κ

2(2C2
2eC2C3 + C2

−1(s0 + 1)−1αC12−1n−κ)
}

≥ 1 − 2snpq s0 exp{ −
α2C1

2b−2(s0 + 1)−22−2n1 − 2κ

2(2C2
2eC2C3 + C2

−1b−1(s0 + 1)−1αC12−1)
}

+ exp{ −
α2C1

2(s0 + 1)−22−2n1 − 2κ

2(2C2
2eC2C3 + C2

−1(s0 + 1)−1αC12−1)
}

= 1 − 2pq exp(C4nξ) s0 exp{ −
α2C1

2b−2(s0 + 1)−22−2n1 − 2κ

2(2C2
2eC2C3 + C2

−1b−1(s0 + 1)−1αC12−1)
}

+ exp{ −
α2C1

2(s0 + 1)−22−2n1 − 2κ

2(2C2
2eC2C3 + C2

−1(s0 + 1)−1αC12−1)
} .

By Assumptions (A3) and (A5), one has 

P(⋂1 ≤ l ≤ sn{ Bl
M − Bl0

M
op ≤ γn ∕ 2}) ≥ 1 − c4 exp( − c5n1 − 2κ) for some constants c4 > 0 and 

c5 > 0. Therefore, we have P(ℳγn ⊆ ℳo) 1 by Assumption (A1).

In Step 2, we will show that ∣ ℳo ∣ = O(n2κ + τ). Define ℳ1 = {1 ≤ l ≤ sn: Bl0
M

F
2 ≥ γn2 ∕ 4}. 

As Bl0
M

op ≤ Bl0
M

F , we have ℳo ⊆ ℳ1. By the definition of ℳ1, we have

∣ ℳ1 ∣ γn2 ∕ 4 ≤ ∑
l = 1

sn
Bl0

M
F

2

= ∑
j, k

∑
l = 1

sn
(Bl0, jk

M )2 = ∑
j, k

∑
l = 1

sn
{E(xilY i, jk)}2 = ∑

j, k
E(xi ∗ Y i, jk)

2
.

Define B0,jk = (B10,jk, –, Bs0,jk)T, we can write Y i, jk = xiTB0, jk + Ei, jk. Multiplying Xi on 

both sides and taking expectations yield ∑xB0,jk = E(xi * Yi,jk). Therefore, we have
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∣ ℳ1 ∣ γn2 ∕ 4 ≤ ∑
j, k

ΣxB0, jk
2 ≤ λmax(Σx)∑

j, k
B0, jk

T B0, jk

= λmax(Σx)∑
j, k

{var(Y i, jk) − var(Y i, jk ∣ xi)} ≤ pqλmax(Σx) .

By Assumption A4, we have ∣ ℳ1 ∣ ≤ 4pqλmax(Σx)γn−2 = O(n2κ + τ), which implies that 

∣ ℳ0 ∣ ≤ ∣ ℳ1 ∣ = O(n2κ + τ).

Combining the results of above two steps leads to

P( ∣ ℳγn ∣ = O(n2κ + τ)) ≥ P(ℳγn ⊆ ℳ0) 1 .

This completes the proof of Theorem 2.

Theorems 3, 4 and 5 are theoretical results for our estimation procedure, and we assume 

ℳ = ℳ and ℳ is fixed.

Proof of Theorem 3: Without loss of generality, for the proof of Theorem 3, we assume 

ℳ = ℳ = {1, …, s} with s fixed for notation simplicity. We first prove Theorem 3 (i). We 

define

L(Δ1, …,Δs) = λ−2{Q(λΔ1 + B10, …, λΔs + Bs0) − Q(B10, …, Bs0)}

= 2−1 ∑
l = 1

s
∑

l′ = 1

s
n−1( ∑

i = 1

n
xilxil′)tr(Δl

TΔl′) − λ−1∑
l

tr(Δl
Tn−1 ∑

i = 1

n
xilEi)

+λ−1∑
l

{ Bl0 + λΔl
∗

− Bl0
∗

},

where Δl = λ−1(Bl – Bl0) for l = 1, …, s. Therefore, we have

(Δ1, ⋯,Δs) = arg min{L(Δ1, ⋯,Δs)},

where Δl = λ−1(Bl − Bl0) for l = 1, …, s.

When λ → 0, n1/2λ → ∞, we have

n−1 ∑
i = 1

n
xilxil′ p Σℳ, ll′, for every 1 ≤ l, l′ ≤ s,

where Σℳ, ll′ is the (l, l′)–th element of Σℳ for 1 ≤ l, l’ ≤ s. By the Central Limit Theorem, 

n−1 ∕ 2∑i = 1
n xilEi converges in distribution to a normally distributed matrix Dl with mean 0 

and var(vec(Dl)) = mll∑e for every 1 ≤ l ≤ s. Hence
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λ−1n−1 ∑
i = 1

n
xilEi = λ−1n−1 ∕ 2Op(1) p 0, for every 1 ≤ l ≤ s .

For every l = 1, …, s, recall that the singular value decomposition of Bl0 is Ul0 ϴl0 Vl0
T , and 

Ul0
⊥ , and Vl0

⊥  denote orthogonal complements of Ul0 and Vl0, respectively. By Lemma 3, we 

have

λ−1∑
j

{ Bl0 + λΔl
∗

− Bl0
∗

} ∑
l = 1

s
tr(Ul0

T ΔlVl0) + ∑
l = 1

s
(Ul0

⊥ )TΔlVl0
⊥

∗
.

Consequently, L(Δ1, …, Δs) →p L0(Δ1, …, Δs) for each Δ1 ϵ Gl,l = 1, …, s with Gl’s 

compact sets in ℝp × q, where

L0(Δ1, ⋯,Δs)

= 2−1 ∑
l = 1

s
∑

l′ = 1

s
Σℳ, ll′tr(Δl

TΔl′) + ∑
l = 1

s
tr(Ul0

T ΔlVl0) + ∑
l = 1

s
(Ul0

⊥ )TΔlVl0
⊥

∗

One can see that L0 (Δ1, …, Δs) is convex, hence it has unique minimum value point (Δ10, 

…, Δs0). As L(Δ1, …, Δs) is also convex, by (Knight and Fu, 2000) we have Δl p Δl0. This 

implies that λ−1(Bl − l0) = Op(1), l = 1, ... , s.

