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Abstract

Dietary interventions such as intermittent fasting and the ketogenic diet have demonstrated

neuroprotective effects in various models of neurological insult. However, there has been a

lack of evaluation of these interventions from a surgical perspective despite their potential to

augment reparative processes that occur following nerve injury. Thus, we sought to analyze

the effects of these dietary regimens on nerve regeneration and repair by critical appraisal

of the literature. Following PRISMA guidelines, a systematic review was performed to iden-

tify studies published between 1950 and 2020 that examined the impact of either the keto-

genic diet or intermittent fasting on traumatic injuries to the spinal cord or peripheral nerves.

Study characteristics and outcomes were analyzed for each included article. A total of 1,890

articles were reviewed, of which 11 studies met inclusion criteria. Each of these articles was

then assessed based on a variety of qualitative parameters, including type of injury, diet

composition, timing, duration, and outcome. In total, seven articles examined the ketogenic

diet, while four examined intermittent fasting. Only three studies examined peripheral

nerves. Neuroprotective effects manifested as either improved histological or functional

benefits in most of the included studies. Overall, we conclude that intermittent fasting and

the ketogenic diet may promote neuroprotection and facilitate the regeneration and repair of

nerve fibers following injury; however, lack of consistency between the studies in terms of

animal models, diet compositions, and timing of dietary interventions preclude synthesis of

their outcomes as a whole.

Introduction

Wound healing is a biological phenomenon that requires sufficient calories and precursors for

unimpeded progression [1, 2]. The association of malnourishment and adverse healing serves

as the basis for nutritional optimization, and surgical emphasis is placed on timely recognition

of deficiencies and appropriate supplementation [3]. Yet, emerging evidence suggests that diet
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can also be leveraged to augment the reparative process [4–7]. Intermittent episodes of energy

restriction (i.e. intermittent fasting) and regimens that promote metabolic switching—namely,

ketone oxidation—have shown salutary effects across diverse species and diseases [8–19].

These dietary interventions seem to induce novel responses to injury and enhance repair in

various tissues [20–26]. Interestingly, the proposed mechanisms extend beyond weight loss or

diminished production of reactive oxygen species and include adaptive stress responses,

reduced inflammation, efficient bioenergetics, and improved repair and renewal at the cellular

level [6–7]. Ketone bodies—by-products of fatty acid oxidation and a vital fuel source for the

brain in episodes of nutrient deprivation—have been implicated as key mediators [27].

Amongst nutritional regimens that mimic fasting-state metabolism, the ketogenic diet

(KD) is well studied [28]. This diet relies primarily on the oxidation of lipids and was discov-

ered as a treatment for drug-resistant epilepsy over a century ago. Since then, KD has demon-

strated protective effects in a wide-spectrum of neurological disorders, including models for

neurodegeneration, cerebrovascular disease, and immune-mediated demyelination [27–33].

The diet is also relatively simple to follow in practice, with patients instructed to consume

meals containing an average of four parts fat to one part protein and carbohydrates (4:1 lipid

to nonlipid ratio) such that 90% of daily caloric intake is derived from fat [34, 35]. A modified

form of KD with a 3:1 ratio of lipid to nonlipid can also be used [35, 36]. Working with a nutri-

tionist, patients can design a ketogenic diet by strategically avoiding excessive intake of foods

such as processed grains, fruits, and beans while consuming more calories through foods such

as eggs, meat, dairy, and nuts.

In addition to KD, intermittent fasting is another dietary intervention that has been well

studied in the literature. For instance, every-other-day fasting (EODF), also known as alternate

day fasting (ADF), is a form of intermittent fasting in which patients are instructed to alternate

days between zero caloric intake and ad libitum food consumption. In turn, EODF has been

shown to significantly increase serum ketone body levels in animal models, while a random-

ized controlled trial of EODF over four weeks in humans has even demonstrated improved

cardiovascular markers, improved fat-to-lean ratios, and increased serum ketone bodies in

subjects, even on non-fasting days [37–39].

