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Introduction

The unexpected emergence of deadly coronaviruses, 
severe acute respiratory syndrome coronavirus (SARS-
CoV) and middle east respiratory syndrome coronavirus 
(MERS- CoV) significantly affected human health, lead-
ing to increased mortality and life disruption. Recently, a 
third highly pathogenic and infectious coronavirus, severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
emerged as a deadly pandemic calling for intense research 
efforts on its pathogenicity mechanism and development of 
therapeutic strategies. Among others, pro-resolving media-
tors have been investigated as a therapeutic opportunity for 
treatment and management of SARS-CoV-2; cytokine storm 
has been associated with severe illness and mortality, with 
many studies reporting higher concentrations of pro-inflam-
matory cytokines in severely ill SARS-CoV-2 patients as 
compared to those with less severe infection. Hence, reso-
lution of inflammation through selective counter-regulation 
of cytokines has been identified as a potential therapeutic 
target for SARS-CoV-2. In this review, we discussed the 
characteristics of specialized pro-resolving lipid media-
tors (SPMs) that induce the resolution of inflammation and 
reviewed evidence from recent studies on SPMs as thera-
peutic options for viral infections, including SARS-CoV-2. 
We hope that this review will be of great help in guiding 
researchers who are exploring SPMs as therapeutic targets 
for viral infections.

Specialized pro‑resolving lipid mediators (SPMs)

Inflammation is an extremely important, self-limiting 
immune response; however, uncontrolled or unresolved 
inflammation has been established as a pathophysiological 
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mechanism for various diseases including viral infec-
tions, and a cause for prolonged homeostasis imbalance. 
Resolution of inflammation occurs in an overlapping stage 
dominated by the spatial and temporal biosynthesis of pro-
resolved mediators (Headland and Norling 2015), SPMs, 
from essential polyunsaturated fatty acids (PUFAs) during 
inflammation. The SPMs initiate the process of resolution 
which include restriction or cessation of neutrophil infiltra-
tion, counter-regulation of chemokines and cytokines, induc-
tion of the neutrophils apoptosis and subsequent efferocy-
tosis (the process by which apoptotic cells are removed by 
phagocytic cells) by macrophages (Reville et al. 2006), the 
conversion of macrophages from classically activated (M1) 
to alternatively activated cells (M2), return of non-apoptotic 
cells to the vascular system or lymphatic vessels, and the 
start of the healing process (Fig. 1) (Headland and Norling 
2015). These events facilitate proper return homeostasis bal-
ance (Serhan and Savill 2005). For a comprehensive review, 
including structural explanations of SPMs, see reviews (Park 
et al. 2020; Chiang and Serhan 2017; Lee 2012).

Lipoxins (LXs)

Lipoxin A4 (LXA4; 5S, 6R, 15S-trihydroxy-7E, 9E, 11Z, 
13E-eicosatetraenoic acid) and lipoxin B4 (LXB4; 5S, 
14R, 15S-trihydroxy-6E, 8Z, 10E, 12E-eicosatetraenoic 
acid) were the first lipid SPMs to be discovered (Chiang 

and Serhan 2017). They are produced from the conversion 
of omega-6 (ω-6) arachidonic acid (AA) by lipoxygenase 
(LOX) through unicellular and transcellular biosynthesis 
pathways. In transcellular biosynthesis, LXs are synthesized 
by12-LOX derived through platelet-leukocyte interaction 
while unicellular biosynthesis pathways involve a series 
of LOXs-15-lipoxygenase, 5-lipoxygenase, and epoxide 
hydrolase reactions. In addition to the lipoxygenase-initiated 
biosynthesis, two distinct lipoxins biosynthesis pathways 
have been elucidated; aspirin-triggered and statin-triggered 
routes. Aspirin induces the production of a lipoxin named 
“aspirin-triggered " (AT) 15-epi-LX through acetylation of 
serine residue of cyclooxygenase-2 (COX-2), acetylated 
COX-2 transforms AA into 15R-HETE, which serves as a 
substrate for 5-LOX (Chiang et al. 2005). Statins, widely 
used as potent cholesterol-lowering agents, have also been 
found to enhance the conversion of arachidonate to 15-epi-
LX (Planaguma et  al. 2010). Epi-lipoxins, trihydroxy 
metabolites of arachidonic acid, are 15R-epimers of their 
respective lipoxins, 15-epi-LXA4, LXA4, and 15-epi-LXB4, 
LXB4 (Romano et al. 2015).

In vivo biosynthesis of LXA4 is triggered in an acute 
inflammatory process in which Polymorphonuclear neutro-
phil (PMN)’s interaction with PGE2 and PGD2 activates 
15-lipoxygenase subsequently facilitating LXA4 biosynthe-
sis (Claria and Serhan 1995). In a murine peritonitis model, 
the maximum level of LXA4 was achieved within 2 hours 
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and gradually decreased during the first 24 hours (Bannen-
berg et al. 2005). The formation of LXs is preserved across 
a wide range of animal species, from fish to humans (Levy 
2005). This indicates the physiological importance of LXs.

