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Abstract

A Bayesian approach is proposed that unifies Gaussian Bayesian network constructions and 

comparisons between two networks (identical or differential) for data with graph ordering 

unknown. When sampling graph ordering, to escape from local maximums, an adjusted single 

queue equi-energy algorithm is applied. The conditional posterior probability mass function for 

network differentiation is derived and its asymptotic proposition is theoretically assessed. 

Simulations are used to demonstrate the approach and compare with existing methods. Based on 

epigenetic data at a set of DNA methylation sites (CpG sites), the proposed approach is further 

examined on its ability to detect network differentiations. Findings from theoretical assessment, 

simulations, and real data applications support the efficacy and efficiency of the proposed method 

for network comparisons.

Keywords

Bayesian methods; DNA methylation; Single Queue Equi-Energy; Differential Gaussian Bayesian 
network; Variable selections; Ordering

*Corresponding author: hzhang6@memphis.edu (Hongmei Zhang). 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Comput Stat Data Anal. Author manuscript; available in PMC 2022 May 01.

Published in final edited form as:
Comput Stat Data Anal. 2021 May ; 157: . doi:10.1016/j.csda.2020.107156.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

1.1. An epigenetic epidemiological study

Our work was motivated by a recent epidemiological study aiming to examine joint activities 

of some epigenetic sites on certain genes. Epigenetics reflects memories of past exposure or 

physical changes in life and regulates gene functionalities without changing the DNA 

sequence. DNA methylation at Cytosine-phosphate-Guanine (CpG) sites is one of the most 

widely studied epigenetic mechanisms and its role is of particular interest due to its known 

responsiveness to environmental exposures (Felix et al., 2017; Joubert et al., 2016).

In our epidemiological study, the goal is to find out whether the joint activities of certain 

CpG sites are different between subjects exposed to in utero smoking and those not exposed. 

Consequently, if they are different, then what are the possible driving DNA methylation 

sites? Epigenetic changes due to in utero exposure to smoke have been detected at certain 

CpG sites (Joubert et al., 2012, 2016). However, existing studies have been focusing on 

effects of individual CpG sites and joint activities among the sites are completely 

overlooked. Thus, a novel route to appropriately answer the study questions needs to be 

explored.

Joint activities among genetic or epigenetic factors are commonly described by networks. In 

general, two types of networks are commonly applied, directed and undirected networks. To 

identify potential driving epigenetic factors leading to network differentiation, as the goal in 

our epigenetic epidemiological study, directed networks are of great interest. To examine the 

impact of environmental exposures, such as in utero exposure to smoke, on gene activities, 

differences between networks under different conditions are of greater interest than a 

particular network. There exist methods to infer multiple directed networks under different 

conditions, e.g., Wang et al. (2018). However, because of the complexity in the process of 

learning networks, constructed networks are subject to large variability. Thus, observed 

differences in networks under different conditions can be simply due to random variability, 

leading to false discovery of markers. Rigorously comparing networks under different 

conditions via statistical testing will potentially reduce such false discoveries. In the next 

session, we briefly review the literature in network construction and network testing.

1.2. Literature review

Networks can be inferred by use of graphical models. Practically, the inferred networks 

enable a depiction of concrete connections between different variables. Networks or graphs 

can be directed, that is, one epigenetic site can be a probabilistic stimulus (“parent node”) of 

the other (“child node”). In our study, the benefit of directed networks is that they allow us 

to identify potential driving epigenetic sites that potentially cause changes of other sites, a 

unique property of directed networks. Bayesian networks, also noted as probabilistic 

directed acyclic graphs (DAGs), are directed networks and DAGs accompanied by 

probabilistic connections between edges. A graph is a DAG if all the links (edges) have 

directions, but none of the nodes is directly go to itself or through a path to itself (a circle). 

Gaussian Bayesian networks are the focus of our work such that the association between 

parents and a child can be described using linear regressions. Graphs can also be undirected, 
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in which case two nodes are associated but one is not a potential predictor of the other. Some 

other graphs are the mixture of the two (Andersson et al., 1997; Chickering, 2002). Ni et al. 

(2018) has a comprehensive summary on definitions of different types of graphs.

In Bayesian networks, a range of studies focus on methods dealing with ordered data (i.e., 

ordering of graph is known) when constructing networks. An ordering of a graph informs 

possible “parents” of each node. In many applications, data come with a natural ordering. 

For instance, in gene transcription process, the direction of information flow (graph 

ordering) is known. Assuming the ordering is known, Shojaie and Michailidis (2010) 

proposed an efficient penalized likelihood method to estimate adjacent matrices of directed 

graphs, and Altomare et al. (2013) proposed an objective method for Bayesian network 

inference. Cao et al. (2019) suggested a class of priors for the purpose of inferring Bayesian 

networks for ordered data, and Park and Klabjan (2017) proposed a mixed integer 

programming model and iterative algorithms based on given topological ordering to infer 

Bayesian networks. Some other works in this area for Gaussian Bayesian network 

inferences, such as Ben-David et al. (2011); Consonni et al. (2017), are noted and discussed 

in Cao et al. (2019, 2020).

In other situations, however, graph ordering is unknown as in our motivating example, or 

partially known as noted in Rahman et al. (2019). Many algorithms and approaches have 

been proposed to infer Bayesian networks under such a circumstance, including greedy local 

search (Heckerman et al., 1995), Optimal Reinsertion search (Moore and Wong, 2003), 

Max-Min Hill-Climbing (Tsamardinos et al., 2006), genetic algorithm (Larrañaga et al., 

1996; Lee et al., 2010), dynamic programming (Eaton and Murphy, 2012), branch-and-

bound algorithm (Campos and Ji, 2011), likelihood approach with L1-penalty (Fu and Zhou, 

2013), penalized marginal likelihood approach (Oates et al., 2016), and Markov Chain 

Monte Carlo (MCMC) approaches (Madigan et al., 1995, 1996; Giudici et al., 1999; Ellis 

and Wong, 2008; Zhou, 2011; Han et al., 2014; Kuipers and Moffa, 2017). Some other 

works, e.g., Friedman and Koller (2003); Han et al. (2016), infer Bayesian networks by 

introducing graph ordering MCMC. Permutations have also been used to infer graphs, e.g., 

the work by Squires et al. (2020). This type of methods is not sensitive to Gaussian 

assumptions and thus their applications are not limited to Gaussian Bayesian networks. 

Some network construction methods can be applied to both ordered or unordered data. One 

example in this direction is the maximum penalized likelihood algorithm proposed by Li and 

Zhou (2019). However, when ordering unknown, this approach is not able to infer direction 

of connections and a constructed network reflects underlying correlations between nodes.

Regardless of the status of ordering, most existing works focus on inferring networks. Effort 

on network comparisons was relatively limited, especially in the area of Bayesian networks. 

Gill et al. (2010) proposed a procedure to globally test differential undirected graphs 

particularly applied to genes, based on strength of genetic associations or interaction 

between genes. Jacob et al. (2012) tested multivariate two-sample means on known graphs 

utilizing Hotelling’s T2-tests. Zhao et al. (2014) developed a method to estimate the 

differences in precision matrices between two differential undirected networks, which was 

later extended with the ability to globally test differentiation of undirected graphs (Xia et al., 

2015). The work by Städler et al. (2017) was under a similar framework, that is, testing 
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differentiation of undirected graphs based on precision matrices. Methods built upon 

associations of undirected networks with a feature of interest have been proposed as well 

(Durante et al., 2018). Undirected graphs focus on associations between nodes and do not 

have the ability to infer causal-effects relationships. On the other hand, Bayesian networks 

are suitable for experimental data resulted from causal-effects relationships as well as for 

observational data such that causal relations are unknown. For network testing, Canonne et 

al. (2017) discussed approaches to test for identity (whether an estimated Bayesian network 

is equal to a given network) and for closeness (whether two networks are identical or 

differential). For both types of testing, their proposed algorithms have a probability of 2/3 to 

detect the underlying truth. Following our motivating example, we aim to compare Bayesian 

networks constructed under two different conditions, e.g., exposed or not-exposed to 

smoking in utero, with respect to network structure, direction of node connection, and 

strength of connection. Thus, we aim at network construction with ordering unknown as 

well as network testing for closeness between two inferred graphs. Almudevar (2010) 

proposed an approach to compare two Bayesian networks based on likelihood ratios. Each 

graph is constructed using minimum spanning trees and utilizes permutations to calculate an 

empirical p-value for decision-making. However, this approach assumes joint density of two 

nodes is at least as large as the multiplication of their individual density, which is a relatively 

strong assumption, implying a potential impossibility of inferring networks correctly (up to 

Markov equivalence) if using one group of data. With ordering unknown, approaches that 

can both construct Bayesian networks and test for differentiation between Bayesian 

networks are lacking. The work presented in this article is an attempt to address this gap.