Despite the promising research surrounding KD and intermittent fasting, there remains a

paucity of surgical interest surrounding these dietary interventions [40–46]. The potential for

neuroprotection and enhanced reparative processes make KD and related diets attractive

adjuncts in peripheral nerve surgery and optimizing outcomes. Thus, we set out to investigate

the effects of KD, intermittent fasting and ketone bodies on nerve injury and repair. To this

effect, we performed a systematic review of the available literature using various keywords and

inclusion criteria, with emphasis on traumatic injuries of the spinal cord and peripheral

nerves.

Methods

In accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) guidelines, two reviewers (MC, LRS) conducted a systematic literature search within

the MEDLINE database. All articles published between 1950 and 2020, with English as the pri-

mary language, were included in the search query. A combination of Boolean operators with

the following MeSH terms were used to conduct the search: “wound healing,” “cellular repair,”

“regeneration,” “tissue healing,” “stem cells,” “tissue repair,” “nerve injury”, “nerve repair,”

“nerve regeneration,” “spinal cord injury,” “ketogenic diet,” “ketosis,” “ketone body,” and

“ketones.” Both reviewers independently performed each step in the study selection process.

Cross-referencing initial articles allowed for the identification of additional articles. Articles
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were screened by title and available abstract for nerve repair and regeneration involving the

peripheral or spinous tissues. The optic system was excluded from this review. Injuries that

were traumatic or surgical in nature were included, whereas ischemic, neurodegenerative,

immunologic, neoplastic, epileptic and metabolic insults were excluded. Studies that employed

a ketogenic diet or ketone supplementation as an intervention were included for further

review. Diets that mimicked a fasting state and promoted ketosis (i.e. very low carbohydrate

diet, intermittent fasting) were also included. Studies that dealt with synthetic ketone ana-

logues (i.e. poly-3-hydroxybutyrate), review articles, book chapters, editorials, and commen-

taries were excluded. Finally, studies that did not examine a histological or functional outcome

were excluded.

Data extraction

Both reviewers independently verified that all studies included in systematic review met inclu-

sion criteria and omitted exclusion criteria. The manuscripts were then analyzed with respect

to study subjects, interventions, and findings. Studies were classified based on their methodol-

ogy and their use of control or comparative cohorts. Studies were further scrutinized for their

intervention, with respect to the dietary regimen, ketone body supplementation, duration, and

measurement of serum ketones. Finally, the studies’ main findings were analyzed and suc-

cinctly presented in a summative table.

Results

Systematic search of the MEDLINE database yielded 1,885 articles. After screening and cross-

referencing for an additional five citations, 65 articles were reviewed in full-text, and 11 articles

were deemed eligible for inclusion in the analysis. A flow diagram is depicted in Fig 1. The

included studies primarily concerned the spinal cord with only three studies involving periph-

eral nerves. All studies were designed with control groups and/or comparative cohort(s) utiliz-

ing rats as subjects, except for two studies which utilized mice (Streijger et al., 2011 and Mayr

et al., 2020) [47, 48]. One study (Mayr et al., 2020) investigated impact of KD in the setting of

both central and peripheral nervous system injury [48]. A summative review of the included

articles is provided in Table 1.

Peripheral nervous system

Three studies examined the impact of KD on peripheral nerve regeneration. In the first study,

Li et al. evaluated the effects of KD with and without concurrent electrical stimulation on neu-

romuscular recovery in rats [49]. Four hours after sciatic nerve crush, rats were assigned to

either a regular carbohydrate-based diet or KD characterized by a 3:1 ratio of fat to carbohy-

drates and protein. Electrical nerve stimulation (2Hz, 1mA) was also performed on some rats

within both dietary groups, causing contraction in two muscles innervated by the sciatic nerve

(gluteus maximus, biceps femoris) for 15 minutes every other day. These interventions were

performed for a total of 8 weeks following nerve injury. In turn, the researchers found that the

biceps femoris produced a more robust electromyography (EMG) signal in rats receiving KD

alone relative to controls and an even greater signal when KD was combined with electric stim-

ulation relative to KD alone. However, the gluteus maximus produced a stronger EMG signal

in solely the KD with electrical stimulation group relative to controls and KD alone. On histol-

ogy, rats fed KD alone had increased mean myelin thickness and axon/fiber diameter com-

pared to those of controls. These findings were significantly greater in rats receiving the

ketogenic diet and electrical stimulation. Finally, Li et al. also reported improved functional
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Fig 1. Flow diagram. A total of 1890 articles were obtained through database searching and cross-referencing. After reviewing all 1890 abstracts, only

