Skip to main content
. 2020 Dec 21;8(12):e23082. doi: 10.2196/23082

Table 6.

Performance analysis of model-based reasoning methods in combination with rule-based reasoning methods for each syndrome element in the test data set with corpus 1 and corpus 2.a

Syndrome element Corpus 1 Corpus 2
Precision Recall F1 score Support Precision Recall F1 score Support
Phlegm 0.9907 0.9538 0.9719 1233 0.9935 0.9951 0.9943 1233
Wind 0.9926 0.9218 0.9559 435 0.9953 0.9770 0.9861 435
Cold 0.9800 0.9722 0.976 503 0.996 1.000 0.998 503
Heat 0.9704 0.8903 0.9286 811 0.9675 0.9174 0.9418 811
Qi-deficiency 0.9616 0.9756 0.9686 616 0.9871 0.9935 0.9903 616
Yin-deficiency 1.000 0.9851 0.9925 403 0.9975 0.9801 0.9887 403
Lung 1.000 1.000 1.000 2815 1.000 1.000 1.000 2815
Spleen 0.9644 0.9457 0.955 258 0.9771 0.9922 0.9846 258
Kidney 0.9882 0.9825 0.9853 171 0.9826 0.9883 0.9854 171
Average (weighted) 0.9885 0.968 0.9779 7245 0.9922 0.9863 0.9892 7245

aCorpus 1 consists of syndrome and sign information, and corpus 2 consists of syndrome and sign information plus clinical diagnosis information. The average accuracy was 0.9229 (95% CI 0.9099-0.9319) for syndrome pattern in the test data set with corpus 1, and 0.9559 (95% CI 0.9429-0.9699) for syndrome pattern in the test data set with corpus 2.