In this article, we propose an approach targeted at data with unknown graph ordering. It has 

the ability of constructing and statistically comparing Bayesian networks under two 

conditions. Bayesian network constructions and comparisons for ordered data is a special 

case of the proposed method. Specifically, we consider data from two populations and 

present a Bayesian method to build Bayesian networks, and make an inference on whether 

the two populations share the same network (i.e., an identical network) or the networks are 

differential. To achieve the goal of efficient network comparison, we investigated the 

conditional posterior probability mass function for network differentiation and approximated 

the conditional posterior to ensure efficient convergence. The remaining of the article is 

organized as follows. We introduce in Section 2 the statistical model, likelihood function, 

prior distributions, and posterior computing. The property of a penalty-incorporated 

posterior probability is also discussed in this section. Simulations are discussed in Section 3. 

We present several real data applications to demonstrate the method in Section 4, and 

summarize our work in Section 5.

2. Methodology

To infer whether two networks are differential or identical, we start from the definition of 

Bayesian networks in two populations.
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2.1. The model

Let Xnx × p = X1, X2, …, Xp  and Y ny × p = Y 1, Y 2, …, Y p  denote measures of a set of 

variables, e.g., DNA methylation levels at a set of CpG sites, in two samples from two 

populations (e.g., exposed vs. non-exposed to smoke in utero) for the same set of p CpG 

sites (or p nodes in general), respectively, where nx and ny are the numbers of observations 

with n = nx + ny.

For a given graph ordering O, conditional on the parents, each node is regressed on its 

parents as

Xj = ∑
i = 1

j − 1
βij

(1)Xi + ϵj
(x)

(1)

and

Y j = ∑
i = 1

j − 1
βij

(2)Y i + ϵj
(y), (2)

where ϵj
(x) and ϵj

(y), j = 2, ⋯ , p, are random noise following normal distributions 

ϵj
(x) N 0, σx(j)

2 I  and ϵj
(y) N 0, σy(j)

2 I , respectively, with I being the identity matrix.

If two networks are identical, then they have the same structure as well as the same strength 

of connection between nodes. In this case, we have βij
(1) = βij

(2) = βij
(c), and consequently we 

can combine the data to infer a unified network,

Xj
Y j

= ∑
i = 1

j − 1
βij

(c) Xj
Y j

+ ϵj
(c),

where ϵj
(c) =

ϵj
(x)

ϵj
(y) . On the other hand, if the two networks are differential, then each network 

has its own structure or its own set of coefficients describing the relations between parents 

and a child. We denote βij
(1) = βij

(x) and βij
(2) = βij

(y) as the set of coefficients based on samples X 

and Y, respectively, and βij
(x) ≠ βij

(y) for at least one node j, j = 1, ⋯ , p.

Linking the above two settings together, we re-define βij
(1) and βij

(2) as

βij
(1) = ηβij

(c) + (1 − η)βij
(x)

and

βij
(2) = ηβij

(c) + (1 − η)βij
(y), (3)
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where η is an indicator with η = 1 denoting that the two networks are identical and 

parameters βij
(1) and βij

(2) carry information on network structures as well as strength of links 

between nodes. With the re-defined βij
(1) and βij

(2), (1) and (2) can be generalized to the 

following,

Zj ∣ Zi 1 ≤ i < j = ∑
i = 1

j − 1
ηβijc + (1 − η)βij

(z) Zi + ϵj
(z),

where i : 1 ≤ i ≤ j − 1 is the candidate parent set of nodes, Zj = Xj, or Yj, and 

correspondingly, z is x or y. To infer whether the two networks are identical (η = 1) or not, 

we apply a Bayesian method discussed in the next sections.

2.2. Prior distributions

For the parameter η that determines whether two networks are identical, we assume no prior 

knowledge on its preference and choose Bernoulli Ber(0.5) for its prior distribution. In 

practice, sparse networks are preferred, defined as |E0| = O(p) with |E0| being the number of 

edges of a graph (Preiss, 2008). To determine the parents of a node, we adopt the concept of 

variable selection when selecting prior distributions for βij
(c), βij

(x), and βij
(y) in βij

(1) and βij
(2). 

Various options are available. Here we choose a mixture of a Normal distribution and a point 

mass, also known as a spike and slab model (Mitchell and Beauchamp, 1988; Ishwaran and 

Rao, 2005). Conditional on η and O,

βij
(c) ∣ η = 1, O, rij

(c) rij
(c)N 0, V c + 1 − rij

(c) I βij
(c) = 0 ,

βij
(x) ∣ η = 0, O, rij

(x) rij
(x)N 0, V x + 1 − rij

(x) I βij
(x) = 0

and

βij
(y) ∣ η = 0, O, rij

(y) rij
(y)N 0, V y + 1 − rij

(y) I βij
(y) = 0 ,

where rij
(c), rij

(x), rij
(y) are indicators denoting the inclusion of node i as a parent of node j, i = 

1,2, ⋯ , j − 1, in a given graph ordering O. Note that the same ordering between the two 

populations is assumed. This assumption is driven by the motivation example of different 

joint activities of DNA methylation sites due to different exposures such as in utero exposure 

to smoke. Given the functionality of genes and epigenetic sites, at least the ordering between 

the two populations is expected to be the same to ensure meaningful underlying biological 

mechanism for the same species (although each population has its unique feature, e.g., 

different status of smoke exposure). If node i is one of the parents of node j, then the 

coefficients follow a normal distribution with mean zero and a known large variance (Vc, Vx, 

or Vy). Otherwise, they have a point mass at zero. Although not the focus of the present 
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work, other prior distributions for βij
(1) and βij

(2) can be used as well, for instance, the g-prior 

(Zellner, 1986; Smith and Kohn, 1996; Fernández et al., 2001; Lee et al., 2003), or the two-

component G-prior (Zhang et al., 2016).

Bernoulli Ber(0.5) are chosen for the indicator variables, rj
(c) = rj1

(c), rj2
(c), ⋯, rj(j − 1)

(c) , 

rj
(x) = rj1

(x), rj2
(x), ⋯, rj(j − 1)

(x) , and rj
(y) = rj1

(y), rj2
(y), ⋯, rj(j − 1)

(y) . With Ber(0.5), we assume no 

prior knowledge on the inclusion of a parent node and inference on parental nodes selection 

relies on information in the data. In the situation of available prior knowledge on network 

structures, instead of 0.5 in Ber(0.5), nodes with low probabilities of being parents can take 

a value smaller than 0.5. For variance components, we choose vague prior distributions for 

σx(j)
2  and σy(j)

2 , in particular, an inverse gamma distributions with small shape and scale 

parameters. As seen in the above definitions, for a given η and ordering O, all the definitions 

of prior and hyper-prior distributions of the parameters are independent.

So far, the specification of network structures as well as prior distributions on edges such as 

the regression coefficients are conditional on a given ordering O, and O needs to be inferred. 

We assume its prior distribution is uniform among all possible permutations of p nodes, and 

propose an efficient posterior sampling approach in the next session to infer O.

2.3. The joint posterior distribution and its computing

For a given graph ordering O, to estimate βij
(1) and βij

(2), a set of prior and hyper-prior 

parameters need to be inferred, including parameters when βj
(x) = βj1

(x), βj2
(x), ⋯, βj(j − 1)

(x) , rj
(x), 

βj
(y) = βj1

(y), βj2
(y), ⋯, βj(j − 1)

(y) , rj
(y) parameters when η = 1:βj

(c) = βj1
(c), βj2

(c), ⋯, βj(j − 1)
(c) , rj

(c) as 

well as the variance components σx(j)
2  and σy(j)

2 . Under the context of Bayesian inferences via 

Markov chain Monte Carlo (MCMC) simulations, we combine these parameters along with 

the ordering of nodes O into a collection of parameters that fit into different states of η, 

θ = O, βj
(x), rj

(x), βj
(y), rj

(y), η, βj
(c), rj

(c), σx(j)
2 , σy(j)

2 , j = 1, ⋯, p . Inference on this collection of 

parameters will produce an estimate of the networks and assess the probability of having 

identical networks. The joint likelihood of θ is

L(θ ∣ X, Y ) = p(X, Y ∣ θ)

∝ ∏
j = 1

p
σx(i)

2 −
nx
2 exp −

Xj − ∑i = 1
j − 1βij

(1)Xi
T

Xj − ∑i = 1
j − 1βij

(1)Xi

2σx(j)
2

× σy(j)
2 −

ny
2 exp −

Y j − ∑i = 1
j − 1 βij

(2)Y i
T

Y j − ∑i = 1
j − 1βij

(2)Y i

2σy(j)
2 ,

with βij
(1) and βij

(2) defined in (3).

