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Abstract 
Main protease (Mpro) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) intervenes in the replication and 
transcription processes of the virus. Hence, it is a lucrative target for anti-viral drug development. In this study, molecular 
modeling analyses were performed on the structure activity data of recently reported diverse SARS-CoV-2 Mpro inhibitors 
to understand the structural requirements for higher inhibitory activity. The classification-based quantitative structure–activ-
ity relationship (QSAR) models were generated between SARS-CoV-2 Mpro inhibitory activities and different descriptors. 
Identification of structural fingerprints to increase or decrease in the inhibitory activity was mapped for possible inclusion/
exclusion of these fingerprints in the lead optimization process. Challenges in ADME properties of protease inhibitors were 
also discussed to overcome the problems of oral bioavailability. Further, depending on the modeling results, we have proposed 
novel as well as potent SARS-CoV-2 Mpro inhibitors.
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Introduction

At the end of 2019, a new coronavirus-related infec-
tion namely severe acute respiratory syndrome corona-
virus-2 (SARS-CoV-2) had spread its wings across the 
globe [1, 2]. For its worldwide impact, this coronavirus 
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disease-2019 (COVID-19) was declared as a global pan-
demic by the World Health Organization (WHO) and 
to date over million confirmed cases along with million 
COVID-19-related mortalities have been reported [1, 3].

Belonging to the betacoronavirus genus, SARS-CoV-2 
is responsible for lower respiratory tract infections similar 
to severe acute respiratory syndrome coronavirus (SARS-
CoV) and Middle-East respiratory syndrome coronavirus 
(MERS-CoV) [1]. Ongoing research highlighted some 
important druggable targets like spike (S) protein, papain-
like protease (PLpro), RNA-dependent RNA polymerase 
(RdRp) and SARS-CoV-2 main protease/3C-like protease 
(Mpro/3CLpro). These possess potentiality to become 
important targets for achieving the most desirable goal that 
humanity craves in the current situation [1, 2, 4]. The open 
reading frame 1ab (ORF 1a/b) of coronaviruses translates 
polyprotein 1a and polyprotein 1ab. The Mpro and PLpro 
enzymes produce non-structural proteins by processing 
these polyproteins which in term aids the production of 
viral structural proteins [5, 6]. Thus, SARS-CoV-2 Mpro 
enzyme can be a valuable target as it intervenes in the 
replication and transcription processes of the virus [2]. 
It possesses high structural similarity (96% sequential 
resemblance) to SARS-CoV Mpro [5].

Additionally, targeting proteases were successful to pro-
vide anti-viral agents for the treatment of viral infections 
like human immunodeficiency virus (HIV) and hepatitis C 
virus (HCV) [7, 8]. Thus, small molecule-mediated block-
ing of Mpro activity is a feasible option for SARS-CoV-2 
anti-viral drug development [9–18]. The computer-aided 
drug design (CADD) and virtual screenings (VS) are via-
ble options. These techniques may be useful to identify 
promising hit that can aid the design and development of 
potent anti-viral agents [4]. Meanwhile, drug repurposing 
was employed as an instant weapon against coronavirus 
[19]. However, the ongoing rampage of COVID-19 has 
employed researches in an assignment to discover a per-
manent solution for this pandemic. In this panorama, the 
small molecule inhibitors carefully designed by different 
modeling approaches are one of the most promising tools 
to achieve success.

Here, we have explored SARS-CoV-2 Mpro inhibitors by 
different molecular modeling strategies with four main mot-
tos- (i) development of a mathematical relationship between 
the derivatives and SARS-CoV-2 Mpro enzyme (ii) identi-
fication of important fingerprints that module the SARS-
CoV-2 Mpro inhibition, (iii) scope of these derivatives to 
address ADME properties, (iv) design of potent SARS-
CoV-2 Mpro inhibitors with significant ADME properties. 
The current study, a part of our rational drug design and dis-
covery program, [4, 19–21] may offer an initiative to explore 
the possibility of potent inhibitor design against the Mpro 
enzyme of SARS-CoV-2.

