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BACKGROUND: Risk assessment of chemical mixtures or complex substances remains a major methodological challenge due to lack of available haz-
ard or exposure data. Therefore, risk assessors usually infer hazard or risk from data on the subset of constituents with available toxicity values.

OBJECTIVES: We evaluated the validity of the widely used traditional mixtures risk assessment paradigms, Independent Action (IA) and
Concentration Addition (CA), with new approach methodologies (NAMs) data from human cell-based in vitro assays.

METHODS: A diverse set of 42 chemicals was tested both individually and as mixtures for functional and cytotoxic effects in vitro. A panel of induced
pluripotent stem cell (iPSCs)-derived models (hepatocytes, cardiomyocytes, endothelial, and neurons) and one primary cell type (HUVEC) were used.
Bayesian concentration–response modeling of individual chemicals or their mixtures was performed for a total of 47 phenotypes to derive point-of-
departure (POD) values. Probabilistic IA or CA was conducted to estimate the mixture effects based on the bioactivity profiles from the individual
chemicals and compared with mixture bioactivity.

RESULTS: All mixtures showed significant bioactivity, even though some were constructed using individual chemical concentrations considered “low”
or “safe.” Even though CA is much more accurate as a predictor of mixture effects in comparison with IA, with CA-based POD typically within an
order of magnitude of the actual mixture, in some cases, the bioactivity of the mixtures appeared to be much greater than that of their components
under either additivity assumption.

DISCUSSION: These results suggest that CA is a preferred first approximation for predicting mixture toxicity when data for all constituents are avail-
able. However, because the accuracy of additivity assumptions varies greatly across phenotypes, we posit that mixtures and complex substances need
to be directly tested for their hazard potential. NAMs provide a practical solution that rapidly yields highly informative data for mixtures risk assess-
ment. https://doi.org/10.1289/EHP7600

Introduction
Current risk assessment frameworks are designed primarily for
the evaluation of one chemical at a time (Clahsen et al. 2019;
Lebret 2015), even though most human exposures, especially in
the environmental or occupational setting, occur in the context of
mixtures (Carpenter et al. 2002; Martin et al. 2013). It is well rec-
ognized that an individual chemical-based focus can underesti-
mate risks because interaction among the components in a
mixture can result in complex and substantial changes in the
apparent properties of the constituents (Kortenkamp and Faust
2018). Furthermore, most mixture exposure–effect studies focus
on the adverse effects of mixtures consisting of chemicals from
the same category (Zhang et al. 2010). This approach does not
reflect “real-world” exposures from dozens or hundreds of pollu-
tants that may have complex additive or synergistic/antagonistic
health effects. Although several regulatory authorities are devel-
oping approaches to extend traditional risk characterization
frameworks to mixtures (Bopp et al. 2019; European Chemicals

Agency 2017; More et al. 2019), the knowledge gap in quantita-
tive characterization of the effects by individual chemicals and
their mixtures is a major challenge in regulatory science.

A most common approach to evaluate the adverse health
effects of a mixture makes use of the available toxicological data
on the known constituents. Two classical approaches are concen-
tration addition (CA) and independent action (IA); they are
widely used in risk assessment of mixtures (Backhaus and Faust
2012; Cedergreen et al. 2008; Spiess and Neumeyer 2010; Zhu
and Chen 2016). These approaches estimate the toxic potential of
a mixture based on the individual chemical’s concentration–
response curves, either through adding concentrations in a “rela-
tive potency”-type approach (CA), or by adding responses
assuming independence (IA). Some studies have developed more
sophisticated approaches and tools for environmental mixture
toxicity assessment. Li et al. (2012) proposed a gradient Markov
Chain Monte Carlo (MCMC) algorithm to find Bayesian poste-
rior mode estimates in mixture dose–response assessment. Ritz
et al. (2015) developed an R package drc for curve-fitting and
analyzing the mixture concentration–response. However, these
studies have focused on binary mixtures and have not yet been
extended to reflect real-world scenarios; more complex data sets
are needed to test these modeling approaches.

Novel exposure and in vitro data, now commonly referred to
as “New Approach Methodologies” (NAMs) (Kavlock et al.
2018), may assist in providing empirical data for mixtures risk
assessment. Among NAMs, in vitro human cell-based models are
well-recognized as useful tools for characterizing chemical haz-
ards and as alternative methods to traditional animal testing strat-
egies (Rotroff et al. 2010; Shukla et al. 2010), and their high-
throughput format allows for rapid testing of mixtures, though
experiments with individual chemicals dominate NAMs data
available to date. It has been suggested that integrating mixture
risk assessment with NAMs testing may hold promise in reducing
uncertainties in the health effects of mixture exposures (Drakvik
et al. 2020).
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The purpose of this study was to use NAMs data from targeted
testing of dozens of diverse individual chemicals and their designed
mixtures in a suite of human cell-based in vitro organotypic assays
followed by data-driven characterization of concentration–response
relationships. We combined high-content experimental data and
Bayesian concentration–response modeling to estimate mixture
effects and compare those with actual data from the mixtures.
Specifically, we tested the hypothesis, commonly assumed in cur-
rent mixtures risk assessment, that complex mixture effects can be
predicted based on additivity of individual chemical concentrations
or effects. The results of this analysis could have broad implications
for cumulative risk assessment of real-world exposures.

Material and Methods
Figure 1 illustrates the overall workflow of the experiments, data
analysis, and modeling in this study. First, we collected new data
from in vitro testing in human induced pluripotent stem cell
(iPSC)-derived models for a dilution-series of 8 “designed” mix-
tures (Tables S2–S5) of 42 Superfund Priority chemicals (Table
S1). Next, we applied Bayesian concentration–response modeling

to fit the experimental data for the designed mixtures, as well as
for their individual chemical constituents [data previously
reported in (Chen et al. 2020)]. The fitted concentration–response
relationships for the designed mixtures were compared to the
concentration–response predicted from the individual chemical
data assuming either CA or IA. Finally, we illustrated mixtures
risk characterization by calculating a cumulative margin of expo-
sure (MOE) for the whole mixture and comparing it with the pre-
dictions from CA or IA.

