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ABSTRACT
Recent studies indicate that microbial enterotypes may influence the beneficial effects of wholegrain 
enriched diets including bodyweight regulation. In a 4-week intervention trial, overweight subjects 
were randomized to consume either arabinoxylan-oligosaccharides (AXOS) (10.4 g/d) from wheat 
bran or polyunsaturated fatty acids (PUFA) (3.6 g/d). In the present study, we have stratified the 
subjects participating in the intervention (n = 29) according to the baseline Prevotella-to-Bacteroides 
(P/B) ratios through a post-hoc analysis and applied a linear mixed model analysis to identify the 
influence of this P/B ratio on the differences in weight changes in the intervention arms. Following 
AXOS consumption (n = 15), the high P/B group showed no bodyweight changes [−0.14 kg (95% CI: 
−0.67; 0.38, p = .59)], while the low P/B group gained 0.65 kg (95% CI: 0.16; 1.14, p = .009). 
Consequently, a difference of −0.79 kg was found between P/B groups (95% CI: −1.51; −0.08, 
p = .030). No differences were found between P/B groups following PUFA consumption (0.61 kg, 
95% CI: −0.13; 1.35, p = .10). Among the Bacteroides species, B. cellulosilyticus relative abundance 
exhibited the highest positive rank correlation (Kendall’s tau = 0.51, FDR p = .070) with 4-week weight 
change on AXOS, and such association was further supported by using supervised classification 
methods (Random Forest). We outlined several carbohydrate-active enzyme (CAZy) genes involved in 
xylan-binding and degradation to be enriched in B. cellulosilyticus genomes, as well as multiple 
accessory genes, suggesting a supreme AXOS-derived glycan scavenging role of such species. This 
post-hoc analysis, ensuring species and strain demarcation at the human gut microbiota, permitted to 
uncover the predictive role of Bacteroides species over P/B enterotype in weight gain during a fiber- 
based intervention. The results of this pilot trial pave the way for future assessments on fiber 
fermentation outputs from Bacteroides species affecting lipid metabolism in the host and with direct 
impact on adiposity, thus helping to design personalized interventions.
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Introduction
As the prevalence of overweight and obesity has 
reached epidemic proportions globally over the 
past few decades, the search for causes and manage
ment approaches continues.1 Multiple dietary 
interventions have been tested on weight control; 
however, the efficacy of a specific diet over another 
has not been established.2 The limited evidence for 
the most effective diet has given rise to conclude 
that there is no “one diet fits all.” Thus, the con
ventional view that different people will respond 
similarly to a specific diet might be too simplistic 
and instead it is more likely that the success of a diet 

might be predicted based on specific individual 
characteristics,3 including the gut microbiota.4

Identification of predictive traits for the anticipation 
of diet-based effects on weight loss is a matter of study, 
and microbial enterotypes have been suggested as pro
mising biomarkers for such an aim.5,6 The Prevotella 
and Bacteroides enterotypes are characterized by dif
ferent functionalities, where the Prevotella species are 
consistently associated with fiber-enriched diets due to 
their genetic ability to process complex carbohydrates 
of plant-origin.7 In support, Kovatcheva et al. found 
that subjects with a high P/B ratio specifically 
improved their enzymatic capacity for fiber digestion 
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and glucose metabolism, when consuming a whole 
grain-rich diet.8

In four recent post-hoc analyses of studies con
ducted in Denmark, we have linked Prevotella abun
dance in the human gut microbiota to weight loss, 
when consuming whole grain and fiber-rich diet ad 
libitum.9–12 Specifically, the whole-grain fiber, arabi
noxylan, is largely consumed as these are highly abun
dant in rye bread, a staple food item among Danish 
participants.13 On the other hand, Bacteroides is com
monly associated with a “Western diet” low in fiber, 
and high in fat and refined sugars. However, the 
remarkable glycolytic potential of some Bacteroides 
species hinders the complete association of such 
microbes with fat-enriched diets and adiposity in 
humans.14,15 In our previous analyses, these subjects 
dominated by Bacteroides species have little weight 
control success when consuming diets rich in fiber 
and whole grain.9–12

Therefore, we investigated the influence of enter
otypes (inferred as the Prevotella-to-Bacteroides [P/ 
B] ratio16) in weight management of participants 
randomized to receive arabinoxylan oligosacchar
ides (AXOS) and polyunsaturated fatty acids 
(PUFA) for 4 weeks. We hypothesized that subjects 
with a higher P/B ratio (more abundant Prevotella 
content than Bacteroides) would improve body 
weight control on the AXOS supplemented diet 
(10.4 g/d) compared to the PUFA-enriched diet 
(3.6 g/d) that would serve as a negative control. 
Furthermore, as there is a large inter-individual var
iation in Bacteroides spp.,17 with vastly different 
fermentation, and short-chain fatty acid (SCFA) 
potentials, we further hypothesized that few species 
with AXOS-degrading capacity specifically would 
predict body weight changes.

Results

P/B-ratio predicts weight change when consuming 
AXOS but not PUFA

From baseline fecal samples, 29 overweight partici
pants were stratified by the median value of the 
Prevotella-to-Bacteroides (P/B) ratio (−0.81) into 
high P/B and low P/B groups. The baseline character
istics of the two P/B groups are presented in Table S1.

Following 4-week AXOS consumption (n = 15), 
the high P/B group was weight stable [−0.14 kg (95% 

CI: −0.67; 0.38, p = .59)], whereas the low P/B group 
had a weight gain of 0.65 kg (95% CI: 0.16; 1.14, p = 
.009). Consequently, a difference of −0.79 kg was 
found between P/B groups (95% CI: −1.51; −0.08, 
p = .030). To evaluate if the weight change was an 
enterotype-AXOS interaction effect, we used 4-week 
PUFA consumption as a negative control (n = 14), 
and found no difference in weight changes between 
the P/B groups (0.61 kg, 95% CI: −0.13; 1.35, p = 
.10). However, we observed different trends on 
PUFA than on AXOS; weight gain among high P/B 
subjects (0.41 kg, CI: -0.11; 0.94, p = .12) and weight 
maintenance among the low P/B subjects (−0.20 kg, 
CI: −0.72; 0.32, p = .45), but these were not signifi
cant (Figure 1). Accordingly, when comparing the 
weight changes on AXOS to PUFA between the P/B 
groups, a total difference of −1.41 kg was observed 
(95% CI: −2.44; −0.38, p = .007).