65 articles met the inclusion criteria and moved onto full-text assessment. Following full-text assessment, only 11 articles met the selection criteria for

further qualitative analysis.

https://doi.org/10.1371/journal.pone.0244244.g001
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recovery in rats fed KD relative to controls based on sciatic functional index scores, which

were once again greater in rats fed KD with electrical stimulation relative to KD alone.

In the second study, Liskiewicz et al. also investigated the impact of KD on sciatic nerve

regeneration in rats [50]. The researchers subjected rats to sciatic nerve crush injury and

Table 1. Summary of articles. Articles included in the qualitative analysis were organized by type of nervous system injury, dietary intervention, timing of diet initiation

relative to injury, duration of dietary intervention, whether or not serum ketones were measured, and brief summary of results.

Article Nervous System Injury Dietary Intervention Timing Duration Serum

Ketones

Tested

Outcome

Tan 2020 C5 spinal cord hemi-

contusion

KD (3:1 ratio of fat to

carbohydrates plus protein)

+ additional 1000–1500 mg βHB

BID for first four days post-injury

Post-

injury

8 weeks Yes • Increased neuronal and axonal sparing

in dorsal cortico-spinal tract

• Improved forelimb functional recovery

Mayr 2020 Tibial and peroneal

nerve transection;

T10-T11 spinal cord

hemi-contusion

KD (2.8:1 ratio of fat to

carbohydrates plus protein)

Pre- and

Post-

injury

1 week pre-

injury, 4 weeks

post-injury

Yes • No effect

Li 2020 Sciatic nerve crush injury KD (3:1 ratio of fat to

carbohydrates plus protein)

Post-

injury

8 weeks Yes • Increased total axons, axon diameter and

density, axon/fiber ratio and myelin

thickness

• Improved nerve regeneration and

functional recovery

Lu 2018 C7 spinal cord hemi-

contusion

KD (4:1 ratio of fat to

carbohydrates plus protein)

Post-

injury

4 weeks Yes • Diminished oxidative stress and

inflammation (# blood myeloperoxidase,

" blood superoxide dismutase)

• #NF-κB signaling, #TNF-α, #IL-1β,

#IFN-γ, "Nrf2 in injured spinal cord

• Improved forelimb functional recovery

Liskiewicz

2016

Sciatic nerve crush injury KD (3.4:1 ratio of fat to

carbohydrates plus protein)

Pre- and/

or post-

injury

3 weeks pre-

injury, 6 weeks

post-injury

Yes • Improved myelin thickness, axon

diameter, fiber diameter, axon/fiber

diameter ratio, myelin thickness/axon

diameter ratio, circularity

• Neuroprotective in pre-conditioned

subjects

Streijger

2014

C5 spinal cord hemi-

contusion

KD (3:1 ratio of fat to

carbohydrates plus protein)

Post-

injury

10 weeks No • No effect

Streijger

2013

C5 spinal cord hemi-

contusion

KD (3:1 ratio of fat-to-carbohydrate

plus protein)

Post-

injury

12 weeks Yes • Reduced lesion size and gray matter

sparing

• Neuroprotective and enhanced

functional recovery

Streijger

2011

T10-T11 spinal cord

contusion

Every-other-day fasting Post-

injury

14 weeks Yes • No effect

Jeong 2011 T10 spinal cord

contusion

Every-other-day fasting Pre- and/

or Post-

injury

3 weeks pre-

injury, 10

weeks post-

injury

No • Enhanced functional recovery in pre-

and post-injury groups

Plunet 2010 C4 spinal cord hemi-

contusion

Every-other-day fasting Pre-injury 6 weeks No • Increased number of undamaged

neurons, gray matter sparing and reduced

lesion size

• Neuroprotective and enhanced

functional recovery

Plunet 2008 C4 spinal cord hemi-

contusion

Every-other-day fasting Post-

injury

33 days Yes • Reduced lesion size, increased

corticospinal tract plasticity and gray

matter sparing

• Neuroprotective and enhanced

functional recovery

https://doi.org/10.1371/journal.pone.0244244.t001
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subsequently assigned the animals to KD (79% fat, 9.5% protein, 0.8% carbohydrates) or a