Biologicals and Chemicals
Five human cell types were used in these studies. iCell hepato-
cytes 2.0 (Catalog# C1023), neurons (Catalog# C1008), cardio-
myocytes (Catalogue# CMC-100-010-001), and endothelial cells
(Catalogue# C1023), as well as cell-type-specific media and sup-
plements as defined by the manufacturer, were from FujiFilm
Cellular Dynamics. Pooled human umbilical vein endothelial
cells (HUVECs) in EGM-2 medium (Catalogue# CC-2519A),
and the EGMTM-2 BulletKits (Catalogue# CC-3,162) were from
Lonza.

Figure 1. Schematic diagram of the overall study design. (A) The in vitro cell assay was conducted to construct the concentration–response relationship for
human stem cells under the exposure of individual chemicals and designed mixture. (B) The Bayesian probabilistic approach was further applied to simulate
the likelihood of the exposure–effect pattern. (C) Two additive reference models, independent action (based on the conditional effect) and concentration addi-
tion (based on the conditional concentration), were adopted to assume the combined toxicity. (D) The contributed effect and margin of exposure were calcu-
lated to characterize the individual and combined risk.
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Additional reagents used were as follows. CellTiter-Glo rea-
gent was from. EarlyTox Cardiotoxicity Kit (Catalogue# R8211)
was from Molecular Devices. RPMI 1640 medium, B-27 medium
supplement, gentamicin (50 mg=ml), Calcein AM Green,
MitoTracker Orange reagent, Hoechst 33,342, fibronectin, and
GeltrexTM LDEV-Free Reduced Growth Factor Basement
Membrane were from Life Technologies. Recombinant human
VEGF was provided by R&D Systems. Fetal bovine serum and
Medium 199 were purchased from Fisher Scientific. Laminin
(from Engelbreth-Holm-Swarm murine sarcoma basement mem-
brane) was from Sigma-Aldrich. Cell culture grade dimethyl sulf-
oxide (DMSO) was from Santa Cruz Biotechnology.

The individual chemicals (Table S1) used in this study to pre-
pare the mixtures and for comparisons to mixtures were from the
priority list of hazardous substances from the Agency for Toxic
Substances and Disease Registry (ATSDR 2020). From the list of
over 300 chemicals on the ATSDR list, compounds that are fre-
quently detected at the U.S. National Priority List sites (also
known as Superfund sites), we selected 42 chemicals based on
the following criteria. These chemicals represent diverse classes
of environmental pollutants, including polycyclic aromatic
hydrocarbons (PAHs, n=5), inorganic substances (n=7), phtha-
lates (n=2), pesticides (n=20), and other industrial chemicals
(n=8). They have been evaluated by one or more government
agencies, and human “safe exposure” levels have been estab-
lished. These chemicals were also tested in ToxCast™/Tox21.
Also, their reverse toxicokinetic and exposure data are publicly
available through the U.S. Environmental Protection Agency
(U.S. EPA) dashboard (Williams et al. 2017), thus allowing for
in vitro to in vivo extrapolation and risk characterization.
Chemicals were from Sigma-Aldrich, except heptachlor, hepta-
chlor epoxide, 2,4,5-trichlorophenol, parathion, benzidine and o,
p0-DDT, which were from ChemService.

Preparation of Chemical Mixtures
Chemical mixtures evaluated in this study were designed based
on the following considerations. First, we aimed to create mix-
tures of a large number of chemicals, covering multiple classes of
environmental contaminants. Second, as summarized in Table 1,
the concentration of each mixture component was determined
through several alternative assumptions: a) active concentration
50% (AC50) values from in vitro assays in the ToxCast™ data-
base (Williams et al. 2017); b) the estimated general population
exposure levels derived from ExpoCast estimates (Wambaugh
et al. 2013); c) point-of-departure (POD) values from in vivo
studies in experimental animals used for determining regulatory
oral noncancer reference doses (RfDs) (Wignall et al. 2014), or
d) RfDs themselves (Wignall et al. 2014). For criteria b–d, oral
doses were converted to the steady-state of chemical concentra-
tion at steady state (Css)-based values using the httk R package
(version 1.10.1; Pearce et al. 2017). The median or upper 95th
percentile was used to represent different assumptions for the tox-
icokinetic variability (Table 1). Individual chemicals (Table S1)
were dissolved in 100% cell culture-grade DMSO at a concentra-
tion of 20mM. Then, chemicals were mixed at different propor-
tions to address the considerations listed above and as detailed in
Tables S2–S5. All mixtures were then tested using 10× serial
dilutions to generate concentration–response data at five serial
dilutions.

As shown in Figure 2, relative proportions of the individual
chemicals and the overall cumulative concentrations varied
across mixtures. Both groups of mixtures from in vitro (AC50)
and in vivo values (POD) were relatively evenly distributed by
the proportion of individual chemicals in comparison with the
other groups, which were mostly dominated by the metal zinc

chloride due to the much lower concentrations of other chemi-
cals. The concentrations for metals were based on an in vitro
study (Table 1) because metals are not included in the httk pack-
age (Figure 2A). There were also differences in the cumulative
concentration for the mixtures generated based on exposure lev-
els and RfD (Figure 2B).

Due to the limitation of each database, some values for certain
chemicals were not available. To keep the integrity of each mix-
ture containing all 42 chemicals, different criteria, such as read-
across from chemicals with similar structures, based on common
occurrence in the environment, were applied for chemicals with-
out available data (see notes in Table 1, with concentrations listed
in Tables S2–S5).