Following AXOS consumption, we found no dif
ferences in 4-week change for waist circumference, 
total energy intake, carbohydrate E%, or protein E% 
between P/B groups. However, a meaningful 
decrease in fat E% was observed in the high P/B 

Figure 1. Body weight changes from weeks 0 to 4 for healthy, 
overweight adults (n = 29) stratified by the median baseline P/B 
ratio into two groups: Low P/B (n = 15) and High P/B (n = 14), when 
consuming AXOS and PUFA diets. *Significant difference between 
Low P/B and High P/B groups on each diet (P < .05) in a linear- 
mixed model adjusted for age, gender, and baseline BMI. AXOS, 
arabinoxylan oligosaccharides; P/B, Prevotella-to-Bacteroides; PUFA, 
polyunsaturated fatty acids.

e1847627-2 L. CHRISTENSEN ET AL.



group (Table S2), but this did not explain changes in 
body weight (Kendall’s tau = 0.18, p = .342).

Lastly, to exclude a longitudinal effect of the enter
otypes, we calculated fold change of the P/B ratio and 
correlated it with bodyweight change after 4-week 
AXOS consumption, and found no relation between 
the two (Kendall’s tau = −0.14, p = .49). AXOS pro
duced a notable increase of Bifidobacterium species,18 

but we found no evident correlation between its abun
dance and body weight changes at both time-points 
(Kendall’s tau = −0.01 and 0.32, p = 1.000 and 0.102, 
respectively). Nonetheless, we did observe that 
changes in Bifidobacterium abundance was higher in 
low P/B subjects than in high P/B counterparts (414 ± 
141 vs 963 ± 216 DNA reads, respectively, p = .039).

Distinct Bacteroides species predicts body weight 
change when consuming AXOS

Baseline P/B-ratio correlated with weight change after 
AXOS consumption (Kendall’s tau = −0.43, p = .029), 
but not after PUFA (Kendall’s tau = 0.34, p = .089) 
(Figure 2a-b). We then investigated whether the most 
prevalent Prevotella and Bacteroides species could 
further predict body weight following 4-week AXOS 
consumption (n = 15). We evaluated the abundance 
at the species-level, retrieved from shotgun DNA 
sequencing (see methods) for the 10 most abundant 
Bacteroides and Prevotella (metagenomic Operational 
Taxonomic Units) mOTUs in fecal samples (Table 1). 
The majority of the subjects harbored a high abun
dance of Bacteroides species, which is similar to pre
viously characterized Westernized populations.5,19 

Among the Bacteroides species, B. cellulosilyticus rela
tive abundance exhibited the highest positive rank 
correlation with a 4-week weight change (Kendall’s 
tau = 0.51, p = .007, FDR p = .070) (Figure 3a and 
Table 2). The importance of B. cellulosilyticus as 
a predictor variable for weight gain during AXOS 
intervention was further explored by executing super
vised classification with the Random Forest algo
rithm. B. cellulosilyticus baseline abundance was 
found to be the most important predictor of body 
weight change among the top 10 Bacteroidetes species 
(INP = 2.00) and the P/B ratio (Figure 3b).

Lastly, we investigated whether fold changes of 
the 10 most abundant Bacteroides and Prevotella 
species differed between the low P/B and high P/B 

groups, but found no indications of differential 
effects for these species upon AXOS consumption.

Baseline co-abundance analysis among the 30 most 
abundant species (all phyla)

With B. cellulosilyticus pointed-out as a potential pre
dictive biomarker of weight management on an 
AXOS-based diet, we wanted to identify additional 
and less evident predictors among other gut micro
biota members. Therefore, a baseline co-abundance 
analysis20 using metagenomic data was applied to 
detect such species interacting positively or negatively 
with B. cellulosilyticus. B. cellulosilyticus was negatively 
correlated to two Clostridiales species; Clostridium.sp. 
CAG.138 (Kendall’s tau = −0.54, FDR p = .04), and 
Ruminococcus.sp.CAG.177. (Kendall’s tau = −0.54, 
FDR p = .04), and was positively correlated with 
Phascolarctobacterium.sp. (Kendall’s tau = 0.57, FDR 
p = .04).

There was no association between B. cellulosilyticus 
and P. copri; however, when introducing the strain- 
level information of P. copri defined as clades A, B, C, 
and D according to Tett and coworkers,19 we did find 
meaningful correlations. All four clades were detected 
in this westernized, overweight population, and the 
average proportions were for Clade A = 53.4%, B = 
39%, C = 7.2%, and D = 0.4%. Clade B was positively 
associated with B. cellulosilyticus (Kendall’s tau = 0.61, 
adjusted p = .0066), while Clades A, C, and D all were 
inversely associated with B. cellulosilyticus (adjusted 
p ≤ 0.037) (Figure 4a-d).

Absolute quantification to confirm B. cellulosilyticus 
presence when consuming AXOS

The qPCR-based approach to measure the presence of 
B. cellulosilyticus in baseline fecal DNA indicated that 
samples of subjects who controlled weight tended to 
have a lower abundance of this Bacteroides species 
(log10 rpoB molecules/ng DNA = 2.14 ± 0.81) when 
compared to samples derived from subjects who 
gained weight (3.46 ± 1.03) (p = .166). This difference 
was more evident in the samples after a 4-week inter
vention, where B. cellulosilyticus abundance increased 
1.42-fold in the low P/B and weight-gain group (4.88 ± 
0.76) whereas remained stable in the high P/B group 
(2.42 ± 0.82) (p = .023). Globally, the qPCR data fitted 
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well with the B. cellulosilyticus mOTU relative abun
dance in the entire set of samples at both time-points 
(Kendall’s tau = 0.54, p < .001), but data correlation 
was higher at baseline (Kendall’s tau = 0.76, p < .001). 
Three samples in each P/B group produced null detec
tion of B. cellulosilyticus, but we cannot completely 

discard its presence in those given the limit of detec
tion of our qPCR approach (~600 molecules rpoB per 
ng DNA). The log10 average presence of 
B. cellulosilyticus among the three subjects with the 
largest weight gains (1.4, 2.0, and 2.0 kg) was 5.77 ± 
0.26 rpoB molecules/ng DNA.