standard high-carbohydrate diet. A third arm was also included in which rats were precondi-

tioned with KD for 3 weeks prior to nerve crush. Rats in all three groups were then maintained

on their respective diets for 6 weeks following injury. After this time period, the researchers

found that regenerating nerves in the preconditioned KD group were most similar to those of

uninjured rats based on a variety of histomorphometrical parameters, including myelin thick-

ness, fiber density, and fiber diameter. However, functional recovery in neither the precondi-

tioned nor the post-injury KD groups showed significant differences relative to rats receiving

standard diet at any time point based on CatWalk gait analysis, a validated functional test for

gait in rats, with all three groups showing recovery to near-baseline gait after only 3 weeks.

In the third study, Mayr et al. examined effects of KD on sensorimotor recovery from com-

plete transection of the common peroneal and tibial nerves [48]. Mice were fed either a stan-

dard or ketogenic diet (8.6% protein, 75.1% fat, and 3.2% carbohydrates) beginning 7 days

before nerve transection and continued up to 28 days following the injury. Ketone levels were

significantly elevated in the serum of mice fed KD relative to those fed standard diet on the

day of spared nerve injury (SNI). The researchers subsequently reported no significant differ-

ences at 28 days following SNI between the two dietary groups on a variety of motor function

tests, including total distance walked over thirty minutes during open field testing and hin-

dlimb function during ladder rung testing in which mice were subjected to walking across a

horizontal ladder. Moreover, the researchers also found no difference at 28 days following SNI

in terms of sensory recovery from mechanical allodynia in mice fed KD and standard diet, as

measured by a nociception test known as the von Frey assay.

Spinal cord

Nine articles examined the impact of either KD or every-other-day fasting (EODF), a common

variant of intermittent fasting, on recovery following surgically induced spinal cord injuries

(SCIs). Three of the nine studies showed no benefit from either dietary intervention. In the

first of the non-supportive studies, Streijger et al. (2014) subjected rats to C5 SCI before assign-

ing them to either a standard carbohydrate diet or KD consisting of a 3:1 ratio of fat to carbo-

hydrates plus protein beginning four hours after cervical injury for a total of 1 week [51]. Rats

in the KD group were also administered other agents, including ghrelin, ibuprofen, and C16

(an anti-apoptotic agent), previously reported to confer benefits for spinal cord recovery.

These compounds were given between hours to days after the injury, for varying time periods,

and through a variety of routes (e.g. oral, intravenous, intraperitoneal). In turn, the researchers

reported significant functional improvement on the Montoya staircase test, a validated behav-

ioral test of forelimb function in rats, in the combinatorial group relative to controls at 10

weeks post-injury. However, no significant differences were reported between combinatorial

and control groups on other measures of functional recovery, including the rearing test,

grooming test, or horizontal ladder test. Similarly, histological analysis revealed no significant

differences between the two groups in terms of white or gray matter sparing at any spinal cord

level. The study’s authors concluded that these findings suggest potential interactions between

the agents and ketogenic diet used in the combinatorial treatment that may have negated the

beneficial effects previously reported for each individual intervention in the setting of SCI.

The second non-supportive study was conducted by a similar group of investigators led by

Streijger et al. (2011) [47]. Following surgically induced thoracic SCI (T10-T11 contusion),

C57BL/6 transgenic mice were assigned to receive a standard diet (28.5% calories from pro-

tein, 13.5% from fat, and 58.0% from carbohydrates) either ad libitum (AD) or every other day

with the first 24 hours of food deprivation beginning immediately after injury. The mice were
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maintained on these diet regimens for 14 weeks thereafter, during which time the researchers

observed no significant differences between the groups in terms of hindlimb motor function

recovery or gray/white matter sparing. The investigators noted that EODF mice exhibited no

significant increase in their serum ketone bodies relative to pre-op levels by the end of their

second, third, and fourth days of fasting in contrast to rats subjected to the same diet.