The joint posterior distribution of θ is,
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p(θ ∣ X, Y )

∝ ∏
j = 1

p
σx(j)

2 −
nx
2 exp −

Xj − ∑i = 1
j − 1 βij

(1)Xi
T Xj − ∑i = 1

j − 1 βij
(1)Xi

2σx(j)
2

× σy(j)
2 −

ny
2 exp −

Y j − ∑i = 1
j − 1 βij

(2)Y j
T Y j − ∑i = 1

j − 1 βij
(2)Y i

2σy(j)
2

× ∏
i = 1

j − 1
p βij

(c) ∣ η = 1, O, rij
(c) p βij

(x) ∣ η = 0, O, rij
(x)

× p βij
(y) ∣ η = 0, O, rij

(y) p rij
(c) ∣ η = 1 p rij

(x) ∣ η = 0 p rij
(y) ∣ η = 0 p σx(j)

2 p σy(j)
2

× p(η)p(O) .

(4)

The Gibbs sampler is applied to full conditional posterior distributions of each parameter in 

θ to sequentially draw posterior samples, based on which we infer η, graph structure 

determined by rij
(c) if η = 1 or rij

(x) and rij
(y) if η = 0, and βij

(1) and βij
(2) describing the strength of 

connections between nodes. In the following subsections, we present and discuss conditional 

posterior distributions of the parameters.

2.3.1. Conditional posterior probability of η—Since the decision on whether two 

networks are differential or not is critical to the estimates of network structure and 

corresponding parameters, we start from presenting the conditional posterior of η. Denoted 

by (·) a collection of all conditional parameters, based on (4), we have

p(η = 1 ∣ ( ⋅ ), X, Y ) ∝ p X, Y ∣ η = 1, r(c), σx2, σy2, O p(η = 1),

where σx2 = σx(j)
2 , j = 1, ⋯, p  and σy2 = σy(j)

2 , j = 1, ⋯, p .

It can be shown that, when nx and ny large, the full conditional posterior probability, p(η = 1|

(·), X, Y), can be approximated by the following (Appendix I),

p(η = 1 ∣ ( ⋅ ), X, Y ) ≈ 1 + exp log bη − log aη + λ(n) −1,

λ(n) = 1/2 E log n − |Ex|log nx − Ey log ny ,

where n = nx + ny. In the above, |E|, |Ex|, and |Ey| denote numbers of edges in inferred 

identical and differential networks, respectively, and
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aη = p(X, Y ∣ ( ⋅ ), η = 1)

∝ ∏
j = 1

p
σx(j)

2 −
nx
2 exp −

Xj − ∑i = 1
j − 1 βij

(c)Xi
T Xj − ∑i = 1

j − 1 βij
(c)Xi

2σx(j)
2

× σy(j)
2 −

ny
2 exp −

Y j − ∑i = 1
j − 1 βij

(c)Y i
T Y j − ∑i = 1

j − 1 βij
(c)Y i

2σy(j)
2 ,

(5)

bη = p(X, Y ∣ ( ⋅ ), η = 0)

∝ ∏
j = 1

p
σx(j)

2 −
nx
2 exp −

Xj − ∑i = 1
j − 1 βij

(x)Xi
T Xj − ∑i = 1

j − 1 βij
(x)Xi

2σx(j)
2

× σy(j)
2 −

ny
2 exp −

Y j − ∑i = 1
j − 1 βij

(y)Y i
T Y j − ∑i = 1

j − 1 βij
(y)Y i

2σy(j)
2 .

(6)

We denote this approximated conditional posterior probability as pλ(η = 1|(·), X, Y) and it 

has the following Proposition.

Proposition:  Assume 1) sparse networks with |E|, |Ex|, and |Ey| in the order of O(p), 2) nx 

→ ∞ and ny → ∞ in the same speed, and 3) lognx/p → ∞ as nx,p → ∞, and similar 

assumptions applied to ny. Then limnx, ny ∞pλ η   =   1 · , X, Y = 1 if the underlying η = 

1, and limnx, ny ∞pλ η = 1 · , X, Y = 0 if the underlying η = 0.

The proof of the Proposition is in Appendix II. This Proposition indicates that, with pλ(η = 

1|(·), X, Y), the underlying truth of η will be identified asymptotically. In addition, for 

network constructions, pλ(η = 1|(·), X, Y) has a potential to penalize large numbers of edges 

as indicated by the definition of λ(n). In genetic and epigenetic studies, this property 

benefits marker detection and is practically informative to clinicians and health researchers. 

In the context of network comparisons, the definition of λ(n) in pλ(η = 1|(·), X, Y) implies a 

preference for identical networks over differential networks. The Proposition holds for other 

choices of prior distributions of the parameters as long as the conditional priors of βij
(1) and 

βij
(2) are non-informative for parental node i, i.e., nodes such that rij

( ⋅ ) = 1. Although not the 

situation in our proposed method as seen from the Proposition of pλ(η = 1|(·), X, Y), the 

Jeffreys−Lindley paradox suggests that a caution should be made in any hypothesis testing 

conducted under the Bayesian framework, since non-informative prior distributions can 

possibly lead to rather strong but useless decision, e.g., rejection of null with probability 1 

regardless of data (Robert, 2007).

2.3.2. Conditional posterior distributions of other parameters—Below, we list 

the conditional posterior distributions for the remaining parameters. For the parameters to 

select a parent node k at a child node j, when η = 1,
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p rjk
(c) = 1 ∣ ( ⋅ ), X, Y , η = 1 =

ac
ac + bc

,

where ac and bc are proportional to the conditional posterior distributions of rjk
(c) = 1 and 

rjk
(c) = 0, respectively,

ac = exp −
βjk

(c) 2

2V c
−

Xj − ∑i = 1
j − 1 βij

(c)Xi
T

Xj − ∑i = 1
j − 1βij

(c)Xi

2σx(j)
2

−
Y j − ∑i = 1

j − 1βij
(c)Y i

T
Y j − ∑i = 1

j − 1 βij
(c)Y i

2σy(j)
2 × p rjk

(c) = 1 ,

and

bc = exp −
Xj − ∑i = 1, j ≠ k

i − 1 βij
(c)Xj

T
Xi − ∑j = 1, j ≠ k

i − 1 βij
(c)Xj

2σx(i)
2

−
Y j − ∑i = 1, i ≠ k

j − 1 βij
(c)Y i

T
Y j − ∑i = 1, i ≠ k

j − 1 βij
(c)Y i

2σy(j)
2 × p rjk

(c) = 0 .

When η = 0, each population holds its own network and the conditional posterior 

distribution of rjk
(x) is defined as

p rjk
(x) = 1 ∣ ( ⋅ ), X, Y , η = 0 =

ax
ax + bx

,

with ax = exp −
βjk

(x)

2V x
−

Xj − ∑i = 1
j − 1βij

(x)Xi
T

Xj − ∑i = 1
j − 1 βij

(x)Xi

2σx(j)
2 × p rjk

(x) = 1 , and 

bx = exp −
Xj − ∑i = 1, i ≠ k

j − 1 βij
(x)Xi

T
Xi − ∑i = 1, i ≠ k

j − 1 βij
(x)Xi

2σx(j)
2 × p rjk

(x) = 0 . The conditional 

posterior of rjk
(y) is in a similar form.

Turning to the regression coefficients, if rjk
( ⋅ ) = 0, then βjk

( ⋅ ) = 0. Otherwise, the conditional 

posterior distribution of βjk
(c) is univariate normal, N μβjk

(c), σβjk
(c)

2
, with 

μβjk
(c) = V cσy(j)

2 C1
TXk + V cσx(j)

2 C2
TY k / σx(j)

2 σy(j)
2 + V cσy(j)

2 Xk
TXk + V cσx(j)

2 Y k
TY k , 
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σβjk
(c)

2 = σx(j)
2 σy(j)

2 V c / σx(j)
2 σy(j)

2 + V cσy(j)
2 Xk

TXk + V cσx(j)
2 Y k

TY k  where 

C1 = Xj − ∑i = 1, i ≠ k
j − 1 βij

(c)Xi  and C2 = Y j − ∑i = 1, i ≠ k
j − 1 βij

(c)Y i . The conditional posterior 

distributions of βjk
(x) ∣ ( ⋅ ) , X, Y and βjk

(y) ∣ ( ⋅ ) , X, Y are defined in a similar way.

Finally, we discuss the conditional posterior distribution of O, ordering of the nodes, and its 

sampling. From the joint posterior distribution of θ given in (4), derivation of the conditional 

posterior distribution of O is straightforward, which is,

p(O ∣ ( ⋅ ), X, Y )

∝ ∏
j = 1

p
σx(j)

2 −
nx
2 exp −

Xj − ∑i = 1
j − 1βij

(1)Xi
T

Xj − ∑i = 1
j − 1βij

(1)Xi

2σx(j)
2

× σy(j)
2 −

ny
2 exp −

Y j − ∑i = 1
j − 1βij

(2)Y i
T

Y j − ∑i = 1
j − 1βij

(2)Y i

2σy(j)
2

× ∏
i = 1

j − 1
p βij

(1) ∣ η, O, rij
( ⋅ ) p βij

(2) ∣ η, O, rij
( ⋅ ) ,

where rij
( ⋅ ) is rij

(x), rij
(y), or rij

(c).