Figure 2. Body weight changes from weeks 0 to 4 versus baseline log10-transformed P/B ratio for healthy, overweight subjects 
consuming either (a) AXOS (n = 15) or (b) PUFA (n = 14). Kendall correlation coefficient (tau) and p-value is shown. Vertical dashed gray 
lines at x = −0.81 (P/B median) separate the enterotype groups; Low P/B and High P/B. Linear regression line is depicted in red and 
respective confidence interval (95%) is drawn in gray. AXOS, arabinoxylan oligosaccharides; BW, body weight; P/B, Prevotella-to- 
Bacteroides; PUFA, polyunsaturated fatty acids.
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Distinctive genetic traits on B. cellulosiluyticus 
genomes

The searching for carbohydrate-active enzyme 
(CAZy) genes within polysaccharide utilization loci 
(PULs) present in more than 100 Bacteroides genomes 
(Table S3) permitted to evaluate of the abundance of 
212 CAZy families and accessory genes. Functional 
enrichment analysis indicated that 10 CAZy families 
are more prevalent and abundant in B. cellulosilyticus 
genomes (Table 3). These include CBM-containing 
enzymes associated with xylan binding (CBM13 and 
CBM22) and GHs mainly dedicated to xylanase and 
arabinofuranosidase activities (GH5, GH8, GH10, 
GH43, and GH79). Two PLs were also detected to be 
enriched in B. cellulosilyticus genomes and they were 
linked to glycosaminoglycan degradation (e.g., chon
droitin-(sulfate) lyase, hyaluronate lyase, and heparin- 
(sulfate) lyase).

The functional assessment on the entire genomes 
using the Pfam annotation system permitted to assess 
the abundance of more than 3000 Pfam domains. The 
statistical test to determine the probable enrichment of 
such protein domains on B. cellulosilyticus genomes 
recovered 87 domain associations, and 54 of which 
had reliable functional annotations (Table 4). This 
analysis corroborated some previous observations 
during the CAZy gene survey. Thus, several domains 
associated with different GH and PL enzymes listed in 
Table 3, and related to xylan and glycosaminoglycan 
degradation were also retrieved (e.g., GH10, GH79, 
GH43, PL8) (Table 4). Moreover, we also observed 
that other domains linked to xylan binding and degra
dation were enriched in B. cellulosilyticus genomes 
(e.g., Glyco_hydro_30, CBM_6, Glyco_hydro_3, 
Bac_rhamnosid). Nevertheless, the glycan 

metabolism domains enriched in 
B. cellulosilyticus in comparison with other 
Bacteroides species is also accompanied by 
a higher abundance of polysaccharide degradation 
functions as well as of sensor and kinase subunits 
of several two-component systems specialized on 
carbohydrate uptake. Moreover, we detected an 
enrichment of some peptidase domains 
(Peptidase C25, Peptidase_M6 and Peptida 
se_C39), and domains of secreted proteins 
involved in adhesion (VCBS, fn3, Fn3-like), and 
flagella- and pili-independent gliding motility 
(SprA_N and PorP_SprF).

Associating B. cellulosilyticus with metabolic 
changes when consuming AXOS

We investigated whether baseline B. cellulosilyticus 
relative abundance correlated with changes in fecal 
SCFA concentrations, as an indication of its influ
ence on host health and/or bacterial cross- 
feeding; however, B. cellulosilyticus did not corre
late with changes of SCFA concentrations. Lastly, 
when correlating this species with clinical para
meters, we found a correlation between changes 
in total serum cholesterol concentrations (n = 14, 
Kendall’s tau = 0.44, p = .028), but this correlation 
was not significant after correction for multiple 
testing (Table S4).

Discussion

We demonstrate that a 4-week intake of AXOS 
resulted in a bodyweight change difference of 0.79 kg 
when comparing the low- and high-P/B groups, which 

Table 1. Top 10 most abundant Bacteroidetes mOTUs at baseline from overweight subjects (n = 15).

Rank Species mOTU R.A1 High P/B R.A1 Low P/B R.A1

1 Bacteroides dorei/vulgatus ref_mOTU_v2_0898 5.16% (1.97–7.83) 1.56% (1.42–4.04) 7.78% (5.15–11.8)

2 Bacteroides uniformis ref_mOTU_v2_0899 5.14% (2.28–10.2) 3.92% (1.42–6.67) 9.53% (4.39–10.6)
3 Bacteroides fragilis/ovatus ref_mOTU_v2_1073 0.35% (0.05–1.62) 0.07% (0.03–0.31) 0.93% (0.34–2.82)
4 Bacteroides xylanisolvens ref_mOTU_v2_1072 0.32% (0.09–0.56) 0.28% (0.09–0.88) 0.35% (0.21–0.47)

5 Bacteroides caccae ref_mOTU_v2_1382 0.28% (0.02–0.79) 0.28% (0.02–0.65) 0.34% (0.02–0.99)
6 Prevotella copri ref_mOTU_v2_4448 0.12% (0.09–2.81) 2.81% (0.08–8.35) 0.12% (0.10–0.27)

7 Bacteroides cellulosilyticus ref_mOTU_v2_0692 0.03% (0.01–1.88) 0.01% (0.01–0.03) 1.67% (0.01–4.39)
8 Bacteroides stercoris ref_mOTU_v2_0275 0.03% (0.02–0.95) 0.03% (0.03–0.35) 0.05% (0.02–1.50)

9 Bacteroides eggerthii ref_mOTU_v2_1410 0.01% (0.01–0.23) 0.01% (0.00–0.37) 0.01% (0.01–0.12)
10 Bacteroides massiliensis ref_mOTU_v2_0455 0.01% (0.00–0.08) 0.02% (0.01–0.61) 0.00% (0.00–0.02)