We second prove Theorem 3 (ii). We define

f(Ψ1, …,Ψs) = n(Q(n−1 ∕ 2Ψl + Bl0) − Q(Bl0))

= 2−1 ∑
l = 1

s
∑

l′ = 1

s
n−1( ∑

i = 1

n
xilxil′)tr(Ψl

TΨl′) − ∑
l

tr(Ψl
Tn−1 ∕ 2 ∑

i = 1

n
xil ∗ Ei)

+λn∑
l

{ Bl0 + n−1 ∕ 2Ψl
∗

− Bl0
∗

},

where Ψl = n1/2(Bl – Bl0) for l = 1, …, s. Let (Ψ1, …,Ψs) = arg min{f(Ψ1, …,Ψs)}, then we 

have that Ψl = n1 ∕ 2(Bl − Bl0), l = 1, …, s. Under the Assumption (A6), and n1/2λ → ρ, we 

have f(Ψ1 …, Ψs) → f0(Ψ1 …, Ψs) and

f0(Ψ1, ⋯,Ψs)

= 2−1 ∑
l = 1

s
∑

l′ = 1

s
Σℳ, ll′tr(Ψl

TΨl′) − ∑
l = 1

s
tr(Ψl

TDl) + ρ{ ∑
l = 1

s
tr(Ul0

T ΔlVl0) + ∑
l = 1

s
(Ul0

⊥ )TΔlVl0
⊥

∗
},

where Dl is a random matrix, and vec(D1) is normally distributed. One can see that f0(Ψ1, 

…, Ψs) is convex, hence it has unique minimum value point (Ψ10, …, Ψs0) with Ψl0 = 

Op(1) for l = 1, …, s. Consequently, by (Knight and Fu, 2000), we have Ψl d Ψl0 for l = 1, 
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…, s, which indicates that n1 ∕ 2(Bl − Bl0) = Op(1) for l = 1, …, s. This completes the proof of 

Theorem 3.

Proof of Theorem 4: Without loss of generality, for the proof of Theorem 4, we assume 

ℳ = ℳ = {1, …, s} with s fixed for notation simplicity. It follows from Theorem 3(i) that 

λ−1(Bl − Bl0) = Op(1) holds for every 1 ≤ l ≤ s. Since the rank function is lower semi-

continuous, P(rank(Bl) ≥ rank(Bl0)) 1. We will then prove rank(B = rank(Bl0) for every 1 ≤ 

l ≤ s with probability tending to one.

Denote the singular value decomposition of Bl as Bl = Ul ϴl Vl
T
, where Ul ∈ ℝp × p and 

Vl ∈ ℝq × q. Let Ul
⊥

 be the submatrix of Ul without the first rl columns, and Vl
⊥

 is the 

submatrix of Vl without the first rl columns, where rl is the rank of Bl0. Denote the rank of Bl
by r l. We prove the theorem by two steps.

Step 1. In this step, we will show if

(Ul
⊥)T{n−1 ∑

i = 1

n
xil[ ∑

l′ = 1

s
xil′ ∗ (Bl′ − Bl′0) − Ei]}Vl

⊥
op

< λ,

then r l = rl. We will prove the statement by contradiction.

Let Ul1 be the submatrix of Ul corresponding to the first r l columns, and Vl1 be the 

submatrix of Vl corresponding to the first r l columns. If r l ≥ rl, we can write Ul
⊥

, Vl
⊥

 as 

(Ul1
⊥ , Ul2

⊥ ), and (Vl1
⊥ , Vl2

⊥ ) respectively, where Ul1
⊥ ∈ ℝp × (rl − rl), Ul2

⊥ ∈ ℝp × (p − rl), 

Vl1
⊥ ∈ ℝq × (rl − rl), and Vl2

⊥ ∈ ℝp × (q − rl). By the definition of Bl, we have

Bl = argmin
Bl

1
2n ∑

i = 1

n
Yi − ∑

l′ ≠ l
xil′Bl − xilBl

F

2
+ λ Bl

∗
.

Hence, by Lemma 3, we have

{n−1 ∑
i = 1

n
xil[ ∑

l′ = 1

s
xil′ ∗ (Bl′ − Bl′0) − Ei]} + λ(Ul1Vl1

T + Nl) = 0,

with Ul1
TNl = 0, NlVl1 = 0 and ∥Nl∥op ≤ 1. Furthermore, we have
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(Ul
⊥)T{n−1 ∑

i = 1

n
xil[ ∑

l′ = 1

s
xil′ ∗ (Bl′ − Bl′0) − Ei]}Vl

⊥

= −λ(Ul
⊥)T(Ul1Vl1

T + Nl)Vl
⊥

= −λ(Ul1
⊥ , Ul2

⊥ )T{Ul1
⊥ (Vl1

⊥ )T + Nl}(Vl1
⊥ , Vl2

⊥ )

= −λ
I(rl − rl) × (rl − rl) 0

0 (Ul2
⊥ )TNlVl2

⊥ .

From the above formula, it follows that we have 

(Ul
⊥)
T

{n−1∑i = 1
n xil[∑i′ = 1

n xil′ ∗ (Bl′ − Bl′0) − Ei]}Vl
⊥

op = λ as long as r l > rl. 
Consequently,

if (Ul
⊥)
T

{n−1∑i = 1
n xil[∑i′ = 1

s xil′ ∗ (Bl′ − Bl′0) − Ei]Vl1
⊥ } op < λ, we have r l = rl.

Step 2. In this step, we will prove that with probability tending to 1, one has

(Ul
⊥)T{n−1 ∑

i = 1

n
xil[ ∑

l′ = 1

s
xil′ ∗ (Bl′ − Bl′0) − Ei]}Vl

⊥
op

< λ .

We have

(Ul
⊥)T{n−1 ∑

i = 1

n
xil[ ∑

l′ = 1

s
xil′ ∗ (Bl′ − Bl′0) − Ei]}Vl

⊥

= (Ul
⊥)T{λ ∑

l′ = 1

s
(Σℳ, ll′ + o(1))Δl − Op(n−1 ∕ 2)}Vl

⊥ = λ(Ul
⊥)T ∑

l′ = 1

s
Σℳ, ll′ΔlVl

⊥ + op(λ) .