In the final non-supportive study, Mayr et al. studied effects of KD on sensorimotor recovery

from surgically induced thoracic hemisection over the T10-T11 vertebrae [48]. Mice were fed

either a standard or ketogenic diet beginning 7 days before SCI and continued up to 28 days fol-

lowing the injury. The KD was composed of 8.6% protein, 75.1% fat, and 3.2% carbohydrates,

and blood ketone concentrations were confirmed to be significantly elevated in KD mice prior

to SCI. In turn, the researchers reported no significant differences at 28 days following SCI

between the two dietary groups on a variety of motor function tests, including total distance

walked over thirty minutes during open field testing and hindlimb function during ladder rung

testing in which mice were subjected to walking across a horizontal ladder. Moreover, the

researchers also found no difference at 28 days following SCI in terms of sensory recovery from

mechanical allodynia in mice fed KD and standard diet, as measured by von Frey assay.

In contrast, the remaining six studies of the central nervous system were decisively support-

ive. Using rats subjected to C5 hemicontusion injury, Streijger et al. (2013) investigated the

effects of KD characterized by 3:1 ratio of fat-to-carbohydrate plus protein initiated four hours

post-injury [52]. Relative to rats fed a standard carbohydrate-based diet, KD rats displayed

reduced lesion size and sparing of gray matter on histology that correlated improved forelimb

use and behavioral recovery after 14 weeks of KD. Moreover, serum ketones were confirmed to

be significantly elevated in the KD group relative to standard diet beginning one day after

injury. KD also significantly increased expression of glucose transporter-1 (GLUT1) and mono-

carboxylate transporter-1 (MCT1) on histological analysis of the lesioned spinal cord. Pharma-

cological inhibition of MCT1 with intrathecally-administered 4-CIN yielded no improvements

in lesion size in KD rats relative to SD rats treated with the same compound, which the authors

concluded further supported a causative role for ketogenesis in functional recovery after SCI.

Tan et al. led another study investigating whether ketogenic diet supplemented with exoge-

nous ketones could improve histological and functional outcomes in Sprague-Dawley rats sub-

jected to C5 spinal cord hemi-contusion injury [53]. The experimental group was specifically

fed a ketogenic diet comprised of a 3:1 ratio of fats to carbohydrates plus protein beginning 3

hours post-injury. The rats were also given ketogenic salt gavages containing 1000–1500 mg β-

hydroxybutyrate every 12 hours for four days post-injury. Blood ketones were found to be sig-

nificantly elevated in rats the ketogenic diet with ketone supplementation (KS) relative to con-

trol rats fed a standard diet by one day after the C5 hemi-contusion. Interestingly, oral ketone

salt supplementation with KD did not appear to significantly elevate blood ketone levels higher

than KD alone at this time point. The authors ultimately found that KD with KS improved

forelimb motor recovery as measured by performance on the Montoya staircase test at 6 weeks

post-injury. Furthermore, they also found increased neuronal sparing 2.4 mm rostral to the

lesion epicenter as well as increased axonal density in the dorsal corticospinal tract in KD with

KS rats relative to controls.

The third study examining ketogenic diet and spinal cord injury was led by Lu et al. [54].

The researchers fed Sprague-Dawley rats either a standard diet or ketogenic diet with a 4:1

ratio of fat to carbohydrate and protein beginning four hours after C7 spinal cord hemi-contu-

sion. β-hydroxybutyrate were found to be significantly elevated in KD rats relative to controls

as early as one day after injury and for the remaining four weeks of dietary intervention. In

turn, the researchers reported that KD rats experienced greater motor recovery as measured

by the cylinder rearing test and a modified Montaya staircase test by three and four weeks after
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injury, respectively. Lu et al. also ran several additional experiments to help elucidate potential

mechanisms behind their behavioral findings. In particular, they measured greater levels of the

anti-oxidative marker superoxide dismutase as well as lower levels of the inflammatory marker

myeloperoxidase in the blood of KD rats 4 weeks post-injury. Additionally, the authors found

significantly elevated levels of Nrf2 (a regulator of the oxidative stress response) and reduced

pro-inflammatory mediators (TNF-α, IL-1β, IFN-γ, NF-κB pathway) within the spinal cord

tissue of KD rats 4 weeks post-injury. They conclude that results provide potential mechanisms

behind improved functional recovery in KD rats following SCI.