1Data expressed as median with interquartile distribution (Q1-Q3). R.A ,relative abundance.
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was driven by a significant 0.65 kg weight gain for 
the low P/B group. Distinct body weight trajec
tories may partially be explained by the differences 
in fat E% intake detected in both low- and high-P/B 
groups, but a direct correlation between fat intake 
and body weight change was not intuited. Beyond 
the genus-level P/B groups, we revealed that 

baseline B. cellulosilyticus abundance predicted 
weight gain with better precision than the P/B 
ratio. Besides body weight, we found indications 
of B. cellulosilyticus would affect host metabolism, 
as changes in total serum cholesterol levels could 
be associated to some extent with this Bacteroides 
species. Differential Bifidobacterium abundances 

Figure 3. Predictive role of B. cellulosilyticus. (a) Body weight changes from weeks 0 to 4 versus baseline log10-transformed 
B. cellulosilyticus relative abundance (r.a.) following AXOS consumption (n = 15). Kendall correlation coefficient and adjusted 
p-value (FDR) is shown. Linear regression line is depicted in red and respective confidence interval (95%) is drawn in gray. AXOS, 
arabinoxylan oligosaccharides; BW, body weight. (b) Random Forest classification output based on the Mean Decrease Gini 
(IncNodePurity) (sorted decreasingly from top to bottom) of attributes as assigned by the algorithm.
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Figure 4. Correlations at baseline between log10-transformed B. cellulosilyticus with the four clades of the Prevotella copri complex (all 
log10-transformed): (a) Clade A, (b) Clade B, (c) Clade C, and (d) Clade D for subjects randomized to AXOS (n = 15). Kendall correlation 
coefficients and adjusted p-values (FDR) are shown. Linear regression line is depicted in red and respective confidence interval (95%) is 
drawn in gray.

Table 2. Baseline Bacteroidetes mOTU correlations with body weight change on the AXOS-enriched diet (n = 15).
Abundant Bacteroidetes mOTUs Kendall’s tau p-value FDR adjusted p-value

Bacteroides cellulosilyticus 0.51 0.007** 0.070
Bacteroides fragilis/ovatus 0.44 0.022* 0.112
Bacteroides caccae 0.40 0.037* 0.123
Bacteroides eggerthii 0.38 0.051 0.128
Bacteroides dorei/vulgatus 0.28 0.136 0.272
Bacteroides massiliensis −0.23 0.244 0.406
Bacteroides stercoris 0.11 0.584 0.649
Bacteroides xylanisolvens −0.14 0.487 0.609
Prevotella copri −0.17 0.371 0.530
Bacteroides uniformis 0.08 0.691 0.691

*significant Kendall correlation (p < 0.05), ** significant Kendall correlation (p < 0.001). FDR, False detection rate.
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at the end-point between high and low P/B groups 
may be explained by competition for substrate 
between Prevotella and Bifidobacterium spp.,21 as 
they are consistently found to be inversely corre
lated across different populations.22 However, we 
do not discard some indirect role of these species in 
microbiota-mediated body weight change as well, 
being feasible since cross-feeding interactions 
where Bifidobacterium species take part are well 
known.23

B. cellulosilyticus is a common species in the 
human gut and has been reported to colonize 
around 60% of the westerners,14 which is similar 
to our data [qPCR: 9/15; metagenomics (mOTU 
counts>100): 8/15]. B. cellulosilyticus has clearly 
defined xylan-degrading enzymes,14 grows espe
cially well on wheat arabinoxylans,24 and even out
competes other prevalent Bacteroides spp. in 
arabinoxylan-rich conditions.17 Our comparative 
analysis on CAZy gene content supports the pre
vious experimental observations given that 
B. cellulosilyticus genome seems to be enriched in 
xylan binding and degrading enzymes, when com
pared to other common Bacteroides species present 
in the human gut, thus conferring it an advantage 
to uptake and metabolize this particular type of 
carbohydrates. Interestingly, Patnode et al. found 
that B. ovatus avoids arabinoxylan competition 
when co-residing with B. cellulosilyticus by shifting 
fermentation strategy during 10-day experiments, 
a metabolic flexibility not observed among other 
Bacteroides spp.17 However, this metabolic flexibil
ity may be a temporary strategy, as B. ovatus has 
been shown to bloom after 10 days while abun
dances of B. cellulosilyticus drop concurrently with 

AXOS as substrate.25 This may partly be 
a consequence of reliance on arabinoxylans as sub
strate by B. cellulosilyticus, whereas B. ovatus and 
others may thrive equally well on a mixture of 
dietary fibers.24,25

Additional to the potential advantage conferred 
by the higher number of CAZy genes deserved to 
arabinoxylan degradation, we observed that the 
B. cellulosilyticus genome is enriched in peptidases 
and glycosaminoglycan degrading enzymes consti
tuting a signal of O-glycan foraging from host gut 
mucins as previously inferred for this and other 
Bacteroides species.14 This could indicate that in 
absence of arabinoxylans or other complex carbo
hydrates from the host diet, B. cellulosilitycus would 
also compete with other mucin-degrading species. 
Mucin production in colon epithelial cells has been 
proven to depend on butyrate, one of the SCFAs 
released by gut microbiota.26–28 Therefore, this 
metabolic circuit seems to be pivotal in the evolu
tionary mutualistic relationship between the several 
gut microbes and the host.