2.3.3. Sampling of graph ordering—Since the number of nodes p can be large, an 

efficient sampling of O that has the ability to escape from traps of local maximum is critical 

in practice. Energy-driven sampling has been used often to diminish this type of concern 

(Ellis and Wong, 2008; Van den Bergh et al., 2012). We adopt the sampling scheme 

suggested in Han et al. (2016), the Adjusted Single Queue Equi-Energy algorithm (ASQEE), 

which is adapted from the SQEE sampling method proposed by Ellis and Wong (2008).

Basically, the SQEE approach utilizes energy and energy rings with minimum energy 

suggested by the range of H(O) = − log(p(O ∣ ( ⋅ ), X, Y )), allowing energy upper bound to be 

∞, and energy rings formed by dividing the range of energy into groups (or “chains” as in 

Ellis and Wong (2008)). Energy levels increase from lower to upper rings, and within each 

ring, the probability density function is πl(O) = exp
− max H(O), Hl

Tl
, l = 1, 2, ⋯ , W, with l 

indexing groups or chains and in total W groups (thus W rings), Hl is lower bound energy 

level for chain l, and Tl is the lower temperature of that chain such that 1 = T1 < T2 < ⋯ < 
TW. A ring in group l, Dl, is a collection of different orderings such that their energy is 

bounded by corresponding lower and upper bound energy levels, 

Dl = O ∣ H(O) ∈ Hl, Hl + 1 , l = 1, ⋯, W , with HW+1 set at ∞. In our study (both 

simulations and real data applications), we take W = 5 to allow Markov Chain Monte Carlo 

(MCMC) sampling between rings for the purpose of fast convergence to the global 

maximum. This construction shows that when l = 1, π1(O) is the target distribution. 

Furthermore, as the value of l increases, the distribution in the lth group is more flatten, 

enhancing the ability of the chain jumping across different modes to avoid being trapped at 
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local maximums. To perform the sampling, we follow the “cylindrical shift” operation 

suggested in Ellis and Wong (2008) to propose an ordering. Then a Metropolis-Hastings 

(Hastings, 1970) algorithms is applied to determine whether the newly proposed ordering 

will be accepted or not, which is the standard local Metropolis-Hastings move. The sampling 

starts from the chain with the highest energy level, which is associated with a flatten 

distribution. This allows the chains to move more quickly through the space to collect 

samples for later communications with lower-temperature chains.

For the sampling scheme ASQEE in Han et al. (2016), when evaluating the conditional 

probability of a sampled ordering, instead of utilizing all possible graphs for that order, it 

estimated the probability based on a graph showing the highest probability for a given graph 

ordering aiming to improve sampling efficiency. Readers are referred to Ellis and Wong 

(2008) and Han et al. (2016) for detailed discussions on the ASQEE sampler construction 

and its related algorithms.

3. Numerical Analysis

Via simulations, we demonstrate finite sample properties of the proposed method under 

different scenarios and compare the findings with those from existing methods that can be 

applied to test network differentiation.

3.1. Simulation scenarios

Generating Monte Carlo (MC) replicates: We consider DNA methylation measures, X 
and Y, from two populations (e.g., exposed vs. non-exposed to in utero smoking) and each 

with nx = ny observations. Each data set is generated from an underlying network structure 

with p CpG sites (or p nodes) and |E0x| and |E0y| edges, respectively, based on linear 

regressions. We assume each node can have up to four parents corresponding to regression 

coefficients of β = {1.5, 2, 2, 2.5} in order. The root node is an experimental node and does 

not have any parents. Two types of underlying networks are considered. The first is that the 

two populations share the same networks (i.e., identical networks) and the other situation is 

that each population has its unique network (i.e., differential networks). In our simulations, 

we take p = 10, 20 and nx = ny = 50, 100, 200. For identical networks, we choose |E0x| = |

E0y| = |E0c| = 10, 20, and for differential networks, we consider two sets of |E0x| and |E0y|, |

E0x| = 5, |E0y| = 10 and |E0x| = 20, |E0y| = 10. For each graph, a level of sparsity is defined as 

the ratio between the true number of edges and the possible number of edges, S = 2|E.|/(p(p 
− 1)), where |E.| represents |E0x|, |E0y|, or |E0c|. For instance, a graph with 10 nodes and 10 

edges has a level of sparsity 10/45 = 0.222. The connection of each edge is randomly 

selected based on a prespecified ordering of all the nodes. The random error when 

generating each node is assumed to be normally distributed with mean 0 and variance 1. For 

each combination of the settings of nx = ny, p, E0x and E0y, we generated 100 MC replicates.

Posterior sampling: For each MC replicate, we utilize the Gibbs sampler to sequentially 

draw samples of each parameter from its conditional posterior probability density (or mass) 

function. Since one ordering can lead to a number of graphs, when estimating conditional 

posterior probability of a sampled ordering, we run a set of iterations aiming to capture 

graphs with high probabilities for that given ordering. In addition, to increase the stability of 
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sampled ordering, in each energy ring, we sample a series of orderings as burn-in following 

the SQEE and ASQEE sampling technique. To get an insight on the numbers of iterations 

needed for these considerations, we first run longer chains using the Gibbs sampler on 

several MC replicates and examine the quality of posterior inferences. After observing fast 

convergence with respect to the inference of η and graph structure, for each of the 100 MC 

replicates, we run 6,000 iterations which includes 50 iterations for inferring conditional 

posterior probabilities of each sampled ordering with 25 as burn-in iterations and 120 

iterations for sampling orderings with a range of 20 to 100 iterations (higher energy rings 

with less iterations) as burn-in iterations across 5 energy rings.

Summarizing statistics: Graphs and orderings of nodes are not one-to-one 

correspondence and one graph can be a result of multiple orderings. Since our goal is to 

compare graphs between two populations, our posterior inferences focus on graphs rather 

than ordering of graphs. Four statistics focusing on testing and network constructions are 

used to summarize the results and assess the proposed method: 1) power of correct detection 

with respect to network comparison (identical or differential), 2) average proportion of true 

positives for edge connection and directions (TPCD) in a network, 3) average proportion of 

false positives (FP) of a network, and 4) average proportion of correct connections (CC) of 

edges. A proportion of correct connections combines information on sensitivity (reflected by 

proportions of true positives) and specificity (reflected by proportions of false positives). For 

all the statistics except for power, we also infer 95% empirical intervals. We evaluate the 

proposed method based on these statistics on the various choices of sample sizes and 

numbers of edges noted in the paragraph above.

Competing methods: Approaches that not only compare networks but also infer 

networks are relatively limited. To assess the proposed method, we use two existing 

approaches, one focuses on comparisons in structures between two networks and the other 

on coefficients comparisons. The first competing method is proposed by Almudevar (2010). 

It compares two graphs with each constructed based on minimum spanning trees (MST) and 

utilizes permutations to calculate an empirical p-value for decision-making. We denote this 

method as MST-based approach. In the second comparison, we utilize an existing method in 

multivariate testing, the Hotelling’s T-squared test. In particular, we first infer networks for 

the two populations separately using the network construction method implemented in the 

proposed approach, and then apply the Hotelling’s T-squared test on the posterior samples of 

regression coefficients assuming unequal variances between the two populations. Posterior 

samples are selected to ensure small values on autocorrelation functions. In both 

comparisons, we compare the power of detecting underlying truth using each of the 

competing approach with that from the proposed method.

3.2. Results

Table 1 lists different model assessment statistics when in total 10 nodes are considered. In 

the situation that the underlying networks are identical (η = 1), overall the power of 

detecting the correct type of networks (identical or differential) is reasonably high for all 

cases. Since the underlying networks are identical, the decrease in power when the sample 

size is large shown in the table is a phenomenon observed in a two sample hypothesis testing 
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when the null (i.e., two means are equal) is true. This consequently caused other assessment 

statistics being slightly inferior. We note that the false positives are influenced by the edge 

sparsity of the networks. When the graphs are sparse (e.g., 10 nodes with 10 edges with 

sparsity 0.222), proportions of false positives are low but larger false positives are observed 

when the graphs are less sparse (e.g., 10 nodes with 20 edges with sparsity 0.444). All these 

are likely due to the inclusion of edges that are indirectly connected to a node under 

investigation, for instance, by being a “parent” of this node’s “child”, a phenomenon 

discussed in Wasserman and Roeder (2009). All these lead to an overall slight decrease in 

the proportions of correctness (top left panel of Figure 1) when the number of edges is large 

and sparsity is low, and this type of patterns continues when the number of nodes is 20 (top 

right panel of Figure 1).

On the other hand, when underlying networks are two differential networks (η = 0), overall 

the power to detect the truth is higher than the power when the underlying networks are 

identical. In addition, proportions of TPCD increase with the increase of sample size. As in 

the situation of η = 1, false positives slightly increase as sparsity level decreases (Table 1 

and bottom panel of Figure 1), leading to decrease in proportions of correctness.