E‑, D‑, and T‑series resolvins (Rvs)

Resolvin (Rv) is a pro-resolving mediator that is derived 
from omega-3 fatty acids, primarily eicosapentaenoic acid 
(EPA), docosahexaenoic acid (DHA), docosapentaenoic 
acid (DPA), and clupanodonic acid (Duvall and Levy 2016; 
Serhan et al. 2014). Rvs are divided into several subclasses 
based on the unique aspects of their structure and/or the 
straight-chain PUFAs from which they are formed. Resolvin 
Ds (RvDs) are metabolites of 22-carbon PUFA, DHA. 
Resolvin Es (RvE) are metabolites of 20 carbons PUFA, 
EPA; Resolvin Dn-6DPA (RvDn-6DPA) is a DPA isomer, 
a metabolite of osbond acids; Resolvin Dn-3DPA (RvDn-
3DPA) is a DPA isomer, a metabolite of clupanodonic acid; 
Resolvin Ts (RvT) is a metabolite of clupanodonic acid 
with 17R-hydroxyl residues, unlike RvDsn-3DPA (all have 
17S-hydroxyl residues). AT-RvDs, RvD isomers are syn-
thesized by the aspirin-modified COX-2 enzyme to form 17 
(R)-hydroxyl rather than the 17 (S)-hydroxyl residue of RvE. 
Cytochrome P450 enzymes that have not yet been character-
ized may also form this 17 (R)-hydroxy intermediate and 
contribute to the production of AT-RvE. All mentioned Rvs 
except RvDsn-6DPA are metabolites of omega-3 fatty acids 
(Serhan et al. 2014; Duvall and Levy 2016).

E‑series resolvins

RvE is a di- or tri-hydroxyl metabolite of EPA. To date, four 
RvEs (RvE1, 18S-RvE1, RvE2, and RvE3) have been dis-
covered. COX-2, acetylated by aspirin in hypoxic endothelial 
cells, introduces oxygen groups into 18R-hydro (peroxy)-
eicosapentaenoic acid (18R-HEPE). Activated PMN uses 
5-LOX to convert 18R-HEPE to 5S (6)-epoxy-18R-HEPE, 
which is further hydrolyzed to RvE1 (Serhan et al. 2000).

RvE2 is produced by reduction of 18R HEPE products 
by 5-LOX to 5S-hydroperoxy, 18-hydroxy-EPE in whole 
blood (Oh et al. 2012). Unlike RvE1, RvE2 and RvE3 are 
biosynthesized from 18-HEPE via the 12/15-LOX pathway 
in eosinophils (Isobe et al. 2012b). Endogenous RvE1 has 
been shown to accumulate for between 48 and 72 hours, 
which is a delayed time point of inflammation (Hong et al. 
2008). RvE2 appeared at the time point corresponding to 
initial PMN infiltration in rat peritoneal exudate stimulated 
by zymosan A and decreased within 24 hours (Isobe et al. 
2012a). 18S-RvE1 is produced by 5-LOX and LTA4 hydro-
lase using 18S-HEPE as a substrate (Oh et al. 2011).

D‑series resolvins

RvD is a polyhydroxy metabolite of DHA. To date, six RvDs 
with different positions of cis-trans isomers, as well as the 
number, position and chirality of the hydroxyl residues have 
been discovered. D-series Rvs (RvD1-RvD6) are biosyn-
thesized from DHA by the LOX in PMN and macrophages 
(Serhan et al. 2002). Hydrolysis of peroxide intermediates 
derived from two LOXs in DHA produces RvD1 and RvD2. 
On the other hand, the reduction of the peroxide interme-
diates produces RvD5 (Serhan et  al. 2002). In hypoxic 
endothelial cells in the presence of aspirin, COX-2 converts 
DHA to 13-hydroxy-DHA or 17R-hydroxy-DHA and acti-
vated PMN converts these products to AT-RvD1, AT-RvD2, 
and other AT-RvD-series. RvD3 and RvD4 are produced 
through hydrolysis of 4S-hydroperoxy-17S-hydroxy-doco-
sahexaenoic acid, whereas RvD6 is derived from peroxidase 
of the same precursor.

In a peritonitis model, the in vivo RvD3 levels after 
zymosan A challenge increases significantly up to 48 hours 
after inflammation initiation, while RvD1, RvD2, and RvD5 
peak at the early stages of the inflammation termination 
phase (6–24 hours) (Dalli et al. 2013b). RvD3 appears to 
be produced by a subpopulation of macrophages with high 
15-LOX activity (Dalli et al. 2013b). In vivo production of 
RvD4 in an Staphylococcus aureus injected the dorsal pouch 
infection model continues for more than 72 hours after sus-
tained release, suggesting that RvD is produced continuously 
and is under different control from other Rvs (Winkler et al. 
2016). RvD6 kinetics have not been reported yet.