Since Bl is a consistent estimator of Bl0, we have Ul
⊥(Ul

⊥)
T

= Ul0
⊥ (Ul0

⊥ )
T

+ op(1) and 

Vl
⊥(Vl

⊥)
T

= Vl0
⊥ (Vl0

⊥ )
T

+ op(1). Consequently, we have

(Ul
⊥)T{n−1 ∑

i = 1

n
xil[ ∑

l′ = 1

s
xil′ ∗ (Bl′ − Bl′0) − Ei]}Vl

⊥
op

= Ul
⊥(Ul

⊥)T{n−1 ∑
i = 1

n
xil[ ∑

l′ = 1

s
xil′ ∗ (Bl′ − Bl′0) − Ei]}Vl

⊥(Vl
⊥)T

op

= λ Ul0
⊥ (Ul0

⊥ )T( ∑
l′ = 1

s
Σℳ, ll′Δl′)Vl0

⊥ (Vl0
⊥ )T

op
+ op(λ)

= λ Ul0
⊥ (Ul0

⊥ )T( ∑
l′ = 1

s
Σℳ, ll′Δl′0)Vl0

⊥ (Vl0
⊥ )T(1 + op(1))

op
+ op(λ)

= λ Ul0
⊥ΛL(Vl0

⊥ )T op + op(λ) = λ{ Λl op + op(1)} .
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As ∥Λl∥op < 1, we have (Ul
⊥)
T

{n−1∑i = 1
n xil[∑i′ = 1

s xil′ ∗ (Bl′ − Bl′0) − Ei]Vl
⊥} op < λ. with 

probability 1. This completes the proof of Theorem 4.

Proof of Theorem 5. Without loss of generality, for the proof of Theorem 5, we assume 

ℳ = ℳ = {1, …, s} with s fixed for notation simplicity. To prove Theorem 5, we first 

introduce some notations and definitions used in Negahban et al. (2012). Given a pair of 

subspaces M ⊆ M, a norm based regularizer J is decomposable with respect to ((M, M⊥)) if

J(θ + γ) = J(θ) + J(γ) for all θ ∈ M and γ ∈ M⊥,

where M⊥ is the orthogonal complement of the space M defined as 

M⊥ = {v ∣ u, v = 0 for all u ∈ M}.

We define the projection operator

ΠM(u) = argminv ∈ M u − v .

Similarly, we can define the projections ΠM⊥, ΠM and ΠM⊥.

We then introduce the definition of the subspace compatibility constant. For the subspace M, 

the subspace compatibility constant with respect to the pair (J, ∥ · ∥) is given by

ψ(M) ≔ sup
u ∈ M ∖ {0}

J(u)
u

We introduce the definition of restricted strong convexity. For a loss function L(θ), define 

δL(Δ, θ) = L(θ + Δ) – L(θ) – ⟨∇L(θ),Δ), where ∇L(θ) = dL(θ)
dθ . The loss function satisfies a 

restricted strong convexity condition with curvature κL > 0 and tolerance function τL if

δL(Δ, θ) ≥ κL Δ 2 − τL
2 (θ) for all Δ ∈ C(M, M⊥, θ),

where C(M, M⊥, θ) = {Δ ∣ J(ΔM⊥) ≤ 3J(ΔM) + 4J(θM⊥)}.

Now we begin to prove Theorem 5. We need to use the result in Theorem 1 of Negahban et 

al. (2012). We first check the conditions of the theorem under our context.

Recall that B = [B1, …, Bs] ∈ ℝp × qs, and rl = rank(Bl0). Let us consider the class of matrices 

ϴl ∈ ℝp × q that have rank rl ≤ min{p, q} and we define ϴ = [ ϴ1 , …, ϴs ] ∈ ℝp × qs.

Let row( ϴl ) ⊆ ℝp and col( ϴl ) ⊆ ℝq denote its row space and column space, respectively. 

Let Ul and Vl be a given pair of rl-dimensional subspaces Ul ⊆ ℝp and V l ⊆ ℝq. Define U = 
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[U1, …, Ul] and V = [V1, …, Vl]. For a given pair (U, V), we can define the subspaces M(U, 

V), M(U, V ) and M⊥(U, V ) of ℝp × qs given by

M(U, V ) = {Θ ∈ ℝp × qs ∣ row(Θl) ⊆ V l and col(Θl) ⊆ Ul for 1 ≤ l ≤ s},

M(U, V ) = {Θ ∈ ℝp × qs ∣ row(Θl) ⊆ V l or col(Θl) ⊆ Ul for 1 ≤ l ≤ s},

and

M⊥(U, V ) = {Θ ∈ ℝp × qs ∣ row(Θl) ⊆ V l
⊥ and col(Θl) ⊆ Ul

⊥ for 1 ≤ l ≤ s},

where M⊥(U, V ) is the orthogonal complement of the space M(U, V ). For simplicity, we will 

use M, M and M⊥ to denote M(U,V), M(U, V ) and M⊥(U, V ) respectively in the following 

proof.

Define J(B) = ∑l = 1
s Bl ∗, and we can easily see J(B) is a norm. It is easy to see that the 

norm J is decomposable with respect to the subspace pair (M, (M, M⊥)), where M ⊆ M. 

Therefore, the regularizer J satisfies Condition (G1) in Negahban et al. (2012).

Under condition (A9), it is easy to see the loss function R is convex and differentiable, and 

satisfies the restricted strong convexity with curvature κL = CL and tolerance τL = 0, and 

therefore the Condition (G2) in Negahban et al. (2012) holds.

After we check the conditions, we need to calculate ψ(M) and R({B0}M⊥). It is easy to see 

R({B0}M⊥). For ψ(M), one has

ψ(M) = sup
u ∈ M ∖ {0}

J(u)
u = sup

Bl ∈ M ∖ {0}

∑l = 1
s Bl ∗

B F
≤

∑l = 1
s 2rl Bl F

B F

≤
∑l = 1

s ( 2rl)2 ∑l = 1
s Bl F

2

B F
≤ 2 ∑

l = 1

s
rl .

Therefore, by Theorem 1 in Negahban et al. (2012), when λ ≥ 2J*(∇R(B0)), one has 

B − B0 F
2 ≤ C(∑l = 1

s rl)λ2CL−2 for some constant C > 0.

The term J*(∇R(B0)) is actually a random quantity, and our next step is to derive the order of 

this term.