Cell Culture and Exposure
Cells were cultured in tissue culture-grade 384-microwell plates
according to the cell supplier’s (Fujifilm Cellular Dynamics and
Lonza) recommendations with respect to cell culture medium and
supplements for each cell type. See Table S6 for links to the manu-
facturer protocols used for each cell type. Experimental protocols
for chemical treatments and phenotyping have also been previ-
ously described for each of these cell types, including iCell hepato-
cytes and iCell cardiomyocytes (Grimm et al. 2015), iCell
Endothelial cells and human umbilical vein endothelial cells
(Iwata et al. 2017), and iCell neurons (Sirenko et al. 2014). In brief,
the microwell plates were pretreated with either 0.1% gelatin (for
iCell hepatocytes and iCell cardiomyocytes), 3lg=cm2

fibronectin
(for iPSC-ECs), and poly D-lysine followed by 3:3 ug=mL laminin
(for iCell neurons). For HUVECs, microwell plates were not

Table 1.Mixtures of the 42 superfund priority chemicals from (Chen et al.
2020) used in this study.

Mixture Description Notes

AC50-L Lowest AC50s from ToxCast™ a

AC50-H Highest AC50s from ToxCast™ a

Expo-L Median ExpoCast oral exposure, con-
verted to median Css

a,b,c

Expo-H 95th percentile ExpoCast oral expo-
sure, converted to 95th percentile Css

a,b,c

POD-L Point of departure used for oral RfD,
converted to median Css

a,b,c,d,e

POD-H Point of departure used for oral RfD,
converted to 95th percentile Css

a,b,c,d,e

RfD-L Oral RfD, converted to median Css a,b,c,d,f

RfD-H Oral RfD, converted to 95th percentile
Css

a,b,c,d,f

aFor metals, values were set based on previous literature as shown below:
Cd (II), Cr (VI) and Co (II): Michal W. Luczak, Anatoly Zhitkovich. 2013. Role of
direct reactivity with metals in chemoprotection by N-acetylcysteine against chromium
(VI), cadmium (II), and cobalt (II). Free Radic Biol Med 65:262–269.
Hg (II): Xu S-Z, Zeng B, Daskoulidou N, Chen G-L, Atkin SL, Lukhele B. 2012.
Activation of TRPC cationic channels by mercurial compounds confers the cytotoxicity
of mercury exposure. Tox Sci 125(1), 56–68.
Zn (II): Shen C, James SA, de Jonge MD, Turney TW, Wright PFA, Feltis BN. 2013.
Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle–exposed
human immune cells. Toxicol Sci 136(1), 120–130.
Ni (II): Funakosh Ti, Inoue T, Shimada H, Kojima S. 1997. The mechanisms of nickel uptake
by rat primary hepatocyte cultures: role of calcium channels.Toxicology124:21–26.
Pb (II): Tchounwou PB, Yedjou CG, Foxx DN, Ishaque AB, Shen E. 2004. Lead-
induced cytotoxicity and transcriptional activation of stress genes in human liver carci-
noma (HepG2) cells. Mol Cell Biochem 255:161–170.
bCss, steady state plasma concentration; calculated using httk R package.
cFor heptachlor epoxide, value for heptachlorwasused; forDEHP, value forDBPwas used.
dFor benzo(a)anthracene and gamma-hexachlorocyclohexane, the concentration range
was set between 1 and 100 lM; for endrin, value for dieldrin was used; for benzo(b)flu-
oranthene, value for fluoranthene was used; for p,p 0-DDD and o-p 0-DDT, value for p,
p 0-DDT was used.
eFor 4,6-dinitro-o-cresol, 2,4-dinitrotoluene was used; for 1,2,3-trichlorobenzene, value
for 2,4,6-trichlorophenol was used.
fFor para-cresol, value was converted from risk specific dose (RSD, milligrams per kilo-
gram per day) for a 10−6 cancer risk.
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pretreated. Cells were resuspended in cell-specific culture media
and trypan blue was used to measure cell density before plat-
ing. Cells were plated (25 mL=well) at a concentration of
2× 105 cells=mL for iCell cardiomyocytes (5,000 cells/well, incu-
bated for 12 d before treatment); 6:72× 105 cells=mL for iCell he-
patocytes (16,800 cells/well, incubated for 5 d before treatment);
for iPSC-EC, cell densities varied based on the assay type,
3 × 104cells=mL (750 cells/well, incubated for 2 d before treatment
for cytotoxicity assays) or 3× 105cells=mL (7,500 cells/well, cell
suspension was freshly prepared before treatment for angiogenesis
assays); for HUVEC, cell densities varied based on the assay type,
3 × 104cells=mL (750 cells/well, incubated for 2 d before treatment
for cytotoxicity assays) or 1:4× 105cells=mL (3,500 cells/well,
cell suspension was freshly prepared before treatment for angio-
genesis assays); and 3× 105cells=mL for iCell neurons (7,500
cells/well, incubated for 2 d before treatment).

Designed mixture stocks in 100% DMSO were further diluted
100-fold in corresponding cell culture medium to yield 4× work-
ing solutions in 1% dimethylsulfoxide (DMSO). The final con-
centration of DMSO in assay wells to following addition of test
mixtures was 0.25% (v/v), an amount which by itself had no
effects on each of the tested cell types (Grimm et al. 2015; Iwata
et al. 2017; Sirenko et al. 2014). Screening assays across different
cell types were performed in duplicate.

For each cell line, a number of phenotypes (Table S6) were eval-
uated using high-content imaging as detailed in (Chen et al. 2020;
Grimm et al. 2015; Iwata et al. 2017; Sirenko et al. 2014). Table S6
lists the phenotypes for each cell type and chemical treatment duration
time for each phenotype. A total of 47 phenotypes (Table S6) were
assessed across five cell types, including cytotoxicity and cell function
effects. Effects on themitochondrial integrity and intensity of iCell he-
patocytes and neurite outgrowth of iCell neuronsweremeasured using
high-content fluorescence imaging (ImageXpress Micro Confocal
High-Content Imaging System, Molecular Devices). Calcium flux, a
surrogate for beating and ion channel activity in iCell cardiomyocytes,
was determined by FLIPR tetra (Molecular Devices) high-content

kinetic imaging instrument using EarlyTox™ Cardiotoxicity Kit
(Molecular Devices) as detailed in (Grimm et al. 2015). Effects on
angiogenesis in both iCell endothelial cells and HUVECs was meas-
ured by 3D cell culture using extracellular gel matrix and followed by
high-content fluorescence imaging as detailed in Iwata et al. (2017).
Image analysis was performed using the Multi-Wavelength Cell
Scorning, Neurite Outgrowth, or Angiogenesis Tube Formation appli-
cation modules in MetaXpress (Molecular Devices) software (Table
S6), and quantitative data were extracted for concentration–response
modeling.