Since the concept of correctness combines both sensitivity and specificity, we examine this 

statistics a little further. As reflected by the patterns shown in Figure 1, with the number of 

nodes and sample size fixed, sparsity seems to play an important role in the determination of 

proportion of correctness, regardless of the number of edges; the lower the sparsity (i.e., 

high sparsity values), the lower the proportion of correctness. On the other hand, smaller 

numbers of nodes lead to higher proportions of correctness for similar sparsity levels 

(demonstrated by results with sparsity of 0.11 shown in the two figures at the lower panel of 

Figure 1).

To further evaluate the approach, we next compare the results from the proposed method 

with those from the two competing approaches, the MST-based approach and the approach 

based on Hotelling’s T-squared tests. Since the MST-based approach is designed for small 

sample sizes, we used the MC replicates under the setting of p = 10 nodes and each MC 

replicate having nx = ny = 50 observations. When underlying two networks are identical, the 

power of detecting this underlying truth is 0.99. However, the proportions of true positives, 

false positives, and correct connections, along with 95% empirical intervals, are 0.40(0.10, 

0.60), 0.14(0.086, 0.23), and 0.76(0.62, 0.84), respectively, all inferior to the corresponding 

results in Table 1 (first row in the first block of Table 1). When underlying two networks are 

differential, the power is only 37%, substantially lower than the power from the proposed 

approach (first row in the third block of Table 1).

For the second competing method based on Hotelling’s T-squared tests, we present the 

results of power assessment using the MC replicates generated under the settings with p = 

20. Overall, when underlying two networks are identical, the power to detect the truth is 

much lower than that from the proposed approach, although the pattern is the same, i.e., the 

power decreases with the increase of sample sizes (Figure 2). As expected, when two 

networks are truly differential, the power of detecting the truth increases with sample sizes 

and is overall high but lower than the power based on the proposed method. The findings 
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with p = 10 follow the same trend but were deteriorate when two networks are truly 

identical. The proposed approach clearly outperforms the method built upon the Hotelling’s 

T-squared test.

4. Real Data Application

We apply the method to DNA methylation of 23 CpG sites in 9 genes (Table 2) analyzed in 

our epigenetic epidemiological study. Each of these CpGs was shown to be associated with 

maternal smoking during pregnancy (Joubert et al., 2012). DNA methylation data of 245 

girls measured at age 18 are used in the analysis. These 245 subjects represent a random 

sample from the Isle of Wight birth cohort (Arshad et al., 2018; Quraishi et al., 2015). 

Among these 245 girls, 48 were exposed to maternal smoking during pregnancy. We 

demonstrate the proposed method from two aspects. Firstly, we only consider the 197 

subjects not exposed to maternal smoking during pregnancy. We disturb the data by 

introducing noise to the first 97 subjects on one CpG site (cg18146737 [node 15] on gene 

GFI1) to artificially produce two conditions, one for the first 97 subjects and the other for 

the remaining 100 subjects. This disturbance is expected to break the links connected to the 

CpG site cg18146737, which should lead to underlying two differential networks among the 

CpGs. We then apply the developed method to test whether the two networks are identical or 

differential. In the second aspect, to demonstrate our approach in the real world, we apply 

the method to all 245 subjects and assess whether the network among the CpGs for the 

subjects whose mother did not smoke during pregnancy is differential compared to the 

network for the subjects whose mother smoked. For each scenario, we run 84,000 MCMC 

iterations, which includes 200 iterations used to calculate conditional posterior probabilities 

of each sampled ordering with 100 as burn-in iterations and 4,200 iterations for sampling 

ordering with a range of 70 to 350 iterations as burn-in iterations across 5 energy rings.

In the first scenario with disturbance given to the first 97 subjects, the inferred posterior 

probability that the two networks are differential is 0.95, implying a high potential that the 

two networks are differential. However, there is a possibility that the first 97 subjects were 

under an unknown condition different from the remaining 100 subjects, and thus the 

underlying networks were already differential even before we disturb the data. To test this, 

we use the original data for the 197 subjects without disturbing the data but still assume two 

conditions between the first 97 subjects and the remaining 100 subjects. After applying the 

method to the original data without disturbance, the posterior probability of having identical 

networks is 0.66, indicating that the 197 subjects are likely sharing the same network.

In the second scenario, we apply the method to all the 245 subjects. The posterior 

probability of having differential networks is 0.99, suggesting that subjects exposed to 

maternal smoking during pregnancy and subjects not exposed are highly likely to have their 

unique networks. The inferred networks for both groups are shown in Figure 3.

Comparing the two networks (smoke exposed vs. smoke non-exposed) inferred based on 

data of 245 subjects, we observed substantially reduced connections of nodes 1 (cg03991871 

on AHRR), 2 (cg04180046 on MYO1G), and 6 (cg06338710 on GFI1) as root nodes in the 

network for subjects with in utero smoke exposure. These CpGs are potential driving factors 
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important to the differentiation between the two networks, and deserve further laboratory 

examinations and investigations. Another node 14 with cg18092474 (CYP1A1) also draws 

our attention. Although it is not like nodes 1, 2, and 6 such that none of these three nodes 

have parent nodes, node 14 also has a large number of connections with its children in the 

network for non-exposed subjects but only one child in the other network. In a recent meta 

analyses (Joubert et al., 2016), DNA methylation at these CpGs were demonstrated to be 

strong markers for in utero smoke exposure. In another study, cg03991871, cg04180046, and 

cg18092474, along with other CpG sites, are used to predict status of smoke exposure and 

the accuracy is 81% (Ladd-Acosta et al., 2016). To our knowledge, the inter-connections 

between these genes and DNA methylation sites have not been examined in any other 

studies. The findings from this real data application provide a potential and necessity for 

future investigations on the potential regulatory functionality of these four CpGs and the 

genes to which they are mapped. Additionally, instead of examining all possible CpG sites 

related to maternal smoke exposure during pregnancy, using the proposed method to assess 

differentiation and to select CpGs potentially leading to differentiation will substantially 

reduce the laboratory burden and make the experiment easier to manage.

5. Summary and Discussion

To examine the differentiation of joint activities for a set of CpG sites between two groups 

(exposed vs. non-exposed to smoke in utero) and identify potential driving factors leading to 

the differentiation, we utilized Bayesian networks and proposed a Bayesian method built 

upon the concept of variable selection to conclude the status of differentiation. The 

approximated conditional posterior probability mass function for the decision indicator 

variable has the property to converge to the underlying truth in terms of network 

differentiation. In the process of testing network differentiation, we estimated graph ordering 

using the Adjusted Single Queue Equi-Energy (ASQEE) algorithm proposed by Han et al. 

(2016) for the purpose to escape from local maximums. Theoretical assessment and 

simulations have demonstrated the effectiveness of the proposed methods in assessing 

differential networks. Real data applications further demonstrated that the method is 

practically useful and effective. We identified four potentially driving epigenetic factors, 

cg03991871, cg04180046, cg06338710 and cg18092474, such that they have the largest 

numbers of children.

Note that both X and Y in the proposed approach represent observational data and no 

experimental data are assumed. In this case, parents of node i are inferred based on posterior 

probability of edge connection indicators (i.e., rik
(c), rik

(x), and rik
(y)) conditional on other 

parameters. Without experimental data, one needs to be aware that only Markov equivalent 

networks are constructed for each given ordering of nodes (Andersson et al., 1997). 

Although this will not affect our conclusion on network differentiation (since given an 

ordering the true graph is among all the Markov equivalent networks for that ordering), the 

inferred network may not be the underlying true network. In practice, one way to ease this 

uncertainty is to bring in expertise from the corresponding research field, e.g., biologist and 

epigenetic epidemiologist for the study in our motivating example, to choose a network that 

is most practically meaningful.
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The proposed approach for network comparisons utilizes an indicator variable for status of 

network differentiation, and has the ability to estimate networks as well as compare 

networks. If the focus is only on network comparisons, then we may consider augmenting 

the data by adding a node denoting treatment status, in which case no treatment effects 

indicate that the two networks are identical. This type of data augmentation, however, can be 

challenging for researchers in the applied fields, e.g., geneticists, since this added node is not 

a stimulus or experimental node but to assist statistical modeling. In addition, through this 

data augmentation, the strength and direction of connections may have to be estimated 

separately, should two networks conclude to be differential. In order to infer network and do 

comparison together, one way is to include interaction effects of treatment with each 

candidate parent. A careful design and efficient computing algorithms, however, are desired, 

which surely deserves further investigations.

The new method is not limited to DNA methylation data and is ready to other types of data 

with ordering unknown, e.g., expression of genes. For ordered data, the method can be easily 

simplified to fit the situation. In addition, it can be directly applied to perform pair-wise 

comparisons between multiple networks (> 2 networks), in which case adjustment of 

multiple testing needs to be considered. An analysis-of-variance-type network testing is 

desired for differentiation of more than two networks, although this extension maybe 

computationally intensive. Durante et al. (2018) proposed a Bayesian approach to test the 

association of undirected networks with a feature of interest, e.g., the association of brain 

connectivity structures with creative reasoning. This type of hypothesis testing has the 

potential to fit the needs of comparing more than two directed networks.