Define J*(·) as the dual norm of J(·). For any matrix A = [A1, …, As] ∈ ℝp × qs, we will first 

prove the following result

J∗(A) = sup
J(B) ≤ 1

A, B = max
1 ≤ l ≤ s

Al
op

. (8)
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To prove (8), we first show that J*(A) ≥ max1≤l≤s ∥Al∥op. Let B(l) = [B1
(l), …, Bs

(l)] with 

Bk
(l) = 0 for any k ≠ l and Bl

(l) ≤ 1. One has

J∗(A) ≥ sup
B(l) ∗ ≤ 1

A, B(l) = sup
Bl

(l)
∗ ≤ 1

Al, Bl
(l) = Al

op
.

It is easy to see J*(A) ≥ ∥Al∥op holds for any 1 ≥ l ≥ s. Consequently, one has J*(A) ≥ 

max1≤l≤s ∥Al∥op.

Our next step is to show that J*(A) ≤ max1≤l≤s ∥Al∥op. Define the singular value 

decomposition of Bl = Ul ϴl Vl
T. One has

J∗(A) = sup
J(B) ≤ 1

{ ∑
l = 1

s
UlΘlVl

T, Al }

= sup
J(B) ≤ 1

{ ∑
l = 1

s
Tr(VlΘlUl

TAlVl)} = sup
J(B) ≤ 1

{ ∑
l = 1

s
Tr(ΘlUl

TAlVl)}

= sup
J(B) ≤ 1

{ ∑
l = 1

s
Ul

TAlVlΘl } = sup
J(B) ≤ 1

{ ∑
l = 1

s
∑

k = 1

min{p, q}
θlk(Ul

TAlVl)kk}

= sup
J(B) ≤ 1

{ ∑
l = 1

s
∑

k = 1

min{p, q}
θlk((Ul)(k))TAl(Vl)(k)}

≤ sup
J(B) ≤ 1

{ ∑
l = 1

s
∑

k = 1

min{p, q}
θlk Al

op
} ≤ sup

J(B) ≤ 1
{ ∑

l = 1

s
∑

k = 1

min{p, q}
θlk max

1 ≤ l ≤ s
Al

op
}

≤ max
1 ≤ l ≤ s

Al op
,

where θlk is the kth diagonal element of the diagonal matrix ϴl, (Ul
TAlVl)kk is the kkth 

element of the matrix Ul
TAlVl, (Ul)(k) and (Vl)(k) are the kth column of the matrices Ul and 

Vl respectively.

Combining the two inequalities, we show that J*(A) = max1≤l≤s ∥Al∥op.

Next we need to calculate J*(∇R(B0)), where ∇R(B0) = [D1, …,Ds] ∈ ℝp × qs with 

Dl = − 2n−1∑i = 1
n xil ∗ Ei. We first need to calculate ∥Dl∥op. We know that operator norm is 

the dual norm of the trace norm.

From the definition of J*(·), one has

Dl
op

= 2 sup
A ∗ ≤ 1

A, n−1 ∑
i = 1

n
xil ∗ Ei
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To obtain a bound for ∥Dl∥op, we use similar technique as the one used in Raskutti and Yuan 

(2018). Let Wi be a p × q random matrix with each entry i.i.d. standard normal. Assuming 

condition (A11) and by Lemma 4, conditioning on xil, we get

P{ sup
A ∗ ≤ 1

A, n−1 ∑
i = 1

n
xil ∗ Ei > t} ≤ P{ sup

A ∗ ≤ 1
A, n−1 ∑

i = 1

n
xil ∗ Wi > t

CU
},

since Σe ≼ CU2 Ipq × pq.

As sup A ∗ ≤ 1 A, n−1∑i = 1
n xil ∗Wi = n−1∑i = 1

n xil ∗Wi op, conditioning on Wi, each 

entry of the matrix n−1∑i = 1
n xil ∗Wi is i.i.d N(0,

Xl op2

n2 ), where Xl = (x1l, …, xnl)T. Since 

Xl op2

σl
2 ) is a χ2 random variable with n degree of freedom, where σl

2 = (Σℳ)ll, one has

P{
Xl op2

nσl
2 ≥ 4} ≤ exp( − n)

using the tail bounds of χ2. Then combining with the standard random matrix theory, we 

know that n−1∑i = 1
n xil ∗Wi op ≤ 2n−1 ∕ 2σl(p1 ∕ 2 + q1 ∕ 2) with probability at least 

1 − c1
∗exp{ − c2

∗(p + q)} − exp( − n) where c1
∗ and c2

∗ are some positive constants. Therefore, 

under conditions (A10) and (A12), there exist some positive constants c1, c2 and c3 such that 

max1≤l≤s ∥Dl∥op ≤ 4CUn−1/2(max1≤l≤s σl)(p1/2 + q1/2) holds with probability at least 1 – c1 

exp{−c2(p + q)} – c3exp(−n). Thus, when λ ≥ 4CUCM
1 ∕ 2n−1 ∕ 2(p1 ∕ 2 + q1 ∕ 2), λ ≥ 

J*(∇R(B0)) with probability at least 1 – c1 exp{−c2(p + q)} – c3 exp(−n).

Therefore, with probability 1 – c1 exp{—c2(p + q)} – c3 exp(−n), one has 

B − B0 F
2 ≤ C(∑l ∈ ℳrl)λ2CL−2 for some positive constant C. This completes the proof of 

Theorem 5.

Proof of Theorem 6:

To prove the theorem, we consider the event {ℳ ⊆ ℳ} as it holds with probability goes to 1. 

We will derive the non-asymptotic error bound under the event {ℳ ⊆ ℳ}. Recall that rl = 

rank(Bl0), one has rl = 0 for l ∈ ℳ. Let us consider the class of matrices ϴl ∈ ℝp × q that 

have rank rl ≤ min{p, q} and we define ϴ = [ ϴl , l ∈ ℳ] ∈ ℝp × q ∣ ℳ ∣ . Let row( ϴl ) ⊆ ℝp

and col( ϴl ) ⊆ ℝq denote its row space and column space, respectively. Let Ul and Vl be a 

given pair of rl-dimensional subspaces Ul ⊆ ℝp and V l ⊆ ℝq, respectively. Define 

U = [Ul, l ∈ ℳ] ∈ ℝp × q ∣ ℳ ∣  and V = [V l, l ∈ ℳ] ∈ ℝp × q ∣ ℳ ∣ . For a given pair (U, V), we 

can define the subspaces M(U, V ), M(U, V ) and M⊥(U, V ) of ℝp × q ∣ ℳ ∣  as follows:
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M(U, V ) = {Θ ∈ ℝp × q ∣ ℳ ∣ ∣ row(Θl) ⊆ V l and col(Θl) ⊆ Ul for l ∈ ℳ},

M(U, V ) = {Θ ∈ ℝp × q ∣ ℳ ∣ ∣ row(Θl) ⊆ V l or col(Θl) ⊆ Ul for l ∈ ℳ},

M⊥(U, V ) = {Θ ∈ ℝp × q ∣ ℳ ∣ ∣ row(Θl) ⊆ V l
⊥ and col(Θl) ⊆ Ul

⊥ for l ∈ ℳ},

where M⊥(U, V ) is the orthogonal complement of the space M(U, V ). For simplicity, we will 

use M, M and M⊥
 to denote M(U, V ), M(U, V ) and M⊥(U, V ), respectively.