Concentration–Response Modeling
First, raw data for each phenotype were normalized to the aver-
age of the vehicle (0.25% DMSO)-treated wells. Next, the effec-
tive concentration for a 10% relative change from controls (EC10)
was chosen as the representative point of departure (POD) for
both cytotoxicity and functional responses as a representative
benchmark dose used commonly in dose–response assessments
for quantitative phenotypes (Chiu et al. 2017; Sirenko et al.
2017).

Bayesian Concentration–Response Modeling
We used a Bayesian approach for the analysis to quantify the
uncertainty in our PODs and concentration–response relation-
ships (Figure 1A). The Bayes’ rule can be simply expressed as
Gelman et al. (2013)

pðh,EÞ / pðhÞpðEjhÞ,
where h is the parameters in the concentration–response model, E
is the observed response from the given dose. The pðhÞ is the
prior distributions of model parameters, and pðEjhÞ are the
observed data from individual chemicals and mixture in this
study. We adopted the Hill model from the BMD model suite

Figure 2. Summary of the properties of the designed mixtures used in this study. (A) Treemap of the chemical proportions contained in each of the designed
mixtures. The color represents the classes of environmental contaminants that were selected in the study. (B) Cumulative (maximum) concentration of the
chemicals in each designed mixture. See acronym explanations and description of the designed mixtures in Table 1.
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(Davis et al. 2011; Shao and Shapiro 2018) that parameterized
the concentration–response profile as

E Cijhð Þ= h0

1 + C
h1

� �h2 + ei,

where Ci is the ith-experimental concentration for the individ-
ual chemical (lM) or dilution factor (unitless) for the mixture.
h0 is the baseline response and was assigned a fixed value of 1
due to the renormalization with the control (0.25% DMSO vehi-
cle) group. h1 is the concentration at half of the maximal
response (also known as EC50). h2 is the Hill coefficient that
determines the slope of the simulated curve, and ei is residual
error. The settings of prior parameters were based on the
Bayesian BMD platform (Shao and Shapiro 2018). For e,
instead of a normal distribution, the error estimation between
the data and model was assumed to follow a Student’s t distri-
bution with the degrees of freedom equal to 5 with scale param-
eter r to recognize the outliers issue (Blanchette et al. 2019;
Chiu et al. 2017). The likelihood of response data Ei for concen-
tration Ci was assumed to be

Ei ∼T5
�
f ðCi,jh1,jh2Þ,jr

�
,

where f(.) is the Hill concentration–response model that is the
function of 2 Hill parameters (h1,h2) and the designed concen-
tration Ci. The prior of r was assumed to be a half-normal dis-
tribution with standard deviation 0.1 and therefore can be
written as,

r∼Nð0, 0:1Þ,r≥ 0:

We used log-uniform distribution for the given parameter h1
due to the parameter range being over 1 order of magnitude, with
a range from 1 order of magnitude below the lowest experimental
concentration to 2 orders of magnitude above the highest experi-
mental concentration. Thus, the prior for h1 was assigned to be

log ðh1Þ∼Uniform½log ðh1,minÞ,j log ðh1,maxÞ�:
The Hill coefficient (a power parameter) was set to the range

0.1 to 15 for the mixtures but assumed the positive cooperativity
that ranged between 1 to 15 for the individual chemicals. This
lower boundary aimed to avoid a shallow concentration–response
that causes unstable estimates of the POD, particularly when
combining into a mixture using IA or CA. Thus, the prior for h2
was assigned to be

h2 ∼Uniformðh1,min,jh1,maxÞ:
The final Bayesian concentration–response model can be

therefore written as

pðh1,jh2jEiÞ / pðh1Þ � pðh2Þ � pðEijh1,jh2Þ:
Posterior distribution sampling was conducted using the

Hamiltonian MCMC algorithm. For each chemical or mixture,
the simulations consisted of three chains with the first half treated
as a warm-up and hence discarded.

To obtain the robust and consistent sampling result, the con-
vergence was assessed using the potential scale reduction factorbR (Gelman and Rubin 1992), which compares between- and
within-chain variability. bR � 1 indicate poor convergence, and
asymptotically approach 1 as the chain converges. Parameters
with values of bR ≤ 1:05 were considered to be converged in our
simulation.

The posterior prediction wasmade using the estimated parame-
ters to predict the probability distributions of EC10, defined as a
10% relative change from controls, for each chemical and mixture.
Specifically, theEC10 each concentration–response is given by

EC10 = h1 � 1
0:9

� �h2

− 1

" #
:

Mixture Dose–Response Reconstruction
The concepts of CA and IA are routinely used in risk assessment
practice to predict the cumulative effect of a mixture (Backhaus
et al. 2000; Hadrup et al. 2013; Zhu and Chen 2016). These mod-
els are based on the assumption that chemicals in a mixture do
not interact with each other, and therefore their activity can be
predicted through additivity approaches. The CA assumption pos-
its that there is a shared pathway from the joint action of substan-
ces in the mixture. For instance, the chemicals in the mixture
may be acting on the same molecular target sites but with differ-
ent potency (Cedergreen et al. 2008). On the other hand, IA (also
known as response additivity) assumes that all substances in a
mixture have pathways and act independently without interfering
with each other so that they can exert their effects completely
independently.