Resolvin Ts (RvTs)

In human platelets, COX-2 pre-treated with aspirin or ator-
vastatin metabolizes omega-3s, DPA and clupanodonic acid 
(DPAn-3), to 13S-hydroperoxy forms. Aspirin and atorvas-
tatin change the activity of COX-2 from cyclooxygenase to 
hydroperoxide-forming enzyme. The intermediates formed 
are transported to the nearby human neutrophils and perhaps 
by the activity of the ALOX5 enzyme they are metabolized 
into four polyhydroxy metabolites: RvT1 (7,13R, 20-trihy-
droxy-DPAn-3); RvT2 (7, 8,13R-trihydroxy-DPAn-3); RvT3 
(7,12,13R-trihydroxy-8Z, 10E, 14E, 16Z, 19Z-DPAn-3); 
RvT4 (7,13R-dihydroxy-DPAn-3). These four RvTs are 
formed by human neutrophils and vascular endothelial cells 
and are also found in rodents and human infected tissues 
(Dalli et al. 2013a, 2015). Recently, the total synthesis of 
RvT1, RvT2, and its 13R-epimer RvT2, and RvT4 were suc-
cessfully achieved (Rodriguez and Spur 2020a, b). There-
fore, it is expected that there will be many physiological and 
pharmacological research on RvTs in the future.
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Maresins

Maresins (MaRs) are biosynthesized from DHA by mac-
rophages through the action of 12-LOX, which catalyzes 
the oxygenation of DHA to 14-hydroperoxidocosahex-
aenoic acid (14-HpDHA) (Rodriguez and Spur 2020a). 
This is followed by reduction to 13S, 14S-epoxy-maresin, 
which is further modified in human macrophages to pro-
duce MaR1 (Deng et al. 2014) and conversion of 13S, 
14S-epoxy-maresin by soluble epoxide hydrolase to pro-
duce MaR2 (Deng et al. 2014). Maresins, like the many 
other SPM members mentioned, have anti-inflammatory, 
protective and healing-promoting properties. In a study 
using a murine model of respiratory distress syndrome, 
and initial in  vivo production of MaR1was detected 
during platelet-neutrophil interactions, and its levels 
increased significantly within 2 hours and peaked at 24 
hours (Dalli et al. 2013c). Measurement of 17-HDHA in 
tissue is used as a marker for the level of activation of the 
MaR production pathway (Wang et al. 2015). Maresin-
like lipid mediators MaR-L1 and MaR-L2 are produced 
by white blood cells and platelets and rescue the repara-
tive function of macrophages damaged by diabetes (Hong 
et al. 2014). Total synthesis of MaRs has not yet been 
reported.

Protectins (PDs)

Protectin D1 (PD1), also known as neuroprotectin D1 
(NPD1), is derived from DHA. DHA is a component of 
fish oil and the most important omega-3 PUFA. Like other 
members of PUFA metabolites specialized pro-resolving 
mediators class, PD1 exerts potent anti-inflammatory and 
anti-apoptotic/neuroprotective biological activities (Hong 
et al. 2003; Bazan 2007). PD1 accumulates in the ipsi-
lateral hemisphere of the brain after focal ischemia and 
has been shown to take part in wound healing and neuro-
protection. 15-LOX can acts 17S-HpDHA to produce the 
isomers of PD1, 10S, 17S-diHDHA (PDx), which also 
have pro-resolving activity. PD1 production peaks at 12 
hours in a zymosan A-induced rat peritonitis model (Ban-
nenberg et al. 2005).

Other PDs with similar activity include PDX; 
20-hydroxy-PD1; and 10-epi-PD1 (Shinohara et al. 2012; 
Balas and Durand 2016). The activity of 17-epi-PD1, a 
PD1-like metabolite, has not been reported. It should be 
noted that Neuroprotectin A and B, the bicyclohexapep-
tides, are structurally and mechanically different from 
PDs (Kobayashi et al. 2001). The total synthesis of PDX 
and PD1 methyl ester epimer was successful (Dayaker 
et al. 2014; Sanceau et al. 2019).

SPMs receptors

Herein, we briefly describe each known SPMs receptors 
(Fig. 2). Previous studies have demonstrated that pro-resolv-
ing activities of SPMs occur through activation of one or 
more G protein-coupled receptors (GPCRs), suitable recep-
tors for several types of SPMs have not yet been identified. 
Four GPCRs have been reported as receptors for RvD1 and 
RvE1; however, it has not been determined whether other 
Rvs and PDs such as RvE2, RvE4, RvD2, RvD3, PDs, and 
MaRs act on these GPCRs (Arita et al. 2005, 2007; Krishna-
moorthy et al. 2010). For recent and specific physiological 
actions of these receptors and research data in KO mice, 
we would like to refer to other reviews and references there 
(Park et al. 2020; Im 2012).

Chemerin receptor 1

Chemerin receptor 1 (chemerin1, ChemR23, or ERV1) 
is expressed on a wide range of immune cells, including 
monocytes, macrophages, natural killer cells, bone marrow 
cells, and dendritic cells. Besides, ERV1 has been identified 
in adipocytes and endothelial cells (Luangsay et al. 2009). 
ERV1 was initially classified as an orphan GPCR with 
homology to the formyl peptide receptor (Gantz et al. 1996) 
and the anaphylatoxin C3a and C5a receptors (Samson et al. 
1998) until recently when it was discovered to be a receptor 
for the chemotactic protein chemerin (Meder et al. 2003).