However, butyrate production is mainly linked to 
Gram-positive bacteria from the Firmicutes phylum 
and alternative pathways have been stated in few 
species from the Bacteroidetes phylum.29,30 

Consequently, an exacerbated mucin utilization by 
gut microbiota enriched in B. cellulosilyticus without 
positive feedback signals for its production (SCFAs, 
mainly butyrate and propionate) would weaken bar
rier function altering gut immune homeostasis,31,32 

worsen endotoxemia, attenuate incretins production 
affecting satiety,33–35 and possibly impairing weight 
loss upon the dietary intervention. On the other 
hand, the presence of certain genes encoding protein 

Table 3. CAZy families enriched in B. cellulosilyticus genomes.
CAZy 
gene B. cellulosilyticus abundance1

Other 
Bacteroides abundance2

p-value 
(FDR) Activity

PL8 6(2) 1(0.01) 4.37−6 hyaluronate lyase; chondroitin lyase; xanthan lyase; heparin lyase
CBM22 4(1.33) 0(0) 2.25−4 xylan binding function with affinity for mixed β-1,3/β-1,4-glucans
CBM13 5(1.67) 6(0.06) 0.002 xylan binding function(e.g. Streptomyces lividans xylanase A)
GH43_11 3(1) 0(0) 0.002 β-xylosidase; α-L-arabinofuranosidase; xylanase;
GH79 3(1) 0(0) 0.002 β-glucuronidase; hyaluronoglucuronidase; heparanase
GH8 3(1) 0(0) 0.002 chitosanase; cellulase; endo-1,4-β-xylanase; reducing-end-xylose releasing 

exo-oligoxylanase
PL37 3(1) 0(0) 0.002 chondroitin-sulfate endolyase; heparin-sulfate lyase; ulvan lyase
GH5_13 6(2) 19(0.18) 0.007 endo-β-1,4-xylanase; xyloglucan-specific endo-β-1,4-glucanase; 

arabinoxylan-specific endo-β-1,4-xylanase
GH10 12(4) 99(0.91) 0.025 endo-1,4-β-xylanase; endo-1,3-β-xylanase; xylan endotransglycosylase
GH43_7 2(0.67) 0(0) 0.031 β-xylosidase; α-L-arabinofuranosidase; xylanase

1Sum of genes present in all B. cellulosilyticus genomes (N = 3). The density of the gene per B. cellulosilyticus genome is shown within parenthesis. 
2Sum of genes present in all Bacteroides genomes explored different than B. celulosilyticus (N = 106). The density of the gene per genome is shown within 

parenthesis.
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domains associated with gliding motility would also 
confer an advantage to B. cellulosilyticus during the 
scavenging for nutrients, reinforcing the idea of its 
extreme glycan predatory role. This surface motility 
mechanism is widely described in non-motile (pili- 
or flagella-based) oral microbiota pathogens such as 
Porphyromonas gingivalis and Flavobacterium 
johnsoniae,36 together with the above-mentioned cir
cuits for arabinoxylans and mucin O-glycan degra
dation, could constitute an evolutionary adaptation 

to outperform the carbohydrate uptake. However, 
the existence of this particular motility mechanism 
in B. cellulosilyticus should be confirmed in in vitro 
experiments.

While there is a notable inter-individual variation 
in Bacteroides species abundance, P. copri is consis
tently found to be the most prevalent Prevotella 
species in the human gut. P. copri also shows 
a superior ability to utilize xylans,37 and may out
compete Bacteroides spp. with overlapping glycan 

Table 4. Pfam families enriched in B. cellulosilyticus genomes.
Domain p-value (FDR) Associated function

CBM26 2.21−14 Starch-binding function.
SprA_N 5.53−07 Domain found the gliding motility-related SprA proteins -secretion
CYTH 0.003 Conversion of ATP to 3�,5�-cyclic AMP and pyrophosphate
Dak1 0.003 Kinase domain of the dihydroxyacetone kinase family
Dak2 0.003 Kinase domain of the dihydroxyacetone kinase family
Glyco_hydro_79 0.003 Glycosyl hydrolase family 79
Peptidase_C25 0.003 Gingipains R and K type cysteine peptidases
Peptidase_M6 0.003 Metalloendopeptidase of antibacterial humoral factors from insects
PorP_SprF 0.003 Gliding motility, cell movement without flagella
RHS_repeat 0.003 Heparing binding
Thi4 0.003 Putative thiamine biosynthetic enzyme
TraN 0.003 Outer membrane protein involved in the mating-pair stabilization (adhesin)
AAA_lid_6 9.74−10 ATPase domain
VKOR 4.53−11 Vitamin K epoxide reductase recycling reduced vitamin K
Phage_T4_gp19 1.76−5 Tube protein gp19 sequences from the T4-like viruses
VCBS 1.76−5 Role for this domain in adhesion
Phage_sheath_1 1.33−4 Domain in a variety of phage tail sheath proteins
PhdYeFM_antito 7.35−4 Toxin-antitoxin system
NPCBM 3.44−9 N-terminus of glycosyl hydrolase family 98
Cthe_2159 6.45−9 Cellulose and/or acid-sugar binding proteins
Malt_amylase_C 0.005 C-terminal domain of Maltogenic amylase
YoeB_toxin 0.002 Type II toxin-antitoxin system
fn3 3.44−9 Fibronectin domain
Glyco_hydro_30 5.80−10 endo-β-1,4-xylanase; β-glucosidase; β-glucuronidase; β-xylosidase
Lyase_8 5.12−7 Bacterial lyase acting on hyaluronan/chondroitin in the extracellular matrix of host tissues
LRR_5 4.77−11 BSPA-like surface antigens from Trichomonas vaginalis
Fucosidase_C 1.01−4 Alpha-L-fucosidase C-terminal domain
CBM_6 1.22−4 Cellulose-binding function on amorphous cellulose and β-1,4-xylan
Peptidase_C39 1.43−4 Cleavage of the ‘double-glycine’ leader peptides from bacteriocin precursors
Mannosidase_ig 0.005 Bacteroides thetaiotaomicron beta-mannosidase, BtMan2A – Mannose foraging
Pectate_lyase 4.93−6 Polygalacturonic acid lyase
Glyco_hydro_10 4.35−8 endo-1,4-β-xylanase; endo-1,3-β-xylanase; xylan endotransglycosylase
Glyco_hydro_28 2.99−7 Polygalacturonase; α-L-rhamnosidase; exo-polygalacturonase; rhamnogalacturonase
GH43_C2 1.91−4 Beta xylosidase
Glyco_hydro_88 1.60−7 d-4,5-unsaturated β-glucuronyl hydrolase
UpxZ 0.001 Family of transcription anti-terminator antagonists
Peptidase_S24 5.90−4 Endopeptidases involved in LexA/RecA system DNA repair
Fn3-like 4.35−8 Fibronectin type III-like structure associated with GH3
AAA_14 8.92−5 ATPase module in search of a basic functions
Glyco_hydro_3 1.19−7 β-glucosidase; xylan 1,4-β-xylosidase; β-glucosylceramidase; α-L-arabinofuranosidase
Glyco_hydro_43 1.19−9 β-xylosidase; α-L-arabinofuranosidase; xylanase
Bac_rhamnosid 0.002 GH78 – α-L-rhamnosidase; rhamnogalacturonan α-L-rhamnohydrolase
Y_Y_Y 3.87−10 Periplasmic sensor domain binding unsaturated disaccharides
HisKA 1.33−15 Histidine kinase two-component system
HATPase_c 3.87−10 ATPase domains of histidine kinase
Glyco_hydro_2 3.11−5 β-galactosidase; β-mannosidase; β-glucuronidase; α-L-arabinofuranosidase
HTH_18 1.35−8 Helix-turn-helix (HTH) binding DNA.
Response_reg 2.17−5 Bacterial two-component systems, DNA binding effector domain
Phage_int_SAM 5.78−4 Phage integrase, N-terminal SAM-like domain
FecR 5.43−4 FecR is involved in regulation of iron dicitrate transport
Arm-DNA-bind_5 6.22−4 DNA-binding domain found in various tyrosine recombinases
Glyco_hydro_20 2.34−5 β-hexosaminidase; lacto-N-biosidase; β-1,6-N-acetylglucosaminidase
CoA_binding_3 0.005 CoA-binding domain
STN 5.67−4 Secretins of the bacterial type II/III secretory system/TonB-dependent receptor proteins