CA can be mathematically formulated for the mixture that
comprises n-compounds as

Xn
j=1

fj
ECx, j

=
1

ECx,mix
,

where ECx, j is the effective concentration of the jth compound that
can provoke x% effect, fj is the fraction of jth compound in a mix-
ture, and ECx,mix is the effective concentration of the designed mix-
tures that have the same x% toxicity effect. Therefore, the formula
to predict theEC10 of themixture can be derived as follows:

EC10,mix =
Xn
i=1

fj
EC10,i

 !−1

=
Xn
i=1

fj

h1,j � 1
0:9

� �h2,j
− 1

� �−1
0B@

1CA
−1

:

The mathematical formula of IA can be written as

E Cmixð Þ ¼
Yn
j¼1

E Cið Þ ¼
Yn
j¼1

1

1þ C
h1,i
� �h2,j

0@ 1A
where Cmix and Cj are concentration for mixture and the jth com-
pound, respectively. The EC10 would, therefore, need to be
obtained by inverting this formula to solve for Cmix.

To summarize, CA uses the effective concentration from indi-
vidual chemicals (ECx, j) to predict the corresponding effective con-
centration for the designed mixture (ECx,mix), whereas IA uses the
concentration of each individual chemical (Cj) in the designed mix-
ture to predict the corresponding response [EðCmixÞ] to the whole
mixture.

Risk Characterization
We used the concept of the margin of exposure (MOE) to char-
acterize the cumulative risk associated with each mixture
(Figure 1D). The MOE is defined as the ratio of the effect thresh-
old (we used EC10,j for each phenotype in this study) to the expo-
sure concentration (World Health Organization 2009), which is
defined here as the undiluted concentration in each mixture. The
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calculated MOEs were used to characterize chemical exposure
risks for the individual chemicals j (MOEj =EC10,j=Cj), the cu-
mulative risks derived for each designed mixture under IA or CA
(MOEmix,IA or CA =EC10,mix, IA or CA=Cmix), and the cumulative risk
as estimated from testing the designed mixtures directly
(MOEmix =EC10=Cmix). An estimated MOE=1 indicated that the
exposure and threshold concentrations are the same, and thus a
higher MOE (usually MOE≥100) represents a “safer” character-
ization of risk.

Data Processing and Reproducibility
All data analysis and graphics are conducted using R (version
3.6.2; R Development Core Team). The rstan package (version
2.18.2; Carpenter et al. 2017) was used for Hamiltonian MCMC
simulations for the concentration–response fitting. All model
codes and raw data are provided in the Supplemental Materials to
allow other researchers to reproduce our results and are available
in GitHub (https://github.com/nanhung/EHP7600). All MCMC
simulations were performed and tested under the different operat-
ing systems of Windows 10× 64 (build 17763), Linux (elemen-
tary OS 5.1.2 Hera), and macOS (Catalina 10.15.3). RStudio
version 1.2.5019 was used as an integrated development environ-
ment for modeling, post-processing, and documentation (RStudio
Team 2019). More details can be found in supplemental data
from the Supplemental Materials and the GitHub repository.

Results

Cell Culture and Chemical Treatments
Representative images (Figure 3) of the data from untreated iCell
neurons, iCell cardiomyocytes, and HUVECs, cells exposed to
DMSO (0.25%) vehicle, or exposed to two designed mixtures are
shown to illustrate the effects. Mixture AC50-H at the lowest tested
concentration (diluted by 10,000× from the highest concentration)
was without effect on neurite outgrowth but affected beating rate in
cardiomyocytes and tube formation in HUVECs. Similarly, mix-
ture POD-H at an intermediate tested concentration (diluted by
100× ) affected tube formation in HUVECs without cytotoxicity,
but it was overtly cytotoxic to both neurons and cardiomyocytes.
The complete data set is included as a Supplemental Excel file.

For the data on the individual chemicals (Chen et al. 2020),
convergence for Bayesian concentration–response modeling was
reached for all parameters with a chain length of 4,000, where the
first 2,000 “warm-up” samples of each chain were discarded.
Across the three chains, the 6,000 available samples were down-
sampled to 500 samples for evaluation of model fit and for infer-
ence. The example concentration–response profiles are shown in
Figure 4. The most toxic response observed was for the total out-
growth data in iCell Neurons andmercuric chloride, with estimated
median EC10 of 0:02 lM [90% credible interval (CI): 0.01, 0.05].
Complete fitting results for the individual chemicals are provided
in Figures S1–S47 and a supplemental Excel file.

Figure 3. Representative examples of bioactivity in different cell types. (A), fluorescent (calcein) staining (objective magnification= 20× ) of untreated (con-
trol) iCell neurons or cell treated with vehicle, or two designed mixtures (AC50-H at lowest tested concentration, diluted by 10,000× from the highest concen-
tration, and POD-H at an intermediate tested concentration, diluted by 100 × from the highest concentration). See acronym explanations and description of the
designed mixtures in Table 1. (B), characteristic kinetic imaging-derived fluorescence intensity traces indicative of the Ca2+ fluxes across cell membranes of
iCell cardiomyocytes that spontaneously contract in cell culture. (C), fluorescent (calcein) staining (objective magnification= 4× ) of untreated (control)
HUVECs or cell treated with vehicle, or two designed mixtures. See Table 1 for description of designed mixtures AC50-H and POD-H.
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For each mixture, convergence was reached with the chain
length set to 8,000, with 4,000 warm-up samples discarded.
Again, down-sampling was performed with 500 samples saved
for analysis. The example mixture concentration–response profile
is shown in Figure 4 for the AC50-H mixture. The estimated EC10
is below the lowest tested concentration with a value of 0.29
(90% CI: 0.25, 0.36). Complete fitting results for the designed
mixtures are provided in Figures S48–S94).

Figure 5 summarizes the fitted distribution of EC10 for each
mixture across all phenotypes. If we consider “active” as those
phenotypes with an estimated EC10 lower than the undiluted
designed concentration, the mixture POD-H showed the highest
“activity” rate of nearly 100%, with Expo-L having the least ac-
tivity with a value of less than 40% (Figure 5A, Table 2).
However, activity (fraction of phenotypes showing effects) and
potency (low vs. high EC10 values) were not completely corre-
lated. For instance, the AC50-H, POD-L, and POD-H mixtures
had similar activity, but the distribution of EC10 values was much
lower for the AC50-H mixture (Figure 5B, Table 2). Thus,
although they may be similar from a hazard identification point
of view, they would clearly differ in terms of risk.