In addition to chemerin, RvE1 was identified as a second 
endogenous agonist through a screening program against 
the GPCR panel (Arita et  al. 2007). ERV1 (chemokine 
like receptor 1, also known as CMKLR1) is a receptor for 
RvE1, which has been shown to bind more strongly than 
chemerin (a peptide ligand) (Arita et al. 2005; Wittamer 
et al. 2004). ERV1 overexpressing mice showed a large 
increase in phagocytosis upon decreased neutrophil inhi-
bition and decreased neutrophil infiltration (Herrera et al. 
2015). Also, RvE2 is a partial agonist compared to RvE1 in 
CHO-chemerin1 β-arrestin recruitment (Isobe et al. 2012a). 
However, since there is no additional information on this 
ligand, further investigation of potential ligand-receptor 
pairs is required.

N‑formyl peptide receptor 2/LX A4 receptor (FPR2/
ALX)

Originally FPR2 was classified as an FPR receptor due to its 
activation by the low-affinity endogenous agonist N-formyl 
methionyl peptide (fMLP) (Ye et al. 1992). The receptor 
was reclassified as FPR2/ALX, as LXA4 exhibited the high-
est affinity of all FPR2/ALX endogenous agonists through 
screening of various receptor ligands using radiolabelled 
[3H]-LXA4 and subsequent GTPase activity (Fiore et al. 
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1994; Brink et al. 2003). Binding of LXA4 leads to the stim-
ulation of monocyte chemotaxis, macrophage differentiation, 
and efferocytosis (Maderna et al. 2010; Maddox and Serhan 
1996). LXA4 also reduces the adaptive immune response by 
reducing memory B cell antibody production and prolifera-
tion (Ramon et al. 2014).

Endogenous and exogenous lipids, peptides, and proteins 
have been shown to bind and activate FPR2/ALX to produce 
inflammatory and anti-inflammatory effects (Takano et al. 
1997; Cooray et al. 2013). Both the LXs and Rvs families, 
including LXA4, AT-LXA4 (15-epi-LXA4), RvD1, AT-
RvD1 (17-epi-RvD1), and Annexin A1 (ANXA1) activate 
receptors with high potency. On the other hand, endogenous 
antagonists, including serum amyloid A (SAA) and catheli-
cidin (LL-37) have been identified (Bozinovski et al. 2012; 
Wan et al. 2011).

GPR18

GPR18 was discovered as a receptor for RvD2 through 
GPCR-β-arrestin-based screening (Chiang et  al. 2015), 
and the receptor was referred to as DRV2/GPR18 (Chiang 
et al. 2017, 2019a). Besides, several other ligands activate 
DRV2/GPR18. These include endogenous ligands such as 
N-arachidonylglycine (NAGly), anandamide, a metabolite 
of the endocannabinoid anandamide, synthetic ligands such 
as abnormal-cannabidiol (Abn-CBD), and O-1918, a par-
tial agonist, which can be used as a pharmacological tool 

to inhibit DRV2/GPR18 signalling (Offertaler et al. 2003; 
Kohno et  al. 2006). GPR18 is abundantly expressed in 
PMNs, monocytes and macrophages (Wang et al. 2014). In 
addition to the resolution of inflammation, while GPR18 
has low structural similarity to the cannabinoid receptors 
CB1, CB2, and GPR55, it responds to endogenous and 
synthetic cannabinoid ligands including n-arachidonoyl 
ethanolamine (AEA), 2-arachidonoyl glycerol (2-AG), 
Δ9-tetrahydrocannabinol (Δ9-THC), and, arachidonoylcy-
clopropylamide (ACPA) (McHugh, 2012). Also interest-
ingly, GPR18 is structurally very similar to EBV-induced 
receptor 2 (EBI2), whose expression is increased more than 
20 times in Epstein-Barr virus (EBV) infected cells, and is a 
GPCR receptor clustered together in the 13q32 (Rosenkilde 
et al., 2006).

GPR32

GPR32 is primarily expressed in human PMN, mono-
cytes, adipose tissue and vascular endothelial cells (Sans-
bury and Spite 2016). RvD1 was identified as a potential 
agonist due to the activation of GPR32, where [3H]-RvD1 
binds to human leukocytes and significantly lowers TNF-
α-stimulated NF-κB signalling in GPR32 overexpressing 
cells (Krishnamoorthy et al. 2010). Although RvD1 has a 
higher affinity for GPR32 than FPR2/ALX, its interaction 
with GPR32 has not been extensively studied (Norling et al. 
2012). This could be since GPR32 exists as a pseudogene 
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in rodents, which makes animal testing in principle inap-
propriate. Treatment of inflammatory macrophages express-
ing GPR32 with RvD1 enhanced the pro-resolving pheno-
type to increase phagocytosis and decrease the secretion of 
inflammatory cytokines (Schmid et al. 2016). Also, GPR32 
was also involved when during the inhibition of the EMT 
phenomenon of lung cancer cell lines by RvD1 (Lee et al. 
2013). Additionally, RvD3, AT-RvD3, and RvD5 have all 
been shown to activate GPR32 in a recombinant system 
of β-arrestin recruitment (Dalli et al. 2013b; Chiang et al. 
2012). These facts suggest the potential redundancy of 
ligands acting on GPCRs.