The remaining three studies examined the impact of intermittent fasting on SCI recovery.

Jeong et al., for example, looked at the effects of EODF on recovery from T10 contusion injury

in rats [55]. The study included an ad libitum group, a post-EODF group that started their first

fast immediately following injury, and a pre-EODF group that started their first fast 3 weeks

prior to injury. Each diet was then maintained for three weeks following thoracic SCI. Relative

to the AL group, both EODF groups exhibited better functional recovery based on Catwalk

gait analysis and the Basso-Beattie-Bresnahan (BBB) ambulatory assessment, another validated

test for locomotor function in rats; however, no significant group differences were found on

histological analysis of gray and white matter sparing. In a similar study, Plunet et al. (2010)

investigated the impact of EODF initiated one month prior to C4 SCI and maintained for 6

weeks post-injury in rats [56]. Compared to controls fed AL, EODF rats experienced signifi-

cantly better forelimb functional recovery, reduced lesion size, and increased numbers of

undamaged neurons on histology. In the third study, a similar group of investigators led by

Plunet et al. (2008) examined the effects of EODF when initiated after C4 SCI and continued

for 3 weeks post-injury [57]. Rats fed with an EODF regimen once again displayed better gait

pattern, forelimb function, and vertical exploration, as well as dramatically reduced lesion

sizes on histology relative to AL controls. Moreover, EODF rats also displayed greater corti-

cospinal sprouting both rostral and caudal to the lesioned spinal cord, suggesting enhanced

neuronal plasticity. The investigators also measured β-hydroxybutyrate levels to be elevated in

the serum of EODF rats on fasting days compared to that of controls.

Discussion

Outcomes in peripheral nerve surgery are influenced by numerous clinical elements which are

thoughtfully considered when formulating treatments [58]. Such factors consist of the mecha-

nism and extent of injury, timing, length of nerve gaps, material used to bridge gaps, quality of

donor nerves and end organs, the surrounding wound bed, coaptive techniques, and post-

operative rehabilitation. While advancements in recent decades have broadened our therapeu-

tic armamentarium with innovative surgical approaches, including nerve transfers, targeted

muscle reinnervation, and regenerative peripheral nerve interfaces [59–61], there are certain

factors that curb craft and technique. The reparative capabilities of the host are a key bottle-

neck in healing, and as suggested by this systematic review, the ketogenic diet and similar die-

tary interventions may facilitate this process.

The potential mechanisms are likely multifaceted (Fig 2), yet the preponderance of pre-clin-

ical and clinical data suggest a protective quality to these dietary interventions [7, 8, 27, 30, 62–

64]. Diminished excitotoxicity, reduced inflammation and heightened antioxidant capacities

may limit the extent of cell injury, death and apoptosis [26, 65, 66]. Enhanced autophagy and

protein-quality measures may also contribute to improved cellular survival or elimination of

degrading neural elements [22, 67, 68]. Furthermore, there is an upregulation of neurotrophic

factors (such as BDNF, GDNF, FGF2) which may augment the elongation and maturation of

regenerating nerve fibers [21, 69]. Additional mechanisms may include inhibition of histone
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deacetylase (HDAC) activity, NLRP3 inflammasome activity, NF-κB signaling, myeloperoxi-

dase activity, and pro-inflammatory cytokine TNF-α, IL-1β, IFN-γ signaling [54, 70, 71].