Acknowledgements

The research work of H Zhang, W Karmaus, H Arshad, and J Holloway was supported by NIH/NIAID 
R01AI121226 (MPI: Zhang, Holloway). The work of FI Rezwan was supported by the Ageing Lungs in European 
Cohorts (ALEC) Study (EU Horizon 2020, Grant number 633212). The authors are thankful to the High 
Performance Computing facility at the University of Memphis.

Appendix I.

The conditional posterior probability of η, p(η = 1|(·), X, Y)

In the following, we provide a derivation of the approximated full conditional posterior of η,

p(η = 1 ∣ ( ⋅ ), X, Y ) ≈ 1 + exp log bη − log aη + λ(n) −1

λ(n) = 1/2 E logn − |Ex|lognx − Ey logny .

It is an approximation of the posterior distribution of η conditional on r(c) and variance 

components, σx2 and σy2, for a given graph ordering O with r(c) being a collection of indicators 

representing inclusion or exclusion of parental nodes at each node. The justification laid out 

in this session follows in spirit the justification of Bayesian Information Criterion in Neath 
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and Cavanaugh (2012). The conditional posterior probability of η = 1 conditional on r(c) and 

the variance components for a given ordering is

p η = 1 ∣ X, Y , r(c), σx2, σy2, O ∝ p X, Y ∣ η = 1, r(c), σx2, σy2, O p(η = 1)
∝ p X, Y ∣ η = 1, r(c), σx2, σy2, O .

The last proportionality is due to the choice of a non-informative prior in our work, p(η = 1) 

= 0.5.

In the following, we omit the dependence on O and the variance components for notation 

simplicity, but it needs to be clear that all the derivations are conditional on O, σx2, and σy2. 

The distribution of X, Y conditional on η = 1 and r(c) is,

p X, Y ∣ η = 1, r(c) = p Z ∣ η = 1, r(c)

= ∏
j = 1

p
p Zj ∣ η = 1, rj

(c)

= ∏
j = 1

p ∫βj
(c)p Zj ∣ βj

(c), η = 1, rj
(c) p βj

(c) ∣ η = 1, rj
(c) dβj

(c)

= ∏
j = 1

p ∫βj
(c)Lj βj

(c) ∣ Zj, η = 1, rj
(c) p βj

(c) ∣ η = 1, rj
(c) dβj

(c),

where Zj = Xj
T , Y j

T T
, βj

(c) = βij
(c), i = 1, ⋯, j − 1  denotes regression coefficients of 

connected edges at node i under η = 1, and βj
(c) N 0, V cI  with I an identity matrix and Vc 

known and large to formulate a non-informative but proper prior distribution for βj
(c).

Take the natural logarithm transformation of the likelihood function Lj βj
(c) ∣ Zj, η = 1, rj

(c)

and perform Taylor expansion at βj
(c), a consistent estimator of βj

(c) such that 

limn ∞
∂ log Lj βj

(c) ∣ Zj, η = 1, rj
(c)

∂βj
(c) βj

(c) = βj
(c) = 0. We have, for a large n,
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logLj βj
(c) ∣ Zj, η = 1, rj

(c) ≈ logLj βj
(c) ∣ Zj, η = 1, rj

(c)

+ βj
(c) − βj

(c) T ∂logLj βj
(c) ∣ Zj, η = 1, rj

(c)

∂βj
(c) βj

(c) = βj
(c)

+ 1/2 βj
(c) − βj

(c) T ∂2logLj βj
(c) ∣ Zj, η = 1, rj

(c)

∂βj
(c)∂βj

(c)T βj
(c) = βj

(c)

× βj
(c) − βj

(c)

≍ logLj βj
(c) ∣ Zj, η = 1, rj

(c)

+ 1/2 βj
(c) − βj

(c) T ∂2logLj βj
(c) ∣ Zj, η = 1, rj

(c)

∂βj
(c)∂βj

(c)T βj
(c) = βj

(c)

× βj
(c) − βj

(c)

= logLj βj
(c) ∣ Zj, η = 1, rj

(c)

− 1/2 βj
(c) − βj

(c) T
nIj βj

(c) ∣ Zj, η = 1, rj
(c) βj

(c) − βj
(c) ,

where “≍” denotes “asymptotically equal to”, and

Ij βj
(c) ∣ Zj, η = 1, rj

(c) = − 1/n ∂2 / ∂βj
(c)∂βj

(c)T logLj βj
(c) ∣ Zj, η = 1, rj

(c)
βj

(c) = βj
(c)

is the sample Fisher information matrix.

Exponentiate both sides,

Lj βj
(c) ∣ Zj, η = 1, rj

(c) ≈ Lj βj
(c) ∣ Zj, η = 1, rj

(c)

× exp −1/2 βj
(c) − βj

(c) T
nIj βj

(c) ∣ Zj, η = 1, rj
(c) βj

(c) − βj
(c) ,

which gives
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p X, Y ∣ η = 1, rj
(c) = p Z ∣ η = 1, r(c)

≈ ∏
j = 1

p ∫βj
(c)Lj βj

(c) ∣ Zj, η = 1, rj
(c)

× exp −1/2 βj
(c) − βj

(c) T
nIj βj

(c) ∣ Zj, η = 1, rj
(c)

βj
(c) − βj

(c) p βj
(c) ∣ η = 1, rj

(c) dβj
(c)

= ∏
j = 1

p
Lj βj

(c) ∣ Zj, η = 1, rj
(c)

× ∫βj
(c)exp −1/2 βj

(c) − βj
(c) T

nIj βj
(c) ∣ Zj, η = 1, rj

(c)

βj
(c) − βj

(c) p βj
(c) ∣ η = 1, rj

(c) dβj
(c) .

(7)

For the integration in (7),

∫βj
(c)exp −1/2 βj

(c) − βj
(c) T

nIj βj
(c) ∣ Zj, η = 1, rj

(c) βj
(c) − βj

(c) p βj
(c) ∣ η = 1, rj

(c) dβj
(c)

= C0∫βj
(c)exp −1/2 βj

(c) − βj
(c) T

nIj βj
(c) ∣ Zj, η = 1, rj

(c) βj
(c) − βj

(c)

× exp −1/2 βj
(c)T V cI −1βj

(c) dβj
(c)

= C0∫βj
(c)exp − 1

2 βj
(c)T nIj βj

(c) ∣ Zj, η = 1, rj
(c) + V cI −1 βj

(c)

− 2βj
(c)T nIj βj

(c) ∣ Zj, η = 1, rj
(c) βj

(c)

+βj
(c) nIj βj

(c) ∣ Zj, η = 1, rj
(c) βj

(c) dβj
(c)

= C1∫βj
(c)exp − 1

2 βj
(c) − Σ* nIj βj

(c) ∣ Zj, η = 1, rj
(c) βj

(c) T
Σ * − 1

× βj
(c) − Σ* nIj βj

(c) ∣ Zj, η = 1, rj
(c) βj

(c) dβi
(c),

= C1 (2π) Ej /2 Σ* 1/2,

where C0 is a constant representing the normalizing constant for the prior βj
(c), C1 is a 

constant combining C0 and terms not involving βj
(c), Σ* = nIj βj

(c) ∣ Zj, η = 1, rj
(c) + 1

V c
I

−1
, 

and |Ej| is the number of parents of node i.

Recall that Vc is the variance in the prior distribution of βj
(c) and chosen to be large to 

construct a non-informative but proper prior for βj
(c). When the sample size n is large, 

information in the data dominates the priors,
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Σ* 1/2 = nIj βj
(c) ∣ Zj, η = 1, rj

(c) + 1
V c

I
−1/2

≍ nIj βj
(c) ∣ Zj, η = 1, rj

(c) −1/2

= n− Ej /2 Ij βj
(c) ∣ Zj, η = 1, rj

(c) −1/2
.

We thus have

p X, Y ∣ η = 1, rj
(c) = p Z ∣ η = 1, r(c)

≈ 2π
n

∑i = 1
p Ei /2

∏
j = 1

p
Lj βj

(c) ∣ Zj, η = 1, rj
(c) Ij βj

(c) ∣ Zj, η = 1, rj
(c) −1/2

≍ Czn− E /2 ∏
j = 1

p
Lj βj

(c) ∣ Zj, η = 1, rj
(c) ,

where ∑j = 1
p |Ei| = E . Cz is a constant, since |Ij βj

(c) ∣ Zj, η = 1 |−1/2
 converges as n → ∞ 

and based on assumption 3), (2π/n)∑j = 1
p Ej /2 ≍ n−∑j = 1

p Ej /2 . Note that 

∏j − 1
p Lj βj

(c) ∣ Zj, η = 1, rj
(c)  is aη defined in equation (5) in the main text under the 

Bayesian context. In a Gibbs sampler, βi
(c) is represented by posterior samples of βi

(c).