GPR37

GPR37 or Parkin-related endothelin-like receptor (Pael-R) 
was originally discovered through genomic library screening 
to find new neuropeptide receptors (Marazziti et al. 1997). 
The GPR37 receptor is primarily expressed in the brain and 
is associated with neurological disorders such as Parkin’s 
disease and autism (Lopes et al. 2015). Mutations within 
GPR37 affect various autism spectrum disorders, regulation 
of dopamine reuptake and oligodendrocyte differentiation 
(Fujita-Jimbo et al. 2012; Marazziti et al. 2007; Yang et al. 
2016). PD1 is considered as a ligand for GPR37 because 
it induced a significant increase in intracellular calcium 
in HEK293 cells overexpressing GPR37 and murine peri-
toneal-derived macrophages (Bang et al. 2018). Based on 
the fact that Gpr37-/- mice exhibited increased apoptosis 
and infarct size, it has recently been suggested that GPR37 
is also involved in cell damage protection and inflamma-
tion after ischemic stroke (McCrary et al., 2019). However, 
due to its clear role in the central nervous system (CNS), 
the development of a therapeutic agent targeting GPR37 
requires a balance between the effect on the central nervous 
system and therapeutic benefits.

Leukotriene BLT1

BLT1 has also been shown to be a receptor for RvE1 although 
its clone, high-affinity leukotriene B4 (LTB4) is a potent lipid 
inflammatory chemoattractant, inducing T helper cell chem-
otaxis and early effector T cell recruitment through BLT1 
(Yokomizo et al. 1997; Arita et al. 2007). BLT1 shares 21% 
sequence identity with chemerin1; while this value is rela-
tively low, selective BLT1 antagonist U-75,302 has been dem-
onstrated to replace the binding of [3H]-RvE1 to the human 
PMN membrane (Arita et al. 2007). Besides, although RvE1 
is 100 times less potent than LTB4, it inhibited adenylate 
cyclase activity and induced intracellular calcium mobiliza-
tion in HEK293 cells overexpressing BLT1. These data indi-
cate the role of RvE1 in reducing BLT1-induced inflamma-
tion by RvE1 acting as a partial agonist that competes with 

LTB4-mediated NF-κB activation and calcium mobilization 
(Arita et al. 2007).

Activation of BLT1 by RvE1 also serves as a feedback 
mechanism for other SPMs, including increased production 
of LXA4 in the FPR2/ALX-mediated resolution of allergic 
pulmonary inflammation (Haworth et al. 2008).

RvE2 was identified as an additional BLT1 agonist, and the 
β-arrestin assay showed that RvE2 blocked LTB4-mediated 
β-arrestin signalling with similar efficacy to RvE1, indicating 
direct competition with LTB4 (Oh et al. 2012). Various pro-
resolving roles of RvE2 have been proposed, including regula-
tion of PMN infiltration and IL-10 production (Oh et al. 2012). 
However, while RvE1 promotes NADPH oxidase-mediated 
ROS production through the BLT1, RvE2 and RvE3 do not 
exhibit this effect (Unno et al. 2018).

Activation of other receptors by SPMs

A few studies have reported the possibility of other GPCR 
involvement. Among them, GPR101 mediates the pro-resolv-
ing effects of RvD5n-3 DPA in arthritis and infection (Flak 
et al. 2020). Besides, SPMs have been reported to activate 
non-GPCRs receptors, such as nuclear receptors.

In a dose-dependent manner, PD1 enhances PPARγ tran-
scriptional activation reporter activity in human neuron-
glia (HNG) cells co-transfected with hPPARγ-GAL4 and 
MH100-tk-Luc (Zhao et al. 2011). This suggests that PD1 is 
capable of enhancing the peroxisome proliferator-activated 
receptor gamma (PPARγ) (Fig. 2). The transcriptional activ-
ity of PPARγ was significantly increased after treatment 
with 100 nM PD1. RvD1 was also assumed to be a ligand 
for PPARγ and inhibited IκBα degradation and NF-κB p65 
nuclear translocation in an LPS-induced lung injury model, 
which was partially reversed by the PPARγ inhibitor GW9662 
(Fig. 2) (Liao et al. 2012). Recently, it has been reported that 
LXA4 binds to the nuclear aryl hydrocarbon receptor (AhR) 
(Fig. 2) (Asha et al. 2020).