For the norm J(Bℳ) = ∑l ∈ ℳ Bl ∗, it is easy to see that the norm J is decomposable with 

respect to the subspace pair (M, M⊥), where M ⊆ M. Therefore, the regularizer J satisfies 

Condition (G1) in Negahban et al. (2012).

We need to calculate ψM and R({B0
ℳ}M⊥). It is easy to see R({B0

ℳ}M⊥) = 0. For ψM, since 

rl = 0 holds for l ∈ ℳ, one has

ψ(M) = sup
u ∈ M ∖ {0}

J(u)
u = sup

Bl ∈ M ∖ {0}

∑l ∈ ℳ Bl ∗
Bℳ F

≤
∑l ∈ ℳ 2rl Bl F

∑l ∈ ℳ Bl F
2

≤
∑l ∈ ℳ( 2rl)2 ∑l ∈ ℳ Bl F

2

∑l ∈ ℳ Bl F
2 ≤ 2 ∑

l ∈ ℳ
rl .

For any Δ ∈ ℝp × q ∣ ℳ ∣ , we define F :ℝp × q ∣ ℳ ∣ ℝ as

F(Δ) ≔ R(B0
ℳ + Δ) − R(B0

ℳ) + λ{J(B0
ℳ + Δ) − J(B0

ℳ)} .

We will derive a lower bound on F(Δ). In particular, we have

F(Δ) = R(B0
ℳ + Δ) − R(B0

ℳ) + λ{J(B0
ℳ + Δ) − J(B0

ℳ)}

≥ ∇(R(B0
ℳ),Δ + ıL Δ

2
+ λ{J(B0

ℳ + Δ) − J(B0
ℳ)}

≥ ∇(R(B0
ℳ),Δ + ıL Δ

2
+ λ{J(ΔM⊥) − J(ΔM) − 2J((B0

ℳ)M⊥)},

where the first inequality follows from condition (A13) and the second inequality follows 

from Lemma 3 in Negahban et al. (2012) by applying to the pair (M, M⊥).

By the Cauchy-Schwarz inequality applied to the regularizer J and its dual J*, we have 

∣ ∇R(B0
ℳ), Δ ∣ ≤ J∗(∇R(B0

ℳ))J(Δ). Since λ ≥ 2J∗(∇R(B0
ℳ)) holds by assumption, one has 
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∣ ∇R(B0
ℳ), Δ ∣ ≤ 0.5λJ(Δ) ≤ 0.5λ(J(ΔM⊥) + J(ΔM)), where the second inequality holds due 

to the triangle inequality. Therefore, we have

F(Δ) ≥ − λ
2 {J(ΔM⊥) + J(ΔM)} + ıL Δ

2
+ λ{J(ΔM⊥) − J(ΔM) − 2J((B0

ℳ)M⊥)}

= ıL Δ
2

+ λ{1
2J(ΔM⊥) − 3

2J(ΔM) − 2J((B0
ℳ)M⊥)}

≥ ıL Δ
2

− 1
2λ{3J(ΔM) + 4J((B0

ℳ)M⊥)} .

By the subspace compatibility, we have J(ΔM) ≤ ψ(M) ΔM . As the projection is non-

expansive and 0 ∈ M, one has ΔM ≤ Δ , and thus J(ΔM) ≤ ψ(M) Δ . Substituting it into 

the previous inequality, and noticing that J((B0
ℳ)M⊥) = 0, we obtain 

F(Δ) ≥ ιL Δ 2 − 3
2λψ(M) Δ . The righthand side is a quadratic form of Δ, as long as 

Δ 2 > 9λ2

4ιL
2 ψ(M), one has F(Δ) > 0. By Lemma 4 in Negahban et al. (2012), we have 

Bℳ − B0
ℳ

F
2

≤ C(∑l ∈ ℳrl)λ2ιL−2 for some positive constant C.

Next we need to calculate J∗(∇R(B0
ℳ)), where ∇R(B0

ℳ) = [Dl, l ∈ ℳ] ∈ ℝp × q ∣ ℳ ∣  with 

Dl = − 2n−1∑i = 1
n xil ∗ Ei. By similar argument as the one in the proof of Theorem 5, one 

has J∗(∇R(B0
ℳ)) = maxl ∈ ℳ Dl op. To calculate ∥Dl∥op, by the same argument as the one in 

proof of Theorem 5, one has n−1∑i = 1
n xil ∗Wi op ≤ 2n−1 ∕ 2σl(p1 ∕ 2 + q1 ∕ 2) with 

probability at least 1 − c1
∗exp{ − c2

∗(p + q)} − exp( − n), where c1
∗ and c2

∗ are some positive 

constants. Therefore, one has 

J∗(∇R(B0
ℳ)) = maxl ∈ ℳ Dl op ≤ 4n−1 ∕ 2(maxl ∈ ℳσl)(p1 ∕ 2 + q1 ∕ 2) with probability at least 

1 − ∣ ℳ ∣ c1
∗exp{ − c2

∗(p + q)} − ∣ ℳ ∣ exp( − n). By condition (A4), one has 

maxl ∈ ℳσl ≤ λmax(Σx) ≤ C5nτ. By the proof of Theorem 2, one has ∣ ℳ ∣ = O(n2κ + τ) with 

probability at least 1 − c4
∗exp( − c5

∗n1 − 2κ) for some positive constants c4
∗ and c5

∗. Thus, when 

λ ≥ 4C5nτ–1/2(p1/2 + q1/2), one has λ ≥ J∗(∇R(B0
ℳ)) with probability at least 

1 − c1n2κ + τexp{ − c2(p + q)} − c3n2κ + τexp( − n) − c4
∗exp( − c5

∗n1 − 2κ) for some positive 

constants c1, c2, c3, c4
∗ and c5

∗.