Methods and materials

Dataset

A number of 33 derivatives, represented by SARS-CoV-2 
Mpro inhibitory activity IC50 (µM), were obtained from 
the published data [5, 6, 9, 14, 15]. The SARS-CoV-2 
Mpro inhibitory activity values of the inhibitors are pre-
sented in Supplementary Table S1. The pIC50 (i.e., -log 
IC50) values were used to derive QSAR models [22–24].

Classification‑based QSAR

The classification modeling assists to classify the active 
and inactive molecules in terms of their biological data 
[25–30]. Here, we employed Bayesian classification 
approach [31–33].

Bayesian classification study

Performing Bayesian classification study by the aid of Dis-
covery Studio (DS) software [34] enables graphical visu-
alization of critical chemical sub-structural features (fin-
gerprint or fragments) attributed to enhance or decrease 
the SARS-CoV-2 Mpro inhibitory activity. Additionally, 
as to conduct this classification-based study, on the basis 
of their SARS-CoV-2 Mpro inhibitory activity, the dataset 
molecules were grouped into active (SARS-CoV-2 Mpro 
pIC50> 5.0) and inactive (SARS-CoV-2 Mpro pIC50< 5.0) 
molecules (e.g., active = 1, inactive = 0) [23].

The selection of the training and test sets was done by 
using Generate training and test data tool in DS [34]. 
The whole data were divided into 20 clusters by maxi-
mum dissimilarity approach on the basis of Predefined Set 
properties including ALogP, Molecular_Weight, Num_H_
Donors, Num_H_Acceptors, Num_RotatableBonds, Num_
Atoms, Num_Rings, Num_AromaticRings, Num_Frag-
ments, Molecular_PolarSurfaceArea. The whole data set 
compounds were separated into two groups, a training set 
SARS-CoV-2 Mpro inhibitors, a test set SARS-CoV-2 
Mpro inhibitors (Supplementary Table S1).

Further, to ensure whether the selected test set com-
pounds truly represent the training set or not, principal 
components analysis (PCA) was performed by Calculate 
principal components tool in DS [34]. The DS default 
properties such as ALogP, Molecular_Weight, Num_H_
Donors, Num_H_Acceptors, Num_RotatableBonds, Num_
Rings, Num_AromaticRings, Molecular_FractionalPolar-
SurfaceArea were considered for the PCA calculation. The 
uniform distribution of the test set SARS-CoV-2 Mpro 
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inhibitors in the PCA three-dimensional plot (as given in 
Supplementary Figure S1) referred a proper division of the 
training and the test sets.

Finally, the Bayesian classification model was constructed 
on the training set and was cross-validated by using the test 
set. Before conducting this Bayesian classification study, 
several fundamental molecular features namely, ALogP, 
Molecular_Weight, Num_H_Donors, Num_H_Acceptors, 
Num_RotatableBonds, Num_Rings, Num_AromaticRings, 
Molecular_FractionalPolarSurfaceArea of the dataset mol-
ecules have been calculated [34]. Alongside those molecu-
lar properties, a topological fingerprint descriptor namely 
extended connectivity fingerprint of diameter 6 (ECFP_6) 
[35] was also considered for this study. The quality of this 
classification model was evaluated using the Receiver oper-
ating characteristics (ROC) plot [36], sensitivity (Se), speci-
ficity (Sp) and accuracy (Acc) for both the training and the 
test sets [23].

Multiple linear regression analysis

The derivatives with no activity and without definite SARS-
CoV-2 Mpro inhibitory activity were not considered for the 
multiple linear regression (MLR) analysis [23]. Hence, only 
25 molecules were recognized for the regression-based 
QSAR study (Supplementary Table S1).