A GPCR that acts directly on MaR1 has not yet been iden-
tified. However, MaR1 blocks TRPV1-mediated currents in 
neurons, acts as a ligand for the retinoid-associated orphan 
receptor α (RORα), and inhibits TLR4 signalling (Fig. 2) (Park 
2015), Chiang et al. found that MaR1 can activate LGR6, a 
member of the glycoprotein hormone receptor subfamily of 
rhodopsin-like GPCRs (Chiang et al. 2019b), which initiates 
cAMP, impedance changes, and stimulate an innate immune 
response against PMNs, monocytes and macrophages (Chiang 
et al. 2019b).
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Role of SPMs and Their Receptors in Virus 
Infections

Because viruses are obligate intracellular parasites, 
viruses must enter target cells and multiply using host cell 
machinery to produce progeny viruses (Ryu 2017). The 
various stages involved in viral growth that occur inside 
cells are called the viral life cycle. The viral life cycle can 
be divided into three stages: entry, genome replication, 
and exit. Entry can be subdivided into attachment, pen-
etration and uncoating, and exit can be subdivided into 
virion assembly and release. Genome replication differs by 
virus type. Many studies are showing that SPMs regulate 
the inflammatory response caused by viral infections, but 
studies on the effects of SPMs on the viral life cycle have 
been difficult to find. There have a few reports recently. 
For example, among SPMs, LXA4 modulates Kaposi’s 
Sarcoma-Associated Herpesvirus (KSHV) life cycle 
through chromatin modulation and hedgehog signalling 
to destabilize the latency of herpes virus and decreases 
the expression of programmed death-ligand 1 (PD-L1) 
in Kaposi’s Sarcoma, thereby reducing immune evasion 
(Fig. 3) (Asha et al. 2020). On the other hand, there are 
not a few reports that the receptors mentioned above for 
SPMs act as receptors in virus infection (see below). So, 
in this section, we will discuss the effect of SPMs on the 
virus and the viral infection-induced inflammation and 

mention how the receptors of SPMs affect the life cycle of 
the virus (Fig. 3).

Influenza

Influenza viruses are a well-studied model for understanding 
the role of inflammation resolution mediators and the mech-
anism of viral infection. This is because different viruses 
elicit different host immune responses and outcomes. From 
studies comparing more virulent influenza virus strains to 
less virulent strains, it has been reported that pro-resolving 
mediators have an inverse correlation with the biologi-
cal activity of the virus (Cilloniz et al. 2010). The more 
toxic strains of influenza induced reduction of LXs, which 
increased the spread of the virus. LXB4 recently improved 
IgG production in B cells from donors vaccinated against 
influenza virus, suggesting potential as a novel adjuvant. 
(Kim et al. 2018).

Annexin is the most abundant host cell protein in the 
virion, and annexin A1 (ANXA1) contributes to influenza-
induced toxicity (Tcherniuk et al. 2016). That is, during virus 
entry into the host cell, viral hemagglutinin (HA) not only 
binds sialic acid but also ANXA1 binds to FPR2, resulting 
in activation of ERK2 and increased viral replication (Tcher-
niuk et al. 2016). RvD1 and LXA4 also activate FPR2. It is 
still unknown whether RvD1 and LXA4 compete with viral 
annexin at the receptors site leads to the prevention of viral 
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infection or the promotion of viral replication. However, it 
is reported that AT-RvD1 reduces inflammation caused by 
the viral infection. (Wang et al. 2017). Increased SAA in 
recurrent acute exacerbations of COPD caused by bacterial 
and virus coinfection acts as a functional agonist of FPR2/
ALX, antagonizing the protective action of FPR2/ALX by 
AT-RvD1, promoting chemotaxis of neutrophils and pro-
longing survival (Wang et al. 2018).

There are no reports of direct research on whether RvD1, 
the same family as AT-RvD1, inhibits the influenza virus. 
However, it promotes inflammation and removal of bac-
teria caused by a bacterial infection. For example, RvD1 
relieves lung inflammation and promotes the elimination of 
untypeable Haemophilus influenza (Croasdell et al. 2016). 
ChemR23, a receptor for RvE1, relieves lung inflammation 
and enhances antiviral immunity in a mouse model of acute 
viral pneumonia (Bondue et al., 2011). Therefore, it would 
be fascinating to study whether RvE1 is effective in pneu-
monia caused by the influenza virus.

PD1 has pivotal and multiple roles in regulating viral 
pathogenicity. Influenza strains, such as the lethal H5N1, 
down-regulate PD1 (Tam et al. 2013). There is an inverse 
correlation between the level of PD1 and the level of patho-
genicity of various virus isolates. In addition to the host’s 
inflammatory response, PD1 has a direct antiviral action 
against influenza. Both PD1 and its isomer PDX (LOX-
mediated double oxygenation) limit viral replication by 
interfering with the viral RNA nuclear transport mechanism 

(Fig. 3) (Imai 2015; Morita et al. 2013; Baillie and Digard 
2013). Treatment of infected mice with PD1 improves sur-
vival, even if administered 48 hours after the onset of infec-
tion when the current antiviral therapy is no longer signifi-
cantly effective (Fig. 4) (Morita et al. 2013; Ng et al. 2010).