By the proof of Theorem 1, the event {ℳ ⊆ ℳ} holds with probability goes to 1. In 

particular, P({ℳ ⊆ ℳ}) ≥ 1 − c4
∗ ∗ exp( − c5

∗ ∗ n1 − 2k) for some positive constants c4
∗ ∗  and 

c5
∗ ∗ . Therefore, there exists some positive constants c1, c2, c3, c4 and c5 such that with 

probability 1 – c1n2κ+τ exp{−c2(p + q)} – c3n2κ+τ exp(−n) – c4 exp(−c5n1–2κ), one has 

Bℳ − B0
ℳ

F
2

≤ C(∑l ∈ ℳrl)λ2ιL−2 for some positive constant C. When Assumptions (A5) 
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and (A14) hold, with probability goes to 1, one has Bℳ − B0
ℳ

F
2

≤ C(∑l ∈ ℳrl)λ2ιL−2. This 

completes the proof of Theorem 6.

C: Interpretations of Λl

In this section, we include some detailed interpretations of the definition Λl. Without loss of 

generality, we assume ℳ = ℳ = {1, …, s} with s fixed for notation simplicity. We first give a 

necessary condition for rank consistency presented in Theorem 4. By proposition 18 of 

(Bach, 2008), for any 1 ≤ l ≤ s, we have (Ul0
⊥ )TΔlVl0

⊥ = op(1) if rank(Bl) = rank(Bl0) = rl. Since 

Δl p Δl0 and Δl0 is a nonrandom quantity, we have (Ul0
⊥ )TΔl0Vl0

⊥ = 0. Recall that {Δl0 : 1 ≤ l 

≤ s} is the minimizer of l0(Δ1, …, Δs), and thus {Δl0 : 1 ≤ l ≤ s} is the solution of the optimal 

problem

min l0(Δ) subject to (Ul0
⊥ )TΔlVl0

⊥ = 0 for every 1 ≤ l ≤ s . (9)

Using Lagrange multiplier method, consider the minimizer of

L(Δ,Λ1, …,Λs) = 2−1vec(Δ)TΣℳvec(Δ) + ∑
l = 1

s
tr(Ul0

T ΔlVl0) + ∑
l = 1

s
tr(Λl

T(Ul0
⊥ )TΔlVl0

⊥ )

where {Λl, l = 1, …, s} are Lagrange multipliers. Thus, for l = 1, …, s, {Δl0 : 1 ≤ l ≤ s} 

satisfies

∂L
∂Δl

= ∑
l′ = 1

s
Σℳ, ll′Δl0 + Ul0Vl0

T + Ul0
⊥Λl(Vl0

⊥ )T = 0,

∂L
∂Λl

= (Ul0
⊥ )TΔl0Vl0

⊥ = 0 .

Recall that A = Σℳ ⊗ Ipq × pq, Kl = Vl0
⊥ ⊗ Ul0

⊥  , and dl = − vec(Ul0Vl0
T ) for l = 1, . . . s, where 

⊗ denotes the Kronecker product. Let d = (d1
T, …, ds

T)T , K = diag{K1, …, Ks}, 

Λl ∈ ℝ(p − rl) × (q − rl) for l = 1, …, s such that

vec(Λ) = (vec(Λ1)T, …, vec(Λs)T)T = (KTA−1K)−1KTA−1d .

Then the Lagrange equation can be written as

A K

KT 0
vec(Δ)
vec(Λ) = d

0 .

It is easy to show that
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vec(Δ) = A−1(d − Kvec(Λ)) and vec(Λ) = (KTA−1K)−1KTA−1d .

From the above calculation, we can see that vec(Λ) = (vec(Λ1)T, …, vec(Λs)T)T is actually 

the Lagrange multiplier for the optimization problem (9).
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Figure 1: 
Simulation I setting: the four 64×64 true coefficient matrices for the first simulation setting: 

the cross shape for B10 in panel (a), the square shape for B20 in panel (b), the triangle shape 

of B30 in panel (c), and the butterfly shape for B40 in panel (d). The regression coefficient at 

each pixel is either 0 (blue) or 1 (yellow).
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Figure 2: 
Simulation I results: the RLR (panels (a)-(d)), OLS (panels (e)-(h)), Lasso (panels (i)-(l)), 

Fused Lasso (panels (m)-(p)) and Envelope (panels (q)-(t)) estimates of coefficient matrices 

from a randomly selected training dataset with n = 500, ρ1 = 0.5, ρ2 = 0.5 and σ2 = 25: B1
(the first column); B2 (the second column); B3 (the third column); and B4 (the fourth 

column).
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Figure 3: 
Screening setting: Panel (a)-(c) are the true coefficient images Btrue with regions of interest 

with different sizes: effective regions of interest (yellow ROI) and non-effective regions of 

interest (blue ROI).
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Figure 4: 
Screening simulation results for the case (σe2, sn) = (1, 2000): the curves of percentage of the 

average true nonzero coverage proportion. The black solid, blue dashed, red dotted, and 

purple dashed dotted lines correspond to the rank-one screening, the L1 entrywise norm 

screening, the Frobenius norm screening, and the global Wald test screening, respectively. 

Panels (a)-(i) correspond to (n, ps, qs) = (100, 4, 4), (200, 4, 4), (500, 4, 4), (100, 8, 8), (200, 

8, 8), (500, 8, 8), (100, 16, 16), (200, 16, 16), and (500, 16, 16), respectively.
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Figure 5: 
Screening simulation results for the case (σe2, sn) = (25, 2000): the curves of percentage of 

the average true nonzero coverage proportion. The black solid, blue dashed, red dotted, and 

purple dashed dotted lines correspond to the rank-one screening, the L1 entrywise norm 

screening, the Frobenius norm screening, and the global Wald test screening, respectively. 