GUT MICROBES e1847627-9



degrading capacity.38 In fact, intake of xylan-rich 
foods may be the main determinant of P. copri posi
tive effect on human metabolism,8,19 while a diet rich 
in fat seems to have the opposite effect.39 However, 
on AXOS, we found no weight-loss effect of high 
baseline abundance of P. copri, which could be due 
to too few subjects studied or the recently discovered 
disparate genomic and metabolic capacity of P. copri 
clades.19 Interestingly, clade C has been shown to 
grow well on arabinoxylans, in contrast to clade B, 
which lacks the enzymatic capacity.37 This may help 
to explain why clade B as the only P. copri clade was 
strongly positively correlated with B. cellulosilyticus, 
as there may not be substrate competition. This 
finding further points to the necessity of considering 
each clade in the P. copri complex to understand the 
effect on host metabolism. Also, it is worth noting 
that the increased consumption of fat on the PUFA- 
enriched diet (in combination with lower fiber 
intake) tended to result in poorer weight regulation 
for the high P/B subjects than the low P/B subjects, 
as also observed in previous P/B-ratio studies.11,12 

We hypothesize this could be a consequence of 
a mismatch between substrate and P. copri leading 
to, e.g., increased production of branch-chained 
amino acids and potentially insulin resistance.39

Given that the bodyweight changes may be partly due 
to fermentation end-products of AXOS released distally 
in the gastrointestinal tract, future studies should inves
tigate  potential links between B. cellulosilyticus and fecal 
SCFA. Acetate is the most highly produced SCFA in 
response to arabinoxylan fermentation38 and exclusively 
produced by B. cellulosilyticus upon arabinogalactan 
fermentation.40 While P. copri is a well-known acetate 
producer,41 we hypothesize that B. cellulosilyticus 
may not crossfeed SCFAs in a similar fashion, and 
thereby not contribute to create a healthy micro
bial community. In support, B. cellulosilyticus was 
negatively associated with Clostridiales spp., which 
may be a consequence of little acetate cross- 
feeding.42 Furthermore, we found that B. cellu- 
losilyticus tended to correlate with a change in 
total cholesterol concentrations. We do not dis
card this could be due to increased production of 
acetate in the upper gastrointestinal tract, where 
B. cellulosilyticus also thrives43 and followed by 
increased uptake in the liver (instead of cross- 
feeding) resulting in increased synthesis of 
cholesterol. However, such a hypothesis also needs 

further investigation in future studies. Interestingly, 
Chung et al. recently found a significant positive 
correlation between the relative abundance of 
Prevotella spp. and fecal SCFA concentrations fol
lowing AXOS consumption, which was not seen for 
Bacteroides spp.44

A strength of this study is first and foremost the 
high dose of the specific whole-grain fiber, AXOS 
(compared to our previous post-hoc analyses with 
whole grain-rich diets9–12), which allow us to 
(further) validate the differential effects of whole- 
grain fiber on body weight regulation between the 
enterotypes,9–12 and secondly the introduction of 
deep-level sequencing that improves our under
standing of AXOS-degrading gut microbes at spe
cies and strain level. However, it is a limitation that 
these species-level analyses include gut micro
biomes from only 15 subjects, and thus the novel 
findings need to be validated in a larger sample in 
combination with metabolome analyses to further 
explore causing factors.

In conclusion, AXOS consumption promoted 
weight gain among subjects with a low Prevotella- 
to-Bacteroides ratio, and B. cellulosilyticus has been 
pointed out as the main predictor of the body 
weight gain during the intervention. This analysis 
paves the way for future investigations aiming at 
elucidating the underlying metabolic cross-talk 
between these species and other microbes inhabit
ing the human gut under AXOS administration, 
and how that metabolic exchange influence nega
tively on adiposity. Furthermore, we believe that 
these results underline the need to investigate 
enterotypes beyond the genus level and in combi
nation with specific dietary fibers to further under
stand the role in human metabolism and obesity 
management, and to design more personalized 
interventions.