Meanwhile, a number of 2D and fingerprint descriptors 
were calculated [37]. Then, the descriptors with constant 
values were removed from the data matrix [23]. Next, the 
highly inter-correlated variables were stocked out depending 
on the specified variance of 0.001 and correlation coefficient 
cutoff values of 0.99 [38, 39]. Then, several genetic function 
approximation (GFA) runs were employed to collect a bunch 
of important descriptors [39]. Finally, stepwise multiple lin-
ear regression (S-MLR) model was developed to identify 
the linear correlation between the structure of SARS-CoV-2 
Mpro inhibitors and their respective Mpro inhibitory activi-
ties. The robustness of the constructed model was justified 
by correlation coefficient (R), adjusted R2 (RA

2), variance ratio 
(F) at specified degrees of freedom (df), cross-validated R2 
(Q2), standard error of estimate (SEE), and other validation 
metrics [23]. In addition, Euclidean distance-based appli-
cability domain was also constructed [23, 38] to check the 
applicability of the MLR model.

Molecular docking & dynamic simulation

For the docking studies, the SARS-CoV-2 Mpro structure 
was obtained from Protein Data Bank (PDB ID: 6LZE). Sub-
sequently, the compounds were docked in the active site of 
the Mpro protein using Auto Dock Vina v1.1.2 [40], wherein 
a grid box of size 16, 14, and 14 with spacing of 1 Å were 
set around the active site of SARS-CoV-2 Mpro.

Later, the molecular dynamics simulation was performed 
by the GROMACS 5.1.4 version [41] using the GRO-
MOS43A2 force field and SPC/E water model. To neutral-
ize the charges on each simulating system, an appropriate 
number of ions (Na+) were added. The energy of each sys-
tem was minimized by the steepest descent algorithm fol-
lowed by NVT (at 300 K) and NPT (at 1 bar) ensemble 
equilibrations for 100 ps. Subsequently, each of the equili-
brated system was carried on for the production simulation 
of 20 ns. The trajectory data of the production simulations 
were further used for the calculation of root mean square 
deviation (RMSD), root mean square fluctuations (RMSF), 
and radius of gyration (Rg) data of each system. The binding 
energy of each compound in the complex was calculated by 
g_MMPBSA package of GROMACS, for every 0.1 ns frame 
of each 20 ns simulation [42].

Result and discussions

SARS‑CoV‑2 Mpro binding site analyses

SARS-CoV-2 Mpro is a homodimeric protein. Each subunit 
is termed as protomer. A number of 306 amino acid residue 
is found in each protomer. It is constructed by three domains 
[4, 9]. The domain I is 8 to 100 residues long followed by 
domain II (101 to 184 residues) and domain III (from 199 
to 306 residues). Besides, domains II and III are bridged by 
a long loop (from 185 to 198 residues) [9].

Domains I and II allocated the same fold i.e., an anti-
parallel six stranded β-barrel structure, while domain III 
is semblance by five α-helices arranged into a largely anti-
parallel globular cluster. Meanwhile, the domain III helps in 
the regulation of Mpro dimerization through an inter subunit 
salt-bridge between E290 from one protomer and R4 from 
the other protomer. Notably, the substrate-binding site or cat-
alytic site of SARS-CoV-2 Mpro is located at a cleft between 
domains I and II. The N-terminal amino acid residue of a 
protomer namely S1 interacts with the E166 of another to 
form the S1 subsite of the substrate-binding pocket. Hence, 
the dimerization is essential for protease activity [17].

The research on SARS-CoV-2 Mpro has moved at a much 
faster after delivering several ligand bound crystal struc-
tures. Those have provided useful information for develop-
ing inhibitors, but it seems that it is not enough. Analysis of 
different crystal structures has shown that there is an intrin-
sic flexibility in the catalytic site. In order to explore the 
detail binding interactions, few contour maps of the binding 
site of the SARS-CoV-2 Mpro (PDB: 6WTT) were deter-
mined by Display receptor surfaces tool of DS [34]. Six 
structure-based contour maps for hydrophobic, hydrogen 
bond, charge, aromatic, ionizability and solvent accessible 
surface (SAS) are provided in Fig. 1.
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Figure 1 reveals overall surface topology of SARS-
CoV-2 Mpro with its deep binding pocket. The binding 
site of SARS-CoV-2 Mpro enzyme is a large and wide 
cavity containing four main hydrophobic sites (Fig. 1a). 
Analyzing Fig. 1a, b suggests that hydrophobic aromatic 
substitution may be allowable in the binding pocket. The 
hydrogen-bond site map (Fig. 1c) shows that acceptor 
feature exists close to the straight chain amide residues. 
The S1 cavity is acceptor specific. Near S1 site, H172 
endorses acidic ionizability (Fig. 1d), and it is slight neg-
atively charged (Fig. 1e). Significantly, ionizability and 
interpolated charge contours are more or less consistent. 
From the SAS contour (Fig. 1f), it may be suggested that 
a significant part of the catalytic site is solvent exposed. 
In order to explore the details contribution of fragments/
fingerprints of the inhibitors, we moved forward to quan-
titative structure–activity relationship (QSAR) studies and 
design of specific SARS-CoV-2 Mpro inhibitors.