Panels (a)-(i) correspond to (n, ps, qs) = (100, 4, 4), (200, 4, 4), (500, 4, 4), (100, 8, 8), (200, 

8, 8), (500, 8, 8), (100, 16, 16), (200, 16, 16), and (500, 16, 16), respectively.
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Figure 6: 
PNC data: Panel (a)-(g) are the plots for the singular values of the OLS estimates 

corresponding to the 7 SNPs selected by our screening step, with singular values sorted from 

largest to smallest.
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Figure 7: 
PNC data: Panel (a)-(g) are the plots for our RLR estimates corresponding to the 7 SNPs 

selected by our screening step.
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Table 1:

Simulation I results: the means of PEs and MSEs for regularized low-rank (RLR), OLS, Lasso, fused Lasso 

(Fused) and tensor envelope (Envelope) estimates and their associated standard errors in the parentheses. For 

each case, 100 simulated data sets are used.

(n, σe2) Method MSE(B1) MSE(B2) MSE(B3) MSE(B4) PE

(100, 1) RLR 11.67(0.21) 9.96(0.22) 43.21(0.43) 44.88(0.52) 1.03(0.0002)

OLS 58.08(0.83) 72.38(1.08) 71.66(1.01) 58.00(0.92) 1.05(0.0004)

Lasso 42.96(0.79) 53.79(1.08) 53.21(0.98) 44.87(0.75) 1.04(0.0004)

Fused 11.85(0.20) 11.25(0.22) 13.61(0.23) 17.87(0.26) 1.02(0.0002)

Envelope 21.20(0.34) 24.95(0.36) 51.14(0.49) 55.62(0.67) 1.04(0.0002)

(200, 1) RLR 7.27(0.09) 6.73(0.10) 23.77(0.20) 23.08(0.23) 1.02(0.0001)

OLS 28.61(0.30) 34.88(0.36) 34.85(0.38) 28.11(0.32) 1.03(0.0001)

Lasso 19.29(0.38) 23.86(0.43) 23.73(0.41) 20.30(0.29) 1.02(0.0002)

Fused 5.93(0.09) 5.62(0.08) 6.59(0.10) 8.63(0.10) 1.01(0.0001)

Envelope 11.21(0.16) 13.13(0.14) 38.40(0.30) 43.33(0.35) 1.03(0.0001)

(500, 1) RLR 3.46(0.03) 3.53(0.03) 10.54(0.06) 9.75(0.06) 1.006(0.00003)

OLS 11.01(0.08) 13.87(0.10) 13.88(0.09) 11.04(0.07) 1.009(0.00003)

Lasso 5.93(0.17) 7.89(0.17) 7.78(0.18) 6.70(0.13) 1.007(0.00009)

Fused 2.36(0.03) 2.37(0.02) 2.73(0.03) 3.29(0.03) 1.004(0.00002)

Envelope 5.44(0.07) 6.60(0.07) 31.72(0.21) 38.29(0.30) 1.02(0.0001)

(100, 25) RLR 121.61(1.69) 119.58(2.37) 227.58(2.01) 263.90(2.77) 25.37(0.0027)

OLS 1451.95(20.64) 1809.40(27.01) 1791.53(25.36) 1450.10(23.10) 26.27(0.0099)

Lasso 1360.23(19.03) 1683.95(24.74) 1669.88(23.97) 1367.71(21.34) 26.22(0.0093)

Fused 238.87(3.04) 254.78(4.36) 290.50(4.47) 283.07(3.89) 25.42(0.0031)

Envelope 175.09(1.57) 139.95(2.71) 259.48(2.18) 286.98(1.81) 25.39(0.0023)

(200, 25) RLR 79.44(1.01) 71.27(1.25) 171.12(1.21) 201.43(1.63) 25.26(0.0013)

OLS 715.28(7.49) 872.02(8.93) 871.33(9.41) 702.70(8.00) 25.66(0.0037)

Lasso 657.54(7.19) 798.43(8.58) 798.01(9.04) 652.91(7.14) 25.62(0.0035)

Fused 156.75(2.00) 162.27(1.95) 174.79(2.34) 175.61(2.20) 25.27(0.0016)

Envelope 151.68(1.55) 105.18(1.61) 202.96(2.78) 230.24(2.63) 25.29(0.0016)

(500, 25) RLR 42.17(0.50) 39.70(0.59) 110.16(0.79) 125.08(0.75) 25.10(0.0005)

OLS 275.31(2.05) 346.69(2.54) 346.93(2.36) 276.05(1.83) 25.24(0.0008)

Lasso 238.43(2.33) 299.22(2.99) 298.81(2.90) 243.44(1.95) 25.22(0.0011)

Fused 80.31(0.84) 89.14(0.79) 93.22(0.90) 89.8(0.83) 25.10(0.0006)

Envelope 95.49(0.99) 75.41(0.99) 142.24(1.51) 171.34(1.31) 25.14(0.0008)
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Table 2:

Simulation II results: the means of PEs and MSEs for regularized low-rank (RLR) OLS, Lasso, fused Lasso 

(Fused) and tensor envelope (Envelope) estimates and their associated standard errors in the parentheses. For 

each case, 100 simulated data sets are used.

(n, σe2 Method MSE(B1) MSE(B2) PE

(100, 1) RLR 21.86(0.33) 13.91(0.20) 1.02(0.0001)

OLS 41.85(0.16) 56.82(0.82) 1.03(0.0003)

Lasso 55.78(0.88) 54.40(0.73) 1.03(0.0002)

Fused 57.39(0.94) 56.61(0.77) 1.03(0.0002)

Envelope 41.46(0.15) 33.23(0.54) 1.02(0.0002)

(200, 1) RLR 10.84(0.12) 6.77(0.07) 1.011(0.00005)

OLS 20.75(0.07) 27.80(0.30) 1.018(0.0001)

Lasso 27.90(0.31) 27.03(0.29) 1.018(0.0001)

Fused 27.69(0.30) 27.29(0.29) 1.018(0.0001)

Envelope 20.68(0.07) 18.33(0.22) 1.014(0.00008)

(500, 1) RLR 4.19(0.05) 2.73(0.02) 1.004(0.00002)

OLS 8.22(0.03) 10.94(0.08) 1.006(0.00003)

Lasso 12.49(0.18) 12.18(0.17) 1.007(0.00006)

Fused 10.99(0.08) 10.91(0.09) 1.006(0.00003)

Envelope 8.26(0.03) 9.37(0.09) 1.006(0.00003)

(100, 25) RLR 391.95(5.50) 254.67(3.54) 25.37(0.0024)

OLS 1044(4.10) 1447(23.94) 25.77(0.0060)