Methods

Study design

The assessment is a sub-study nested within 
a randomized cross-over trial.18 The study included 
two diet periods (AXOS and PUFA). To ensure body 
weight maintenance, the study participants had con
sultations (by physically present and by phone) with 
a dietician every week where body weight (non-fasting) 
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and diet were evaluated. Dietary advising compliance 
by participants in the intervention was evaluated and 
results are published elsewhere.18 The present work 
focuses on the first period of the cross-over design, as 
findings from the original study found participants to 
be responders of the AXOS intervention only in the 
first period, but not in the second period.18 The parti
cipants on the AXOS intervention in the first period 
had a change in their microbiota composition (respon
ders), whereas participants on the AXOS intervention 
in the second period did not experience this change 
(non-responders). This was suggested to be 
a consequence of a potential carry-over effect from 
the PUFA intervention in period 1.18 The study was 
registered at clinicaltrial.gov: NCT02215343 and 
approved by the Danish Ethical Committee. All study 
procedures were carried out in accordance with the 
Helsinki Declaration and the Danish Protection 
Agency. Written informed consent was obtained 
before the study start.

Study participants

Eligibility criteria were nonsmoking men and 
women between 18 and 60 years with a BMI of 
25–40 kg/m2. Furthermore, participants should 
have a waist circumference of ≥94 cm for men and 
≥80 cm for women and in addition it was required 
that they should have at least one criteria for meta
bolic syndrome; elevated fasting plasma glucose 
(≥5.6 mmol/L), elevated triglycerides (≥1.7 mmol/ 
L) lowered high-density lipoprotein (HDL) (men: 
<1.03 mmol/L, women: <1.29 mmol/L), or elevated 
blood pressure (BP) (systolic BP ≥130 mmHg or 
diastolic BP ≥85 mmHg).

Intervention

The evaluated dietary supplements were wheat 
bran extract, rich in AXOS (10.4 g/d) and PUFA 
(3.6 g/d). For the AXOS intervention, the goal was 
to reach a high-fiber diet consisting of approxi
mately 30 g fiber/day, of which 10.4 g was obtained 
from the AXOS supplementation. AXOS was pro
vided as a powder (5 g/d) and biscuits (4 biscuits/ 
d). The powder was instructed to be consumed in 
the morning and in the evening and should be 
dissolved in water. For the PUFA intervention, the 
goal was to reach approximately 10 energy 

percentage (E%) PUFA/day, whereas the partici
pants were guided to decrease their intake of satu
rated fatty acids. PUFA was provided as fish oil 
capsules (1.32 g/d of docosahexaenoic acid (DHA) 
and 1.86 g/d of eicosapentaenoic acid (EPA)).

Clinical evaluation

The anthropometric measurements were con
ducted in a fasting state and all participants had to 
void their bladder before the start. Bodyweight was 
measured using a calibrated digital scale (Lindells, 
Malmo, Sweden) to the nearest 0.1 kg with the 
participants wearing underwear, and height was 
measured without shoes to the nearest 0.5 cm 
using a wall-mounted stadiometer (Hultafors). 
BMI was calculated as weight in kilograms divided 
by height in meters squared (kg/m2), and waist 
circumference was measured twice with a non- 
elastic tape measure on the skin with a precision 
of 0.5 cm, from which an average was calculated. As 
described in detail previously,18 lipid and glucose 
markers were analyzed from fasting blood samples, 
and also resting energy expenditure (REE) by the 
ventilated hood and breath hydrogen were mea
sured among others.

Gut microbiota

DNA was obtained from subjects’ feces at baseline 
and after the intervention. Initially, gut microbiota 
was assessed by 16 S rRNA gene amplicon sequencing 
as previously described.18 The taxonomy assignment 
was performed using the RDP Classifier v2.12.45 The 
baseline abundance (on rarefied data) at the genus 
level was obtained, and the Prevotella/Bacteroides (P/ 
B) ratio was determined as a predictive trait for down
stream analyses. To stratify subjects by the P/B ratio, 
we calculated log10-transformed P/B ratios and used 
the median value (−0.81) to divide subjects into either 
low (n = 15) or high (n = 14) P/B groups.

A more detailed analysis aiming at species identi
fication was completed by using the metagenomic 
information derived for samples included in the 
study previously.46 Approximately 0.5 Tb raw data, 
delivered in respective paired-end fastq files, was 
used to identify operational taxonomic units 
(mOTUs) for taxonomy profiling of >7700 microbial 
species.47 The mOTUsv2.0 profiler was used with the 
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-g 1-c -l 100-y insert.scaled_count parameters to set 
a balance between high sensitivity and high precision 
configurations. From the full set of mOTUs detected, 
we selected the log-transformed baseline relative 
abundances of mOTUs with reliable classification 
as Bacteroides and Prevotella species (n = 10).

We additionally assessed the abundance of 
Prevotella copri clades by mapping the available 
metagenomic data of this subject cohort46 against 
the gene marker database generated by the Segata’s 
group previously.19 For reading mapping we used 
the Usearch v8.0.1623 algorithm with the following 
parameters: -usearch_local, -id 0.9, -strand both, - 
top_hit_only. Then, the relative abundance among 
P. copri clades was calculated.

Finally, the P/B ratios generated from the ampli
con sequencing (genus level), the abundance of 
Bacteroides and Prevotella species obtained from 
shotgun sequencing as well as the distribution of 
P. copri clades were used as traits to perform pre
dictions and associations with the weight gain/loss 
phenotypes (see ‘Statistical analyses’ section).

Quantitative PCR

Absolute quantification of Bacteroides cellulosilyticus 
was carried out on the fecal DNA of participants. The 
reference sequence of the rpoB gene (NZ_ 
CP012801.1) from B. cellulosilyticus was submitted 
to the Primer-Blast web server (https://www.ncbi. 
nlm.nih.gov/tools/primer-blast/) to retrieve specific 
primer pairs to amplify selectively this species- 
specific marker (included in the mOTUsv2 profiler). 
The comparison against the non-redundant NCBI 
database and the target organism [B. cellulosilyticus, 
taxid: 246,787] were fixed as checking parameters for 
primer prediction. As a result, we used the forward 
ATTTGTGGACGCTACTGTTATTCGT and reverse 
ACGACGCCACTTCGGAATACG primers to speci
fically detect and quantify the presence of B. cellulosi
lyticus. The single-stranded DNA (ssDNA), fully 
covering the region to be amplified (109 nt) was 
obtained from Isogen Life Science B.V (Utrecht, The 
Netherlands) where it was synthesized, PAGE- 
purified, quantified, and used for molecule titration 
during qPCR. The qPCR reactions were set in 96-well 
plates using the SYBR Green I Master Mix (Roche 
Lifesciences), 0.5 μM of forward primer, 0.25 μM of 
reverse primer, and 5 μL of the 1:10 diluted in 