Mixture Response Reconstruction
Based on its higher activity and potency, we use the mixture of
AC50-H as a representative mixture to illustrate the impact of the
conventional additivity assumptions for mixtures. Figure 6A
shows the concentration–response profiles for total outgrowth in
iCell neurons, beats per minute for iCell cardiomyocytes, and
mean tube length in HUVECs, respectively (see Figures S95–S99
for other phenotypes). Although the CA-based predictions were
closer to the true mixture concentration–response than the IA-
based predictions, the CA-based predicted EC10s were nonetheless
higher (i.e., lower potency) than the actual mixture estimates by up
to an order of magnitude. The results across all phenotypes are
shown in Figure 6B. As with the examples in Figure 6A, overall,
EC10s derived from CA were closer to the actual mixture EC10s.
For a few phenotypes, such as total outgrowth, adenosine triphos-
phate, and total branch in iCell neurons and results for iCell

cardiomyocytes, the differences between central estimates of CA
and the actual mixture dose–response were less than 10-fold; how-
ever, most phenotypes had high uncertainty. The IA predictions
were even less accurate, with estimated EC10s far from the actual
mixture estimates, especially for the more sensitive phenotypes
with lower actual EC10s. Figure 6C shows a summary comparison
among EC10s from CA, IA, and the actual mixture. The mixture-
based estimated EC10s had the lowest median concentration
(0:45 lM), with the CA- and IA-based predictions being substan-
tially higher (4:7 lMand 886 lM, respectively).

A summary of the results for the accuracy of CA and IA across
all mixtures are presented in Table 2. The CA assumption-based
results showed an overall higher performance in predicting both
activity (the percent of phenotypes with EC10s < highest designed
mixture concentrations) and potency (EC10s). For activity, the sen-
sitivity of CAwas found to be at least 0.79, whereas in some cases,
IA had zero sensitivity. Specificity was poorer for CA, with values
no more than 0.52. The estimated ratio between the designed mix-
ture EC10s and the EC10s estimated from dose reconstruction
showed that CA also had better predictivity in comparison with IA.
Median EC10 values across phenotypes based on CA were within
an order of magnitude of those for the actual mixture, whereas IA
predicted median potency to be at least an order of magnitude less
that the actual mixture. In all cases, however, there was a lot of var-
iation in predictive power across phenotypes.

Risk Characterization
To illustrate how these NAMs data can be used in risk characteri-
zation, we used the AC50-H mixture as an example and examined
the margin of exposure (MOE) for three selected phenotypes
(Figure 7). Almost all estimated MOEs for the AC50-H mixture
were inadequate to be considered “safe,” represented by an
MOE>100.

Under CA assumptions, the “dominant” chemical(s) with
respect to the potency of the mixture can be identified as the
one(s) that have the largest values of fj=EC10,j For instance, in
iCell neurons, mercuric chloride is the most potent chemical,
with the lowest individual chemical MOE. This compound also

Figure 4. Representative Bayesian curve-fitting examples of concentration–response profiles for individual chemicals (insets) and a representative designed
mixture (AC50-H; see Table 1 for description) for total outgrowth in iCell neurons (results for all other phenotypes can be found in Supplemental Materials
Figures S1–S94 and a Supplemental Excel file). See acronym explanations and description of the designed mixtures in Table 1. Dots represent experimental
data points. Gray lines represent individual simulated curves from the last 100 iterations. The vertical dashed red lines represent the 90% credible interval on
the point of departure (EC10).
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Figure 5. (A) The Bayesian modeling-estimated effective concentrations (EC10) (median with 90% credible interval) of the designed mixtures. The dashed ver-
tical line is the total chemical concentration for each designed mixture. The different phenotypes in each cell type (see color legend on top of the figure) are dis-
played by the same color. Cyan is HUVECs, dark magenta is iCell cardiomyocytes, green is iCell endothelial cells, dark orange is iCell hepatocytes, and dark
blue is iCell neurons. The percent of phenotypes active was based on the posterior median EC10 values compared with the undiluted designed concentration.
(B) The probability density plot shows the distribution of all estimated EC10 for each mixture. See acronym explanations and description of the designed mix-
tures in Table 1. All data are included in a Supplemental Excel file.
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Table 2. Comparison of the designed mixture effects to dose reconstruction from the data on the mixture components through CA or IA.

Mixture

Total Conc. Percent activea [sensitivity, specificity] EC10,mix [90% CI] EC10CAor IA=EC10,mixb [90% CI]

lM Designed mixture CA IA lM CA IA MOEmix [90% CI]

AC50-L 48.3 70% 85%
[0.94, 0.36]

4.3%
[0.06, 1.0]

27
[1.7, 340]

0.44
[0.095, 3.0]

61
[9.3, 320]

0.55
[0.036, 7.1]

AC50-H 6236.3 96% 100%
[1.0, 0.0]

89%
[0.91, 0.5]

0.45
[0.12, 5,600]

7.6
[0.0085, 99]

1,200
[0.90, 17,000]

0.000072
[0.00002, 0.90]

Expo-L 79.4 36% 64%
[0.82, 0.47]

0%
[0.0, 1.0]

100
[10, 850]

0.39
[0.082, 2.8]

22
[3.9, 120]

1.3
[0.13, 11]

Expo-H 79.9 51% 64%
[0.79, 0.52]

0%
[0.0, 1.0]

79
[5.4, 930]

0.49
[0.067, 2.8]

37
[4.4, 150]

0.99
[0.067, 12]

POD-L 2767.1 94% 100%
[1.0, 0.0]

51%
[0.55, 1.0]

140
[760, 2,900]

0.11
[0.030, 0.4]

12
[2.2, 35]

0.05
[0.028, 1.1]

POD-H 21348.4 98% 100%
[1.0, 0.0]

100%
[1.0, 0.0]

14
[3.7, 10,000]

0.48
[0.0053, 2.5]

54
[0.31, 270]

0.00066
[0.00017, 0.48]

RfD-L 83.8 51% 83%
[0.92, 0.26]