Classification‑based QSAR

The Bayesian classification modeling is a classification 
QSAR technique based on the Bayes’ theorem which utilizes 
data to predict the probability of specific events [43–45]. 
Additionally, another advantage of this Bayesian classifi-
cation study with fingerprint descriptor is its capability to 
recognize important structural fragments of molecules while 
indicating their positive or negative influence on the activ-
ity [23].

In order to describe the statistical quality of the generated 
Bayesian classification model, different statistical parame-
ters like sensitivity (Se), specificity (Sp), and accuracy (Acc) 
were calculated. The results were found to be statistically 
significant as all the parameters were having decent scores 
to consider the model as robust and predictive as specified 
in Table 1.

Further, the ROC (Receiver operating characteristic) 
curve for training and test sets are found to be 0.747 and 

Fig. 1   Six structure-based contour maps for a hydrophobic, b aromatic, c hydrogen bond, d ionizability, e charge, and f solvent accessible sur-
face (SAS)

Table 1   Statistical parameters 
of the developed model 
obtained from Bayesian 
classification study

ROC receiver operating characteristics; TP true positive; FN false negative; FP false positive; TN true neg-
ative; Se sensitivity; Sp specificity; Acc accuracy

Set ROC TP FN FP TN Se Sp Acc

Training (NTrain = 25) 0.747 15 0 4 6 1.000 0.600 0.840
Test (NTest = 6) 1.000 3 1 0 2 0.750 1.000 0.833
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1.000, respectively. This indicates the predictive capability 
of the model. The ROC curve for training and test set are 
shown in Supplementary Figure S2.

The mechanistic interpretation of the Bayesian classi-
fication study is performed using a fingerprint descriptor 
ECFP_6. A set of 20 good and 20 bad molecular sub-struc-
tural features has been procured with positive and negative 
influences, respectively, on SARS-CoV-2 Mpro inhibition 
of the compounds. Twenty good (G1-G20) and twenty bad 
sub-structural fragments (B1-B20) as constructed from the 
ECFP_6 fingerprint descriptor are shown in Supplementary 
Figure S3 and S4, respectively.

Upon observation, the set of 20 good molecular sub-
structures can be clustered into four major groups namely: 
bi-acetyl amine and acetamido group containing 2-oxo 
pyrrolidine moiety (G1, G7 and G9-G15), cyclohexyl and 
cyclohexyl methyl groups (G2-G3, G8, G16-G17 and G19-
G20), and acetamido methylene (iso-butyl) acetamide moi-
ety (G4-G6). Beside these frequent sub-structures, the oxy-
anion function (G18) is upheld as positive influencers for 
the Mpro inhibition as shown in Supplementary Figure S3.

In contrast, among the proposed negatively influencing 
features, 4-fluoro phenyl and 4-fluoro benzyl moieties are the 
most commonly displayed bad features (B11-B15 and B17). 
The branched alkyl (B3-B4, B6, and B8) and amino-alkyl 

(B1-B2, B5, B10, and B16) groups are indicated to be detri-
mental for activity. Moreover, oxymethylene carbonyl (B7) 
and acetate (B9) functions are also suggested as negative 
regulators of Mpro inhibitory activity (Supplementary Fig-
ure S4).