Herpes simplex virus

Herpesviruses 1 and 2 (HSV-1 and HSV-2), with the 
taxonomic names human alphaherpesvirus 1 and human 
alphaherpesvirus 2, are the most common causes of human 
viral infections among the members of the human Herpes-
viridae family (Chayavichitsilp et al. 2009). Herpes simplex 
virus (HSV) ocular infection represents another example in 
which local control of the virus stems from a robust inflam-
matory response with long-term consequences of chronic 
inflammation, including the possibility of final blindness due 
to interstitial keratitis that persists even after the viral infec-
tion has been cleared.

In animals with HSV, topical administration of RvE1 
reduced the influx of CD4+ T cells (both TH1 cells and TH17 
cells) and neutrophils, decreased production of inflammatory 
cytokines including IFNγ and IL-6, and increased levels of 
the anti-inflammatory cytokine IL-10 (Fig. 4) (Rajasagi et al. 
2011). Overall, RvE1 significantly reduced stromal kera-
titis. Similar results were demonstrated with PD1 (Fig. 4) 
(Rajasagi et al. 2013). Besides, AT-RvD1 treatment signifi-
cantly reduced the degree of corneal angiogenesis and the 
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severity of stromal keratitis lesions, and AT-RvD1 treated 
mice had fewer Th1 and Th17 cells in the infected cornea, as 
well as the reduced number of inflammatory cells, including 
neutrophils (Rajasagi et al. 2017).

Respiratory syncytial virus, human immunodeficiency 
virus, and hepatitis C virus

Respiratory syncytial virus (RSV), also known as human 
respiratory cell fusion virus (HRSV) and human orthopneu-
movirus, is a virus that causes respiratory infections in which 
infected mucosal cells fuse to form a syncytium (Schweitzer 
and Justice 2020). It is the leading cause of lower respiratory 
tract infections and hospital visits in infancy and childhood 
(Read and Bosco 2020). RSV infection results in bronchioli-
tis, which is classically caused by activated macrophages and 
eventually resolved by alternatively activated macrophages 
(Shirey et al. 2010). The promotion of these two alterna-
tive macrophage fates appears to be related to RSV-induced 
COX-2 and LXA4 and RvE1-mediated protective measures 
(Fig. 4) (Richardson et al. 2005; Shirey et al. 2014). Also, 
although it does not directly act on the virus, RvD1 inhibits 
inflammatory signal transduction by polyinosinic-polycyt-
idylic acid, an analogue of RNAs derived from respiratory 
viruses such as RSV, and the action of RvD1 is mediated by 
FPR2/ALX and GPR32 (Hsiao et al. 2014). These reports 
suggest the critical role of SPMs and lipid mediator class 
shift in the host’s response to RSV in the initial control and 
final infection clearance.

Human immunodeficiency virus (HIV) is a lentivirus (a 
subgroup of retroviruses) and are classified into two based 
on the genetic characteristics and viral antigen, HIV-1 and 
HIV-2. HIV infection may progress to acquired immuno-
deficiency syndrome (AIDS), a progressive failure of the 
immune system. Over time, AIDS causes life-threatening 
opportunistic infections and a condition in which cancer 
thrives (Douek et al. 2009; Powell et al. 2016).

When co-cultured with HIV-1 infected mononuclear 
cells and human glial cells (astrocytoma, glial and primary 
human astrocyte), tumour necrosis factor alpha (TNF-α) and 
interleukin-1β are produced, and large amounts of LTB4, 
LTD4, LXA4, and PAF, were also found in media from this 
co-culture (Fig. 4) (Genis et al. 1992). So far, this is the 
only in vitro study to prove, that LXs are produced in direct 
response to viral infection. However, the role of LXs in this 
infection model has not been investigated. Synthetic peptides 
derived from human immunodeficiency virus type 1 gp120 
activate the 7-transmembrane GPCR FPR2/ALX, down-reg-
ulating the expression and function of chemokine receptors 
CCR5 and CXCR4 in monocytes (Deng et al. 1999).

FPR2/ALX acts as an efficient core receptor for the pri-
mary isolate of HIV (Shimizu et al. 2008). Viral entries 
through the alternative core receptors (CoR) CCR3 and 

FPR2/ALX depend on the HIV type 1 subtype. Viruses 
pseudotyped with subtype A and C Env proteins use the 
recently described alternative CoR FPR2 more efficiently 
than CCR3 (Nedellec et al. 2009). ChemR23 also acts as 
a CoR for HIV. At this time, HIV-1 and HIV-2 appear to 
use the N-terminus and the second extracellular loop of 
ChemR23 during infection (Martensson et al. 2006). As 
mentioned above, research is needed to determine the role 
of SPMs that act as ligands for FPR2 and ChemR23 in HIV 
infection.