0%
[0.0, 1.0]

78
[7.9, 770]

0.28
[0.070, 1.6]

22
[4.6, 140]

0.93
[0.095, 9.2]

RfD-H 115.7 77% 92%
[0.94, 0.18]

0%
[0.0, 1.0]

39
[5.1, 760]

0.43
[0.075, 1.5]

49
[6.6, 120]

0.33
[0.044, 6.6]

Note: CA, concentration addition; CI, confidence interval; IA, independent addition; MOE, margin of exposure.
aPercent Active is the percent of phenotypes with posterior median EC10 < highest tested concentration. Sensitivity is the true positive rate, and specificity is the true negative rate.
bEC10CAor IA=EC10,mix is the distribution across phenotypes [median (90% CI)] for the ratio between the “reconstructed” CA- or IA-based mixture EC10 and the EC10 of the effects of the
designed mixture (all based on posterior medians). A ratio <1 overestimates potency, whereas a ratio >1 underestimates potency. The same ratio applies to the CA- or IA-based MOEs.

Figure 6. Comparison of curve-fitting, IA, and CA estimated median effective concentration (EC10) with 95% confidence limits, and each box and whisker plot
shows the median, first/third quartile, and a distance of 1.5 times the IQR. (A) The representative examples to compare the concentration–response-profile for
fitting and IA/CA predicted result. Box and whisker plot represents the distribution of the estimated EC10. The points are the in vitro experimental data. (B)
The comparison of estimated EC10 across all phenotypes. The shaded bars represent median and 95% confidence limits for the prediction from CA or IA (col-
ors correspond to those in panel C) (C) Box and whisker plots summary of the estimated EC10; the points represent values outside 1.5 times the IQR. All data
are included in a Supplemental Excel file. Note: CA, concentration addition; IA, independent addition; IQR, interquartile range.
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dominates the overall response predicted in other phenotypes in
the iCell neurons (Figure S100). In iCell cardiomyocytes, the CA
predictions suggest that endosulfan is the principal chemical that
contributes to the cardiotoxicity effect, along with mercuric chlo-
ride, albeit with wider estimated uncertainty. All predicted results
of MOE estimation for other phenotypes for the AC50-H mixture
can be found in Supplemental Materials (Figures S100–S104).
These results are summarized in Figure 8, which shows the distri-
bution of MOEs across phenotypes for each specific cell type
(Figure 8A) and all cell types together (Figure 8B). As with the
EC10s, the MOE based on the assumption of CA was closer to the
MOE for the actual mixture than the use of IA, but CA may still
underestimate risk 1–2 orders of magnitude, with the greatest
errors observed in the HUVECs and iCell hepatocytes.

More generally, as shown in Table 3, for all mixtures except
Expo-L, more than half of the phenotypes had MOE<1, and
across all mixtures, almost all the phenotypes had MOE<100.
MOEs based on CA tended to be a bit more conservative except
for the AC50-H mixture, for which the CA-based MOE was
about 10-fold higher. However, IA-based MOEs were substan-
tially larger, with a much smaller fraction of MOEs<1, though
most were still <100.

Discussion
Large-scale biomonitoring programs have convincingly demon-
strated that all humans are concurrently exposed to multiple
chemicals (Calafat et al. 2017; Dixon et al. 2019; Rosofsky et al.
2017), yet human health risk assessments are still largely based
on one-chemical-at-a-time analyses. Indeed, mixtures risk assess-
ment, as currently practiced, relies heavily on adding up the risks

of individual chemicals assuming either dose– or concentration–
addition or independent action. Even the application of these
additivity assumptions is inconsistent across the field. For

Figure 7. The estimation of the MOE for cytotoxicity phenotypes in the representative cell. Box and whiskers plots show the distribution (median, first/third
quartile, distance of 1.5 times the interquartile range) of the MOE that was derived by the curve-fitting and IA-/CA-predicted EC10 with the designed concen-
tration in the AC50-H designed mixture. See acronym explanations and description of the designed mixtures in Table 1. Note: BPM, beats per minute; CA, con-
centration addition; IA, independent addition; MOE, margin of exposure.

Figure 8. Ridgeline plots show the margin of exposure for the (A) organ-
specific human stem cell and (B) all combined summarization under the ex-
posure of AC50-H designed mixture. See acronym explanations and descrip-
tion of the designed mixtures in Table 1.
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instance, recommendations as to when to apply dose– or concen-
tration–addition range from the very narrow (e.g., only for the
same mode of action) to the relatively broad (e.g., same target
organ). Moreover, the conflicting underlying additivity assump-
tions are difficult to verify empirically, because only a few studies
have collected data on the effects of the individual chemicals and
their mixtures in the same model system (Backhaus and Faust
2012; Hadrup et al. 2013; Howard et al. 2010). Thus, it is widely
acknowledged that many challenges exist in the field of mixtures
risk assessment that need to be overcome to move the field for-
ward and inform decision makers (Bopp et al. 2019).

Due to their lower cost and higher throughput, NAMs and al-
ternative animal models have emerged as a potential approach to
substantially advance mixture risk assessment (Blackwell et al.
2019; Geier et al. 2018; Hayes et al. 2020; Hoover et al. 2019;
Incardona et al. 2006; Ruiz et al. 2019; Seeger et al. 2019). This
study adds to the body of the recent advances on using NAMs to
characterize the toxicity of mixtures, having applied novel high-
throughput in vitro models based on a diverse array of human
cells. We took advantage of recently developed reproducible and
physiologically relevant human in vitro models derived from
iPSCs (Li and Xia 2019), models that have been successfully
applied for screening of diverse chemicals (Chen et al. 2020). To
our knowledge, human iPSC-derived cell models have not been
used to characterize the hazards of complex mixtures comprising
a large number of diverse environmental chemicals. We observed
differing effects of mixtures on different cell types/phenotypes,
suggesting that this multitissue approach may aid in identifying
the potential targets of certain mixtures. Another advantage of
the in vitro testing system used in this study is that in addition to
traditional cytotoxicity end points, functional effects of different
cell types were also measured, suggesting that data on physiolog-
ically relevant phenotypes can better reflect the effects on human
health. Furthermore, a large number of end points collected from
in vitro testing would contribute to increasing the confidence of
the modeling procedures for predicting the effects of mixtures
from individual components.