Lasso 1378.32(22.99) 1360.95(18.52) 25.75(0.0059)

Fused 1232.31(17.74) 1042.72(12.13) 25.68(0.0055)

Envelope 1033.69(3.66) 626.57(7.71) 25.46(0.0027)

(200, 25) RLR 219.13(2.14) 136.41(1.33) 25.26(0.0011)

OLS 518.63(1.83) 694.98(7.47) 25.45(0.0025)

Lasso 657.39(7.19) 644.78(7.20) 25.44(0.0025)

Fused 637.01(6.45) 589.9(5.68) 25.43(0.0022)

Envelope 516.52(1.81) 395.64(3.67) 25.33(0.0015)

(500, 25) RLR 101.8(0.91) 64.19(0.57) 25.09(0.0005)

OLS 206.57(0.73) 275.3(2.05) 25.16(0.0008)

Lasso 259.2(1.95) 254.26(2.17) 25.16(0.0008)

Fused 265.44(1.89) 255.88(1.99) 25.16(0.0008)

Envelope 206.41(0.73) 226.94(1.54) 25.14(0.0006)
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Table 3:

The means of predictor errors (PEs) and MSEs for our two-step procedure, and the average selected model 

size for our screening procedure. Their associated standard errors are in the parentheses. For each case, 100 

simulated data sets are used.

(n, sn, σe2) MSE(B1) MSE(B2) MSE(B3) MSE(B4) PE Model Size

(100, 2000, 1) 15.87(3.22) 10.73(0.67) 43.52(0.46) 47.07(0.58) 1.05(0.001) 5.24(0.11)

(200, 2000, 1) 5.92(0.10) 5.10(0.11) 27.61(0.27) 28.23(0.31) 1.03(0.0003) 5.87(0.11)

(100, 5000, 1) 32.28(6.57) 12.60(1.08) 44.28(0.52) 47.14(0.65) 1.07(0.002) 5.03(0.10)

(200, 5000, 1) 5.92(0.09) 4.94(0.09) 28.03(0.29) 28.35(0.29) 1.03(0.0005) 5.83(0.13)

(100, 2000, 25) 126.17(1.84) 119.15(2.56) 227.86(1.96) 279.22(3.17) 25.99(0.027) 5.15(0.11)

(200, 2000, 25) 84.42(1.25) 73.69(1.41) 177.90(1.66) 214.67(2.15) 25.54(0.012) 5.82(0.11)

(100, 5000, 25) 136.27(3.45) 118.73(2.63) 228.65(2.19) 278.43(3.42) 26.04(0.024) 4.96(0.11)

(200, 5000, 25) 82.69(1.12) 73.53(1.37) 177.44(1.57) 211.25(2.12) 25.56(0.012) 5.75(0.13)
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Table 4:

The means of PEs and MSEs for our two-step procedure in three scenarios: exact selection (“Exact”), over 

selection (“Over”) and missing variables (“Miss”). The proportion of times among 100 simulated data sets for 

each scenario is also reported. The “NA” denotes the values that are not applicable.

(n, sn, σe2) Scenario MSE(B1) MSE(B2) MSE(B3) MSE(B4) PE Proportion

(100, 2000, 1) Exact 11.61(0.18) 9.18(0.16) 43.22(0.38) 45.55(0.47) 1.06(0.001) 0.27

Over 11.17(0.17) 10.11(0.20) 43.6(0.46) 47.31(0.56) 1.05(0.001) 0.71

Miss 240(0) 53.49(1.68) 44.58(1.61) 59.11(1.18) 1.1(0.001) 0.02

(200, 2000, 1) Exact 7.09(0.08) 6.6(0.12) 23.97(0.16) 23.11(0.09) 1.03(0.0005) 0.04

Over 5.87(0.09) 5.03(0.11) 27.76(0.26) 28.44(0.30) 1.03(0.0003) 0.96

Miss NA NA NA NA NA 0

(100, 5000, 1) Exact 11.69(0.17) 9.74(0.19) 44.14(0.65) 45.79(0.41) 1.07(0.001) 0.27

Over 11.76(0.20) 9.75(0.19) 44.24(0.43) 46.60(0.54) 1.06(0.001) 0.64

Miss 240(0) 41.48(1.93) 44.96(0.65) 55.10(1.23) 1.12(0.001) 0.09

(200, 5000, 1) Exact 7.52(0.09) 6.69(0.11) 24.91(0.22) 24.24(0.08) 1.04(0.001) 0.05

Over 5.84(0.08) 4.84(0.08) 28.19(0.28) 28.57(0.28) 1.03(0.0005) 0.95

Miss NA NA NA NA NA 0

(100, 2000, 25) Exact 121.75(1.27) 114.12(2.19) 229.79(1.95) 270.16(3.47) 26.18(0.024) 0.29

Over 126.37(1.49) 121.47(2.69) 227.21(1.98) 283.29(3.00) 25.91(0.023) 0.70

Miss 240(NA) 102.16(NA) 217.49(NA) 256.52(NA) 26.45(NA) 0.01

(200, 2000, 25) Exact 79.26(0.80) 64.22(0.61) 177.62(0.86) 207.41(1.18) 25.54(0.017) 0.07

Over 84.81(1.27) 74.4(1.43) 177.92(1.71) 215.21(2.20) 25.54(0.012) 0.93

Miss NA NA NA NA NA 0

(100, 5000, 25) Exact 122.88(1.74) 114.5(2.49) 217.93(1.87) 260.99(2.64) 26.20(0.019) 0.34

Over 129.81(1.53) 122.59(2.63) 233.46(2.17) 286.15(3.34) 25.92(0.020) 0.58

Miss 240(0) 108.61(3.01) 239.31(2.06) 296.51(4.25) 26.23(0.022) 0.08

(200, 5000, 25) Exact 85.2(0.87) 72.92(1.48) 174.83(1.20) 206.34(2.32) 25.66(0.014) 0.06

Over 82.53(1.14) 73.57(1.37) 177.61(1.60) 211.56(2.12) 25.55(0.012) 0.94

Miss NA NA NA NA NA 0
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Table 5:

PNC data analysis results: the top 7 SNPs selected by our screening procedure.

Ranking Chromosome SNP

1 5 rs72775042

2 5 rs6881067

3 5 rs72775059

4 10 rs200328746

5 10 rs75860012

6 10 rs200248696

7 10 rs78309702
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