The same derivation applies to the calculation of p X, Y ∣ η = 0, rj
(x), rj

(y) , which gives

p X, Y ∣ η = 0, rj
(x), rj

(y) ≈ Cxynx
− Ex /2ny

− Ey /2

× ∏
j = 1

p
Lj βj

(x) ∣ Xj, η = 0, rj
(x) Lj βj

(y) ∣ Y j, η = 0, rj
(y) ,

where Cxy is constant, and, as above, ∏j − 1
p Lj βj

(x) ∣ Xj, η  = 0, rj
(x) Lj βj

(y) ∣ Y j, η = 0, rj
(y)

is equivalent to bη defined in equation (6) in the main text.

Now we have,
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p(η = 1 ∣ ( ⋅ ), X, Y ) = p(X, Y ∣ ( ⋅ ), η = 1)
p(X, Y ∣ ( ⋅ ), η = 1) + p(X, Y ∣ ( ⋅ ), η = 0)

≈
Czaη n− E /2

Czaη n− E /2 + Cxybη nx
− Ex /2 ny

− Ey /2

1 + exp log bη − log aη + 1/2 E logn − Ex lognx − Ey logny + log Cxy/Cz
−1

= 1 + exp log bη − log aη + λ(n) + log Cxy/Cz
−1

≍ 1 + exp log bη − log aη + λ(n) −1

= pλ(η = 1 ∣ ( ⋅ ), X, Y ),

where λ(n) = 1/2(|E|logn − |Ex|lognx − |Ey|logny). The last approximation is due to Cxy/Cz 

being bounded as n → ∞, conditional on the following assumptions, 1) |E|, |Ex|, and |Ey| are 

in the order of O(p) and |E| < |Ex|+|Ey|, 2) nx and ny approaches to infinity in the same speed, 

and 3) lognx
/p → ∞ and logny/p → ∞ as nx, ny, p → ∞. We denote the approximated 

conditional posterior of η as pλ(η = 1|(·), X, Y) with λ(n) acting like a penalty determined 

by sample size and conditional on edges of inferred graphs.

Appendix II.

Proof of the Proposition in Section 2.3.1

For any given ordering O, let p denote the number of nodes, |Ex| the number of edges in the 

network constructed based on data of sample size nx from population X, |Ey| the number of 

edges in the network based on data with size ny from population Y, and |E| the number of 

edges of the identical network constructed combining the two populations with sample size 

n = nx + ny.

pλ(η = 1 ∣ ( ⋅ ), X, Y ) ≈ 1 + exp log bη − log aη + λ(n) −1

λ(n) = 1/2 E log n − |Ex|log nx − Ey log ny ,

is the approximated conditional posterior probability for η.

Proposition:

Assume 1) sparse networks with |E|, |Ex|, and |Ey| in the order of O(p), 2) nx → ∞ and ny → 
∞ in the same speed, and 3) lognx/p → ∞ as nx, p → ∞, and similar assumptions applied 

to limnx, ny ∞pλ η = 1 · , X, Y = 1, and limnx, ny ∞pλ η = 1 · , X, Y = 0 if the 

underlying η = 0.

Proof.—We examine the property of pλ(η = 1|(·), X, Y) at the underlying values of η.

1. Underlying η = 1, i.e., the two populations share the same network.

Set nx = c1n and ny = c2n with 0 < c1,c2 < 1, we have
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1/2 |Ex|lognx + Ey logny = 1/2 |Ex|log c1n + Ey log c2n
= 1/2 |Ex|logn + Ey logn + |Ex|logc1 + Ey logc2 .

For any given ordering, we assume |E| < |Ex| + |Ey|. That is, the two graphs have 

at least one edge in common and if an edge does not exist in each individual 

network, then it is not in the combined network either. We then have 1/2(|E|logn 
− |Ex|lognx − |Ey|logny) = 1/2logn(|E| − |Ex| − |Ey|) − logc1|Ex|/2 − logc2|Ey|/2 → 
−∞, as nx, ny → ∞ (so does n). Furthermore, as nx, ny → ∞, from the 

definitions of logaη and logbη, logaη − logbη → 0 as nx, ny → ∞ when the 

underlying η = 1. Combining all these leads to

logbη − logaη + 1/2 E logn − |Ex|lognx − Ey logny − ∞,

which gives pλ(η = 1|(·), X, Y) → 1 as nx, ny → ∞ if the underlying η = 1.

2. Underlying η = 0, i.e., each of the two populations has its unique network under 

a given ordering. Following the definition of aη, we have

logaη = ∑
j = 1

p
−

nx
2 logσx(j)

2 −
ny
2 logσy(j)

2

−
Xj − ∑i = 1

j − 1βij
(c)Xi

T
Xj − ∑i = 1

j − 1 βij
(c)Xi

2σx(j)
2

−
Y j − ∑i = 1

j − 1βij
(c)Y i

T
Y j − ∑i = 1

j − 1 βij
(c)Y i

2σy(j)
2

= ∑
j = 1

p
−

nx
2 logσx(j)

2 −
ny
2 logσy(j)

2 − ∑
l1 = 1

nx ϵl1
c 2

2σx(j)
2 − ∑

l2 = nx + 1

n ϵl2
c 2

2σy(i)
2 ,

logbη = ∑
j = 1

p
−

nx
2 logσx(j)

2 −
ny
2 logσy(j)

2

−
Xj − ∑i = 1

j − 1βij
(x)Xi

T
Xj − ∑i = 1

j − 1 βij
(s)Xi

2σx(j)
2

−
Y j − ∑i = 1

j − 1βij
(y)Y i

T
Y j − ∑i = 1

j − 1 βij
(y)Y i

2σy(j)
2

= ∑
j = 1

p
−

nx
2 logσx(j)

2 −
ny
2 logσy(j)

2 −
∑l1 = 1

nx ϵl1
x 2

2σx(j)
2 −

∑l2 = nx + 1
n ϵl2

y 2

2σy(j)
2 ,
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logbη − logaη = ∑
j = 1

p ∑l1 = 1
nx ϵl1

c 2 − ϵl1
x 2

2σx(j)
2 +

∑l1 = nx + 1
nx ϵl2

c 2 − ϵl2
y 2

2σy(j)
2 .

In the following, property on one node is assessed and the results can be directly 

applied to the sum of all p nodes. If the underlying η = 0, that is, the relations 

among the nodes in the two populations are differential at least at one node, then, 

regardless of the ordering, forcing two differential networks to unify will result 

in larger random errors, i.e.,

ϵl1
c 2 − ϵl1

x 2 /nx σx(j)
′2 − σx(j)

2 > 0

ϵl2
c 2 − ϵl2

y 2 /ny σy(j)
′2 − σy(j)

2 > 0,

which lead to ∑l1 = 1
nx ϵl1

c 2 − ϵl1
x 2 ∞ and ∑l1 = nx + 1

n ϵl2
c 2 − ϵl2

y 2 ∞ in an 

ordering of O(n) as nx, ny → ∞, that is, logbη − logaη → ∞ in an ordering of 

O(n).

For λ(n) = 1/2(|E|logn−|Ex|lognx−|Ey|logny) in the definition of pλ(η = 1|(·), X, 

Y),

1 ∣ ( ⋅ ), X, Y ),
1/2 E logn − |Ex|lognx − Ey logny
= 1/2 E − |Ex| − Ey logn
− 1/2 |Ex|logc1 + Ey logc2
= Alog n − 1/2 |Ex|logc1 + Ey logc2 ,

where A = 1/2(|E| − |Ex| − |Ey|). Since |E| < |Ex| + |Ey|, as nx, ny → ∞, A log n 
→ −∞ in O(logn). Based on the sparsity assumption 1), 1/2(|Ex|logc1 + |Ey|

logc2) → ∞ in the order p. Following assumption 3), we have Alogn − 1/2(|Ex|

logc1 + |Ey|logc2) → ∞ in O(logn), which is slower than logbη−logaη → ∞ in 

an ordering of O(n). Thus logbη−logaη+1/2(|E|logn − |Ex|lognx − |Ey|logny) → 
∞, i.e., pλ(η = 1|(·), X, Y) → 0 as nx, ny → ∞.

In summary, pλ(η = 1|(·), X, Y) → 0 as nx, ny → ∞ when underlying η = 0 for 

any given ordering O.

Combining results in 1. and 2. above, we have, for any given ordering O, 

limnx, ny ∞pλ η = 1 · , X, Y = 1 if underlying η = 1, and 

limnx, ny ∞pλ η = 1 · , X, Y = 0 □
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Figure 1: 
Plots of proportions of correct connections with correct direction of connections. The top 

panel is for identical networks and the lower panel is for differential networks.
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Figure 2: 
Power of detecting the underlying truth of network differentiation status using a method 

based on the Hotelling’s T-squared tests. Left panel: two networks are truly identical. Right 

panel: two networks are truly differential.
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Figure 3: 
Estimated two differential networks . a) Subjects in utero exposed to smoke (48 subjects) b) 

Subjects not exposed (197 subjects)
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Table 1:

Summary statistics for detecting differential networks, including estimated power of correct detection (with 

respect to network types), true positives for edge connections and directions (TPCD), false positives (FP), and 

correct connections (CC) across 100 MC replicates along with 95% empirical intervals (EI).