Hepatitis C virus (HCV) is a positive-sense single-
stranded RNA virus of the family Flaviviridae with a small 
(55–65 nm size) envelope (Lee et al. 2017). The HCV is 
the cause of hepatitis C and some cancers such as liver 
cancer (hepatocellular carcinoma, abbreviated HCC) and 
lymphoma in humans (Ferri et al. 2015; Rusyn and Lemon 
2014). To date, there appears to be no report on the effective-
ness of SPMs against HCV. However, HCV peptide (C5A), 
an amphiphilic α-helix peptide of HCV, is an activator of 
the N-formyl peptide receptor in human phagocytes (Lin 
et al. 2011). This suggests the possibility of interaction 
between RvD1 and LXA4, FPR families, and HCV. Vita-
min D metabolites inhibit HCV and upregulate GPR37 gene 
expression, which induces cellular autophagy (Gutierrez 
et al. 2014). PD1 was recently proposed as a new ligand 
for GPR37, and some studies suggest a possible relation-
ship between PD1 and HCV (Fig. 4). SAA also has antiviral 
effects against HCV, however, it induces chronic inflamma-
tion through FPR2/ALX, causing liver damage (Abouelasrar 
Salama et al. 2019). Although research has not been con-
ducted yet, RvD1 and LXA4, which inhibit the action of 
SAA, are likely to suppress liver damage caused by SAA 
during HCV infection.

SARS‑CoV‑2

Severe acute respiratory syndrome Coronavirus 2 (SARS-
CoV-2) refers to a coronavirus strain that causes 2019 coro-
navirus disease (COVID-19), a respiratory disease that is 
the cause of the COVID-19 pandemic (Coronaviridae Study 
Group of the International Committee on Taxonomy of, 
2020). SARS-CoV-2 is an RNA virus that infects the lungs 
and causes deaths through complications such as cytokine 
storms (Goldin et al. 2020).

The anti-inflammatory action of mesenchymal stem cells 
is well known, and it is believed that these mesenchymal 
stem cells exhibit anti-inflammatory action through PGE2 
and LXA4. These lipids mediators alleviate the SARS-
CoV-2 cytokine storm, while arachidonic acid, dihomo-
gamma-linolenic acid, and gamma-linolenic acid inactivate 
enveloped viruses (Das 2020). Obesity is a risk factor for 
SARS-CoV-2 infection, and a BMI of 30 kg/m2 increases 
the risk of infection by 61% (Bello-Chavolla et al. 2020). 
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This is likely due to a deficiency of SPMs in obese patients, 
and this deficiency promotes adverse reactions during 
SARS-CoV-2 infection (Pal et al. 2020). LXA4, Elovanoid-
N32 or RvD6 isomers reduced expression of angiotensin-
converting enzyme 2 (ACE2), but NDP1 did not reduce it. 
These lipids mediators also counteract the binding of the 
receptor-binding domain (RBD) of SARS-CoV-2 spike (S) 
protein to the injured cornea (Figs. 3 and 4) (Pham et al. 
2020). Elovanoid-N32 or RvD6 isomers also attenuated the 
expression of cytokines involved in a cytokine storm and 
hyperinflammation. Based on previous study results that 
have demonstrated SPMs as potential therapeutic targets 
for SARS-CoV-2 infection, studies and review on the use 
of fish oil, an SPMs precursor, as an adjuvant are in pro-
gress. (Torrinhas et al. 2020; Rogero et al. 2020). SPMs and 
soluble epoxide hydrolase inhibitors are currently in clinical 
trials for other inflammatory diseases and can be quickly 
converted and used for SARS-CoV-2 management through 
the removal of cellular debris and inhibition of inflammatory 
cytokines (Panigrahy et al. 2020).

Conclusions

Recently, a new group of molecules, named SPMs that 
resolve inflammation were elucidated. Further, in efforts to 
investigate and demonstrate their mechanism of action, their 
receptors are slowly being discovered. As an additional mile-
stone, SPMs were detected in several biological samples. 
However, the investigation of the pharmacological princi-
ple based on GPCR for SPMs under various physiological 
and pathological conditions is insufficient (Psychogios et al. 
2011; Lukiw et al. 2005). Further research is needed on spe-
cific molecular targets of omega-3 fatty acids such as RvE2, 
RvD2, PDs, and MaRs. The interaction between the host 
immune system and infectious viral attacks represents new 
opportunities for the utilization of SPMs. The use of SPMs 
is likely to help regulate abnormal viral-mediated inflam-
mation and prevent complications such as SARS-CoV-2 
cytokine storm. Besides, SPMs play parts in restoring tissue 
homeostasis, including wound healing. Therefore, they are 
very likely to have therapeutic effects against the sequelae 
of SARS-CoV-2 infection. Both inflammation and resolu-
tion of inflammation are vital processes of the immune sys-
tem. Therefore, a balance between the need for a sufficient 
immune response to clear the infection and the rapid decline 
of immune response to prevent host damage presents a novel 
opportunity for therapeutic exploitation of the SPMs.

Further research is needed to identify opportunities to 
optimize this balance in human viral infectivity. Among 
them, it will be exciting to study how the receptors of SPMs, 
which act as coreceptors during virus infection, play a role 
in virus infection and virus-induced inflammation. Finally, 

although not mentioned in this review, the author would like 
to emphasize that SPMs are effective in treating bacterial 
infections as well.

In nutshell, SPMs shows excellent potential as novel ther-
apeutic options for severe inflammation and tissue damage 
caused by viral infections, including SARS-CoV-2 infection.
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