Table 2:
Machine learning results on different categories for held-out test set of 500 documents.
| Category | Precision | Recall | F1 |
|---|---|---|---|
| Clinical Reports | 0.84 | 0.63 | 0.72 |
| Comment/Editorial | 0.73 | 0.69 | 0.71 |
| Communication | 0.50 | 0.25 | 0.33 |
| Contact Tracing | 1.00 | 1.00 | 1.00 |
| Diagnostics | 0.93 | 0.83 | 0.88 |
| Drug Targets | 0.67 | 0.50 | 0.57 |
| Education | 0.63 | 0.71 | 0.67 |
| Effect on Medical Specialties | 0.79 | 0.49 | 0.61 |
| Forecasting & Modelling | 1.00 | 0.88 | 0.93 |
| Health Policy | 0.50 | 0.32 | 0.39 |
| Healthcare Workers | 0.80 | 0.89 | 0.84 |
| Imaging | 0.93 | 0.72 | 0.81 |
| Immunology | 0.44 | 0.44 | 0.44 |
| Inequality | 0.83 | 0.71 | 0.77 |
| Infection Reports | 0.75 | 0.30 | 0.43 |
| Long Haul | 0.00 | 0.00 | 0.00 |
| Medical Devices | 0.71 | 0.63 | 0.67 |
| Meta-analysis | 0.75 | 0.86 | 0.80 |
| Misinformation | 1.00 | 0.67 | 0.80 |
| Model Systems & Tools | 1.00 | 0.20 | 0.33 |
| Molecular Biology | 0.72 | 0.68 | 0.70 |
| News | 0.50 | 0.40 | 0.44 |
| Non-human | 0.83 | 0.50 | 0.63 |
| Non-medical | 1.00 | 0.43 | 0.61 |
| Pediatrics | 0.79 | 0.79 | 0.79 |
| Prevalence | 1.00 | 0.56 | 0.71 |
| Prevention | 0.72 | 0.56 | 0.63 |
| Psychology | 1.00 | 0.64 | 0.78 |
| Recommendations | 0.70 | 0.54 | 0.61 |
| Review | 0.57 | 0.75 | 0.65 |
| Risk Factors | 0.65 | 0.51 | 0.57 |
| Surveillance | 1.00 | 0.50 | 0.67 |
| Therapeutics | 0.70 | 0.68 | 0.69 |
| Transmission | 0.75 | 0.75 | 0.75 |
| Vaccines | 1.00 | 0.33 | 0.50 |
| MICRO | 0.76 | 0.62 | 0.68 |
| MACRO | 0.76 | 0.58 | 0.64 |