Sample size (nx = ny) Power (%) TPCD (95% EI) FP (95% EI) CC (95% EI)

Underlying networks: identical networks (p = 10 nodes, |E0c| = 10 edges)

50 94.9 0.999 (0.998, 1.0) 0.020 (0.0, 0.086) 0.984 (0.933, 1.0)

100 98.2 0.999 (0.999, 1.0) 0.021 (0.0, 0.086) 0.984 (0.932, 1.0)

200 98.9 0.999 (0.998, 1.0) 0.013 (0.0, 0.072) 0.990 (0.944, 1.0)

Underlying networks: identical networks (p = 10 nodes, |E0c| = 20 edges)

50 90.0 0.984 (0.900, 1.0) 0.199 (0.0, 0.622) 0.882 (0.644, 1.0)

100 91.7 0.996 (0.950, 1.0) 0.199 (0.0, 0.560) 0.887 (0.676, 1.0)

200 88.7 0.993 (0.965, 1.0) 0.230 (0.0, 0.640) 0.869 (0.629, 1.0)

Underlying networks: differential networks (p = 10 nodes, |E0x| = 5, |E0y | = 10 edges)

50 99.9 X : 0.998 (0.999, 1.0) 0.017 (0.00, 0.075) 0.984 (0.933, 1.0)

Y : 0.977 (0.80, 1.0) 0.047 (0.00, 0.200) 0.958 (0.844, 1.0)

100 99.9 X : 1.0 (0.999, 1.0) 0.016 (0.00, 0.088) 0.986 (0.921, 1.0)

Y : 0.992 (0.90, 1.0) 0.045 (0.00, 0.329) 0.963 (0.744, 1.0)

200 99.9 X : 1.0 (0.999, 1.0) 0.013 (0.00, 0.063) 0.988 (0.944, 1.0)

Y : 0.996 (0.998, 1.0) 0.048 (0.00, 0.287) 0.962 (0.776, 1.00)

Underlying networks: differential networks (p = 10 nodes, |E0x| = 20, |E0y| = 10 edges)

50 99.9 X : 0.979 (0.874, 1.0) 0.218 (0.0, 0.560) 0.869 (0.667, 1.0)

Y : 0.976 (0.90, 1.0) 0.039 (0.0, 0.171) 0.964 (0.867, 1.0)

100 99.9 X : 0.993 (0.950, 1.0) 0.213 (0.0, 0.600) 0.879 (0.633, 1.0)

Y : 0.991 (0.90, 1.0) 0.033 (0.0, 0.186) 0.972 (0.855, 1.0)

200 99.9 X : 0.993 (0.950, 1.0) 0.232 (0.0, 0.600) 0.868 (0.644, 1.0)

Y : 0.998 (0.997, 1.0) 0.040 (0.0, 0.230) 0.967 (0.821, 1.0)
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Table 2:

The list of CpGs and their corresponding genes

Label CpG Gene Label CpG Gene

1 cg03991871 AHRR 13 cg14179389 GFI1

2 cg04180046 MYO1G 14 cg18092474 CYP1A1

3 cg04598670 ENSG00000225718 15 cg18146737 GFI1

4 cg05549655 CYP1A1 16 cg18316974 GFI1

5 cg05575921 AHRR 17 cg18655025 TTC7B

6 cg06338710 GFI1 18 cg19089201 MYO1G

7 cg10399789 GFI1 19 cg21161138 AHRR

8 cg11715943 HLA-DPB2 20 cg22132788 MYO1G

9 cg11924019 CYP1A1 21 cg22549041 CYP1A1

10 cg12477880 RUNX1 22 cg23067299 AHRR

11 cg12803068 MYO1G 23 cg25949550 CNTNAP2

12 cg12876356 GFI1
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where ,  denotes regression coefficients of connected edges at node i under η = 1, and  with I an identity matrix and Vc known and large to formulate a non-informative but proper prior distribution for .Take the natural logarithm transformation of the likelihood function  and perform Taylor expansion at , a consistent estimator of  such that . We have, for a large n,

where “≍” denotes “asymptotically equal to”, and

is the sample Fisher information matrix.Exponentiate both sides,

which gives
(7)For the integration in (7),

where C0 is a constant representing the normalizing constant for the prior , C1 is a constant combining C0 and terms not involving , , and |Ej| is the number of parents of node i.Recall that Vc is the variance in the prior distribution of  and chosen to be large to construct a non-informative but proper prior for . When the sample size n is large, information in the data dominates the priors,
We thus have

where . Cz is a constant, since  converges as n → ∞ and based on assumption 3), . Note that  is aη defined in equation (5) in the main text under the Bayesian context. In a Gibbs sampler,  is represented by posterior samples of .The same derivation applies to the calculation of , which gives

where Cxy is constant, and, as above,  is equivalent to bη defined in equation (6) in the main text.Now we have,

where λ(n) = 1/2(|E|logn − |Ex|lognx − |Ey|logny). The last approximation is due to Cxy/Cz being bounded as n → ∞, conditional on the following assumptions, 1) |E|, |Ex|, and |Ey| are in the order of O(p) and |E| < |Ex|+|Ey|, 2) nx and ny approaches to infinity in the same speed, and 3) lognx/p → ∞ and logny/p → ∞ as nx, ny, p → ∞. We denote the approximated conditional posterior of η as pλ(η = 1|(·), X, Y) with λ(n) acting like a penalty determined by sample size and conditional on edges of inferred graphs.
	Appendix II.Proof of the Proposition in Section 2.3.1For any given ordering , let p denote the number of nodes, |Ex| the number of edges in the network constructed based on data of sample size nx from population X, |Ey| the number of edges in the network based on data with size ny from population Y, and |E| the number of edges of the identical network constructed combining the two populations with sample size n = nx + ny.is the approximated conditional posterior probability for η.Proposition:Assume 1) sparse networks with |E|, |Ex|, and |Ey| in the order of O(p), 2) nx → ∞ and ny → ∞ in the same speed, and 3) lognx/p → ∞ as nx, p → ∞, and similar assumptions applied to , and  if the underlying η = 0.Proof.—We examine the property of pλ(η = 1|(·), X, Y) at the underlying values of η.1.Underlying η = 1, i.e., the two populations share the same network.Set nx = c1n and ny = c2n with 0 < c1,c2 < 1, we haveFor any given ordering, we assume |E| < |Ex| + |Ey|. That is, the two graphs have at least one edge in common and if an edge does not exist in each individual network, then it is not in the combined network either. We then have 1/2(|E|logn − |Ex|lognx − |Ey|logny) = 1/2logn(|E| − |Ex| − |Ey|) − logc1|Ex|/2 − logc2|Ey|/2 → −∞, as nx, ny → ∞ (so does n). Furthermore, as nx, ny → ∞, from the definitions of logaη and logbη, logaη − logbη → 0 as nx, ny → ∞ when the underlying η = 1. Combining all these leads to

which gives pλ(η = 1|(·), X, Y) → 1 as nx, ny → ∞ if the underlying η = 1.2.Underlying η = 0, i.e., each of the two populations has its unique network under a given ordering. Following the definition of aη, we have



In the following, property on one node is assessed and the results can be directly applied to the sum of all p nodes. If the underlying η = 0, that is, the relations among the nodes in the two populations are differential at least at one node, then, regardless of the ordering, forcing two differential networks to unify will result in larger random errors, i.e.,


which lead to  and  in an ordering of O(n) as nx, ny → ∞, that is, logbη − logaη → ∞ in an ordering of O(n).For λ(n) = 1/2(|E|logn−|Ex|lognx−|Ey|logny) in the definition of pλ(η = 1|(·), X, Y),

where A = 1/2(|E| − |Ex| − |Ey|). Since |E| < |Ex| + |Ey|, as nx, ny → ∞, A log n → −∞ in O(logn). Based on the sparsity assumption 1), 1/2(|Ex|logc1 + |Ey|logc2) → ∞ in the order p. Following assumption 3), we have Alogn − 1/2(|Ex|logc1 + |Ey|logc2) → ∞ in O(logn), which is slower than logbη−logaη → ∞ in an ordering of O(n). Thus logbη−logaη+1/2(|E|logn − |Ex|lognx − |Ey|logny) → ∞, i.e., pλ(η = 1|(·), X, Y) → 0 as nx, ny → ∞.
In summary, pλ(η = 1|(·), X, Y) → 0 as nx, ny → ∞ when underlying η = 0 for any given ordering .Combining results in 1. and 2. above, we have, for any given ordering ,  if underlying η = 1, and  □
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