Several important conclusions can be drawn from our data
and analysis. First, it is clear that cumulative effects from com-
plex mixtures are important, even when individual chemical
exposures levels may be considered “low” or “safe.” For both our

exposure- and RfD-based mixtures, which mimic either current
actual exposure levels or levels currently presumed to be “safe,”
we found that a substantial fraction of phenotypes showed activ-
ity (Table 2). Second, the assumption that chemicals behave inde-
pendently leads to a severe underestimation of their cumulative
effects. Specifically, across all of the mixtures, the assumption of
IA performed very poorly in predicting either activity or potency
of the mixtures (Table 2). Third, on average, POD predictions
based on CA are within about an order of magnitude of the POD
for the full mixture, consistent with previous studies predictions
(Backhaus et al. 2004; Faust et al. 2003). Moreover, given the
diverse modes and mechanisms of action across the individuals
chemicals composing the mixtures used in this study, our results
argue strongly against the requirement of a common mode of
mechanism of action to apply CA to address cumulative risks.
Fourth, in a number of cases, bioactivity of the mixture appears
to be greater than the sum of the effects of individual chemical
components. For instance, although in some cases, such as mer-
curic chloride effects in neuronal cells, one chemical clearly
dominated the bioactivity, in many other cases, the mixtures
proved to be clearly more active than any of the individual chem-
icals, suggesting a synergistic effect. An important strength of
our study is its use of many more and diverse chemicals, cell
types, and end points than any previously published work that we
know of, hence providing important new information about the
considerations for mixture dose reconstruction.

Our study has a number of important limitations. First, our
CA approach does not address the possibility of a saturation
effect due to the presence of “partial agonists” (compounds with
smaller maximal effects levels) that are influencing the efficacy
of the whole mixture (Howard et al. 2010; Silva et al. 2002).
However, we consider the impact of partial agonists to be
unlikely because our analyses focused on the lower part of the
concentration–response curve. Another issue, which may par-
tially explain the apparent “synergy” in the AC50-H mixture, has
to do with bioavailability, because it is possible that there is a
greater freely available fraction of each chemical in a mixture in
comparison with single chemical experiments. This phenomenon
has been recently demonstrated for complex mixtures and petro-
leum substances (Luo et al. 2020); it is thought to be due to satu-
ration of binding sites in the presence of multiple compounds.
The likely differences in free fraction in vitro and in vivo (e.g.,
protein content in plasma in vivo is usually greater than that in
media in vitro) thus present a challenge for the extrapolation of
these results to the in vivo setting. Furthermore, our studies did
not have a specific “positive control” for different mechanisms of
synergy and, therefore, do not have a mechanistic basis or model
(Lasch et al. 2020) for our observations. Additional experiments
with known mechanisms for synergism and the development of
theoretical models for synergistic effects will be needed in the
future. Finally, our study does not address the additional chal-
lenge of understanding population variability under the exposure
to complex mixtures. Previously, we demonstrated that the
population-based iPSC-derived cardiomyocyte model and
Bayesian concentration–QTc modeling approach had the ability
to accurately predict the in vivo concentration range of regulatory
concern (Blanchette et al. 2019). Our current approach only
quantifies the uncertainty in a single individual, but as
population-based, iPSC-derived models become available, it can
be extended to the population level to obtain complete informa-
tion for use in mixtures risk assessment.

Conclusion
This study applied NAMs to determine the bioactivity of mix-
tures of 42 Superfund priority chemicals in comparison with

Table 3. Comparison of the designed mixture MOEs from the data on the
mixture components through CA or IA.

Mixture

MOEmix
a (90% CI)

Mixture CA IA

AC50-L 0.55
[0.036, 7.1]

0.19
[0.021, 2.3]

42
[2.8, 120]

AC50-H 0.000072
[0.00002, 0.90]

0.00075
[0.000071, 0.015]

0.13
[0.0054, 1.1]

Expo-L 1.3
[0.13, 11]

0.77
[0.050, 2.3]

43
[5.1, 56]

Expo-H 0.99
[0.067, 12]

0.77
[0.050, 2.3]

43
[5.1, 55]

POD-L 0.05
[0.028, 1.1]

0.0077
[0.0016, 0.039]

0.95
[0.23, 2.3]

POD-H 0.00066
[0.00017, 0.48]

0.00069
[0.00011, 0.0047]

0.092
[0.012, 0.29]

RfD-L 0.93
[0.095, 9.2]

0.46
[0.0045, 2.0]

37
[5.0, 53]

RfD-H 0.33
[0.044, 6.6]

0.20
[0.0018, 1.1]

22
[2.1, 46]

Note: CA, concentration addition; CI: confidence interval; IA, independent addition;
MOE, margin of exposure.
aEach MOE is the distribution across phenotypes [median (90% CI)] for the ratio
between the actual mixture or “reconstructed” CA- or IA-based EC10, and fixed undi-
luted mixture concentration.
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predictions from two classic mixture toxicity models, IA and CA.
Although CA was generally much more accurate than IA in pre-
dicting mixture effects, in some cases the mixture effect was
underestimated substantially: i.e., the bioactivity of the mixture
may be greater than the sum of its parts. Our findings support the
concern that mixtures can result in a greater effect than adding up
the effects of individual compounds and suggest that testing of
actual environmental samples (e.g., real-life mixtures) is desira-
ble, rather than simply assuming that the effects of individual
analytes from an environmental sample can be added together.
Such whole-mixture testing is likely only to be possible on a rou-
tine basis with in vitro models. Our approach of using a small
panel of iPSC-derived tissues in a high-throughput format thus
provides a key component to a practical solution for the design of
future risk assessments of complex environmental samples.
However, challenges remain in addressing both population vari-
ability as well as in vitro to in vivo extrapolation in the context of
a mixture.
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