Increased activity of the anti-oxidative response regulator Nrf2 as well as superoxide dismutase

have also been posited to play a mechanistic role in improved neural recovery from injury

[54]. Neuroprotection is afforded in nearly all models of neurological insult, including ische-

mic, immune-mediated, degenerative, and traumatic injuries. This is further supported by the

observation that ketogenic regimens may improve the frequency and intensity of migraines

[72]—a complex neurologic disorder with both central and peripheral potentiators. While the

reparative processes in the central and peripheral nervous system are distinct, the evidence

provided in this systematic review suggests a protective effect in both systems.

Interestingly, the mediators of the beneficial effects are thought to be ketone bodies, which

are hepatically-produced from fatty acid oxidation and serve as vital alternative metabolic

sources during fasting times. Ketone bodies are pleotropic and may exert their influence

through non-canonical mechanisms, such as epigenetic modification and G-coupled receptor

signaling [73, 74]. Such methods induce the expression of genetic loci responsive to BDNF and

oxidative stress and reduce inflammation by diminishing the production of pro-inflammatory

cytokines and translocation of NF- κB [75, 76]. While negative energy balance and weight loss

are valid concerns of these dietary regimens, the caloric intake may be improved given the

fuel-efficiency of lipids and ketones [33–35]. Additionally, improvements in cellular enginery

(i.e. mitochondrial biogenesis) may improve overall bioenergetics and lead to accelerated

Fig 2. Potential mechanisms promoting nerve regeneration and repair in a ketogenic milieu. The ketogenic diet may promote regeneration and

repair following neuronal injury through a variety of mechanisms, including upregulation of neurotrophic factors, enhanced autophagy, diminished

excitotoxicity, and reduced inflammation. The mediators of these effects are thought to be ketone bodies, which are hepatically-derived byproducts of

fatty acid oxidation formed during fasting or low-carbohydrate states.

https://doi.org/10.1371/journal.pone.0244244.g002
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wound healing [77–79]. This is suggested by animal studies which observed quickened cutane-

ous and intestinal healing times in burns and colonic anastomoses, respectively [80, 81]. Alto-

gether, the multidimensional role of ketone bodies likely developed to combat the

fundamental challenge of nutritional deprivation during our evolution, with robust homeo-

static processes in the brain and other organ systems that are designed optimize performance

and resistance to disease and injury. Dietary regimens that induce or mimic the fasting state

may capitalize on this adaptive machinery.

Given the non-invasiveness of these dietary interventions and the encouraging results wit-

nessed in patients with acute cerebral or spinal cord disease, a logical extension would be to

apply them in the context of surgical management of peripheral nerve injuries and reconstruc-

tions. Lending further credibility to this notion is the well-documented observation that neu-

rons in the CNS have a limited ability to regenerate their axons following injury, whereas

neurons in the PNS typically have greater regenerative potential [82]. Yet, no clinical trials to

date have studied the impact of KD on recovery from peripheral nerve injuries, while one ran-

domized clinical trial led by Yarar-Fisher and colleagues is currently recruiting participants to

help assess the safety and efficacy of KD in improving motor and sensory function following

acute cervical or thoracic spinal cord injury (ClinicalTrials.gov Identifier: NCT03509571) [83].

Our systematic review identified two studies that suggest a ketogenic diet may confer signif-

icant benefits in the setting of peripheral nerve injury, though these studies also share impor-

tant differences that should be taken into consideration when comparing their results [48, 49].

For instance, the ketogenic diet composition was different in each study, with Liskiewicz et al.

using a KD formulation that contained a greater ratio of fat to carbohydrates. The researchers

in both studies addressed potential concerns about their respective KDs by measuring serum

β-hydroxybutyrate levels before and during their dietary interventions. In turn, they ensured

that KD groups were in a state of ketogenesis while controls were not, which was the intention

of their ketogenic diets regardless of their specific nutrient breakdowns. Furthermore, Li et al.

included electrical stimulation in their study and consequently identified a synergistic effect of

combined KD and stimulation on both histological and functional recovery. In contrast, Lis-

kiewicz et al. added a KD preconditioning arm to their study and in turn identified benefits

within only this group upon histological analysis. Despite these differences, the two studies

illustrate that KD may confer some benefits in the setting of peripheral nerve injury in rats,

though the optimal timing of diet relative to injury, duration of diet, and functional impact

remain unclear based on their results.

