Skip to main content
. 2020 Dec 21;8(12):e23082. doi: 10.2196/23082

Table 2.

Performance analysis of model-based reasoning methods applied for syndrome pattern diagnosis of lung disease based on Doc2Vec in the test and external data sets.

Model and data set Accuracy, mean (95% CI) Precision, mean (95% CI) Recall, mean (95% CI) F1 score, mean (95% CI)
Doc2Vec + RFa




Test 0.8320 (0.8198-0.8442) 0.8457 (0.8345-0.8567) 0.8320 (0.8198-0.8442) 0.8337 (0.8217-0.8458)

External 0.8190 (0.8090-0.8310) 0.8506 (0.8366-0.8610) 0.8190 (0.8110-0.8323) 0.8267 (0.8147-0.8397)
Doc2Vec + XGBoostb



Test 0.7584 (0.7444-0.7724) 0.7682 (0.7602-0.7812) 0.7584 (0.7504-0.7704) 0.7589 (0.7499-0.7719)

External 0.7270 (0.719-0.7400) 0.7735 (0.7645-0.7835) 0.7270 (0.7130-0.7390) 0.7391 (0.7261-0.7501)
Doc2Vec + KNNc


Test 0.8527 (0.8407-0.8637) 0.8588 (0.8488-0.8668) 0.8527 (0.8407-0.8627) 0.8535 (0.8425-0.8665)

External 0.8202 (0.8092-0.8282) 0.8246 (0.8116-0.8326) 0.8220 (0.8090-0.8331) 0.8215 (0.8105-0.8295)
Doc2Vec +SVMd


Test 0.6748 (0.6628-0.6848) 0.7424 (0.7334-0.7504) 0.6748 (0.6668-0.6858) 0.7577 (0.7467-0.7667)

External 0.5820 (0.5700-0.5950) 0.5743 (0.5663-0.5883) 0.5920 (0.5830-0.6033) 0.5288 (0.5168-0.5388)
Doc2Vec + MLPe


Test 0.8840 (0.8730-0.8970) 0.8876 (0.8776-0.8976) 0.8840 (0.8710-0.8932) 0.8843 (0.8753-0.8973)

External 0.8760 (0.8620-0.8890) 0.8897 (0.8757-0.9027) 0.8760 (0.8630-0.8851) 0.8791 (0.8701-0.8921)

aRF: random forest.

bXGBoost: extreme gradient boosting.

cKNN: K nearest neighbor.

dSVM: support vector machine.

eMLP: multilayer perceptron.