nuclease-free water fecal DNA originally obtained 
for both amplicon and shotgun sequencing (final 
concentration in the qPCR reaction between 5 and 
50 ng DNA). All samples were set in duplicate in the 
plate and amplified at once with standards in 
a LightCycler 480 II instrument (Roche Lifesciences) 
with the following cycling profile: initial incubation at 
95°C for 5 min and 40 cycles of 10 s at 95°C, 20 s at 65° 
C, and 15 s at 72°C. Finally, the melting curve was set 
from 65°C to 97°C with a ramp rate of 0.11°/s. The 
absolute quantification was assessed with Ct values 
obtained for every sample and from titration curve 
(with duplicate measures) using the LightCycler® 480 
Software v1.5 (Roche Lifesciences). The number of 
rpoB gene molecules was normalized against the total 
DNA concentration (ng/µL) present in the diluted 
DNA sample measured through high sensitive fluoro
metric methods such as Qubit 3.0 and the Qubit 
dsDNA HS Assay Kit (Thermo Fisher Scientific, 
Waltham, MA, USA).

Bacteroides species genome functional assessment

Detection of distinctive genetic traits present in 
B. cellulosilyticus genomes, was based on surveying 
CAZy genes48 dedicated to carbohydrate metabolism 
in more than 100 Bacteroides genomes (Table S3). 
This information was used to explain why weight- 
loss could be influenced by the proportions of these 
species in the baseline gut microbiota of the subjects 
subjected to the AXOS intervention. Gene composi
tion was evaluated in PULs obtained from available- 
annotated genomes (N = 109) (April 2020) of most 
representative Bacteroides species in humans 
retrieved from the PUL database (http://www.cazy. 
org/PULDB/)49. B. caccae (3 genomes), B. cellulosi
lyticus (3 genomes), B. dorei (10 genomes), B. fragilis 
(24 genomes), B. ovatus (16 genomes), B. thetaiotao
micron (14 genomes), B. uniformis (6 genomes), 
B. vulgatus (12 genomes), and B. xylanisolvens (21 
genomes) were used in this functional assessment. 
The composition of predicted PULs present in each 
genome was parsed to extract CAZy families of gly
coside hydrolases (GH), glycosyl-transferases (GT), 
polysaccharide lyases (PL), carbohydrate esterases 
(CE), carbohydrate-binding modules (CBM), and 
any auxiliary genes present in respective PULs. 
Inventory of PUL-associated CAZy genes was per
formed for all the genomes and comparison among 
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them was performed in a species-specific manner. 
Advanced functional analysis was performed by 
annotating the coding genes present in the 
Bacteroides genomes against the Pfam database 
through the WebMGA server.50

Statistical analyses

All statistical analyses were carried out with the use of 
R statistical software, version 3.6. The treatment 
effects on body weight between the enterotype groups 
were analyzed using linear-mixed models, which 
included a three-way interaction between treatment 
* time * P/B group. The difference between the inter
vention (AXOS) and control (PUFA) group was ana
lyzed by pairwise comparison of the estimated mean 
differences between P/B groups. Linear-mixed mod
els included age, sex, and baseline BMI as fixed 
effects, and subject as a random effect. Model- 
checking was validated by residuals and quantile- 
quantile probability plots. The results are reported 
as estimated mean change from baseline within P/B 
groups and differences in change between P/B groups 
and interventions with a 95% confidence interval 
(CI). The significance level was set at P < .05.

Bacteroidetes species associations with metabolic 
changes, and co-abundant species
Non-parametric and rank-based correlations 
between baseline log10-transformed Bacteroides 
and Prevotella species (and P. copri clades) by meta
genomics and weight changes, metabolic parameters 
(cholesterol, HOMA-IR, REE, and breath hydrogen), 
and fecal SCFA (acetate, butyrate, and propionate) 
changes, from weeks 0 to 4 were analyzed calculating 
Kendall’s tau coefficient. To determine bacteria that 
were co-abundant with B. cellulosilyticus at baseline, 
a co-abundance network analysis among the 30 most 
abundant species (all phyla) was performed using 
Kendall’s tau, as described previously.20 The False- 
Discovery Rate (FDR) was used to adjust for multiple 
comparisons in the correlation tests.

To confirm the ability of B. cellulosilyticus to pre
dict body weight change, we performed the 
randomForest::randomForest R v3.6 function with 
the baseline relative abundance of the 10 most abun
dant Bacteroides and Prevotella species, and P/B 
ratio, as variables to evaluate their importance 

(IncNodePurity value) for change in body weight 
after consuming AXOS for 4 weeks.

For qPCR analyses, a differential abundance of 
B. cellulosilyticus species at baseline was assessed by 
the Student’s t test with Welch’s correction on 
log10-transformed data of molecules per ng DNA 
derived from qPCR51.

Functional enrichment of CAZy and Pfam func
tions in B. cellulosilyticus genomes was evaluated 
using hypergeometric Fisher’s exact test with cor
rection for multiple testing using the False- 
Discovery Rate (FDR) method. Genes and func
tions associated with B. cellulosilyticus were selected 
upon FDR ≤ 0.05.

Abbreviations

AXOS arabinoxylan oligosaccharides
BMI body mass index
CAZy carbohydrate-active enzymes
CBM carbohydrate-binding module
CE carbohydrate esterase
FDR false discovery rate
GL glycoside hydrolase
GT glycosyl transferase
INP IncNodePurity or Mean Decrease Gini
mOTU metagenomic operational taxonomic unit
P/B Prevotella-to-Bacteroides
Pfam protein families database
PL polysaccharide lyase
PUFA polyunsaturated fatty acids
PUL polysaccharide utilization loci
SCFA short-chain fatty acid
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