The efficacy of the ketogenic diet and intermittent fasting has been demonstrated in the

acute setting, yet a prophylactic benefit may also be derived, particularly from caloric restric-

tion. This is otherwise known as “hormesis,” in which exposure to mild stress prompts adap-

tive responses that may protect cells and organs from severe forms of stress and injury [6]. As

such, the preconditioning effect of intermittent fasting may be rendered preoperatively, in

efforts to optimize outcomes in delayed or elective nerve reconstructions and transfers. Patient

compliance likely poses the greatest obstacle in their assimilation into prehabilitative or reha-

bilitative programs. The notion of three meals per day interspersed with snacks is ingrained in

our culture and society, making time-restricted feeding a difficult task to fulfill. Contrastingly,

the ketogenic diet is well tolerated and may be better suited for our lifestyle needs. Serum

ketone testing may also provide us with a regulatory measure to confirm dietary adherence.

Not all tissues, however, may benefit from these dietary regimens, particularly bone tissue with

concern for resorption and increased catabolism under a ketogenic diet [84, 85]. Nevertheless,

the behavioral basis of these interventions, along with its unfamiliarity amongst patients and

providers, may require the expertise and services of nutritionists to implement these dietary

regimens safely and adequately.
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Of note, three studies analyzed in this meta-analysis did not report beneficial findings for

ketogenic diet or intermittent fasting in the setting of CNS/PNS injuries. The first of these

studies was Streijger et al. 2011, which utilized a mouse model (C57BL/6) that did not have sig-

nificantly elevated serum ketone bodies on the second, third, and fourth days of intermittent

fasting relative to Sprague-Dawley rats subjected to the same diet [47]. It is possible that these

mice were exhibiting an intrinsically attenuated ketogenic response to fasting, which may have

contributed to the non-supportive findings. The second study was conducted by a similar

group of authors (Streijger et al. 2014), this time using Sprague-Dawley rats [51]. However, the

rats were administered ghrelin, ibuprofen, and C16 in addition to being placed on KD. This

combinatorial treatment may have negated any beneficial effects conferred by ketogenic diet,

and the authors did not measure serum ketone levels in the rats at any point. Finally, the last

non-supportive study was conducted by Mayr et al. [48], who used the same mouse model as

the one in Streijger et al. (2011) to examine the impact of KD on sensorimotor recovery after

spinal cord and peripheral nerve injuries. In addition to the potentially attenuated response of

the C57BL/6 mice to ketogenic diet, a significant limitation of this study was the fact that these

mice were subsequently maintained on their diet for only 4 weeks post-injury, which may have

been insufficient time to witness the any functional improvement.

This systematic review is not without limitations. While our analysis argues for a favorable

effect of ketogenic diet and intermittent fasting on nerve injury and repair, the evidence is only

suggestive as there is a paucity of rigorous clinical data. Similarly, there was a lack of consis-

tency between many of the studies in terms of animal model, precise formulation of the diets,

and timing of dietary interventions. These differences contributed to heterogeneity between

the studies, precluding the synthesis of outcomes and comparison of ketogenic diet with inter-

mittent fasting. Additional limitations include the possibility that all articles related to this

topic were not included in our analysis as only one database was utilized for this investigation.

Nonetheless, the broad search criteria allowed for large-volume screening of the available liter-

ature and was strengthened by cross-referencing. The focus of this systematic review was

refined to the nervous tissues and injurious mechanisms that are most encountered by recon-

structive surgeons in the clinical setting, and as such, articles involving the optic and cerebral

nervous systems were not included. Of the included studies, several were attributed to similar

groups of authors (e.g. Streijger et al. and Plunet et al.) and thus cannot be considered strictly

independent from one another. Lastly, inter-rater reliability for study selection was not statisti-

cally analyzed.

Conclusions

Dietary interventions may be leveraged to facilitate the healing process in the spinal cord and

peripheral nervous system. Diets that promote a ketogenic milieu may enhance resistance to

nerve injury and regeneration. Further research should aim to investigate these effects in clini-

cal settings.
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