Further analysis of the fragments and the dataset mol-
ecules, it is found that the most active M027 having an 
acetamido methylene (iso-butyl) acetamide function and a 
negatively charged oxygen ion similar to the sub-structures 
G4-G6 and G18, respectively (Fig. 2).

From the crystal structure analysis of M027 with SARS-
CoV-2 Mpro (PDB: 6WTT), the mentioned fragments are 
found to involve in several interactions at the enzyme active 
site. The iso-butyl group of M027 enters into the S2 pocket 
of the enzyme while the carboxamide function interacts with 
Q189 and E166 amino acids (Fig. 3) [15].

Meanwhile, fragments G2-G3, G8, G16-G17 and G19-
G20 exhibit the importance of cyclohexyl moiety. From 
the SARs, it may be observed that cyclohexyl function is 
important for the activity. The cyclohexyl methyl moiety 
is found in active molecules like M009, M011, and M012. 
The cyclohexyl function embeds itself in the hydrophobic 
S2 site of SARS-CoV-2 Mpro [6]. Therefore, hydrophobic 
interactions are essential in these regions. Similarly, the (S)-
γ-lactam ring is directed to a hydrophobic S1 pocket (Fig. 3).

Fig. 2   Structures of some potent 
SARS-CoV-2 Mpro inhibitors 
containing good fragments 
highlighted in deep blue color
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The cyclohexyl methyl group of M009 is found to be 
important for entering into the S2 pocket of the enzyme 
where its indole ring enters into the S4 pocket (PDB: 
6M0K). Meanwhile, the indole moiety of compound M010 
also shows identical binding to that of M009 (PDB: 6LZE) 
[6].

A substituted 2-pyridinone moiety is present in both 
compound M012 and M013 whereas the 3-amino-Boc sub-
stituted 2-pyridinone moiety of M013 forms more than 
one interaction at the active site of SARS-CoV-2 Mpro 
(PDB: 6Y2F) as shown in Fig. 3. Also, the 2-carbonyl and 
the 3-amino functions of the moiety interact with E166 
through hydrogen bond formation [5]. The presence of 
2-phenyl-4-chromenone moiety can be observed in both 
M033 and M032. The 6- and 7-hydroxyl group of M033 
interacts with L141 and G143 (PDB: 6M2N), respectively 
[14].

Regarding the bad molecular fragments, compound M021 
possessing a 4-fluorophenyl group is inactive (Fig. 4). The 
acetate function containing M029 exhibits inactivity against 
Mpro. The oxymethylene carbonyl moiety containing M030 
also shows inactivity against Mpro (Fig. 4).

Challenges in SARS‑CoV‑2 Mpro inhibitors design

An effective drug candidate/drug-like ligands having prom-
ising biological responses should possess the ability to reach 
its desire domain in sufficient concentration. Drug design 
and discovery obviously depends on the assessment of 
absorption, distribution, metabolism and excretion (ADME) 
characteristics.

In order to check the drug-likeliness of the investigated 
derivatives Filters ligands using Lipinski and Veber rules 
protocol of DS was employed [34]. It selects drug-like 

Fig. 3   Interaction of compound 
M027 (PDB: 6WTT) and M013 
(PDB: 6Y2F) at the active site 
of SARS-CoV-2 Mpro

Fig. 4   Structures of some inac-
tive SARS-CoV-2 Mpro inhibi-
tors containing bad fragments 
highlighted in deep red color
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ligands as per the rules proposed by Lipinski [46] and Veber 
[47]. The default settings for Lipinski Rule of Five (Hydro-
gen Bond Donors: 5, Hydrogen Bond Acceptors: 10, Molec-
ular Weight: 500, AlogP: 5, Number of Violations Allowed: 
1) and Veber Rule (Rotatable Bonds 10, Polar Surface Area 
140, Hydrogen Bond Donors, and Acceptors 12) were con-
sidered for this study.

Notably, 19 compounds (Fig. 5) fail to pass the Lipinski 
and Veber rules. Only 14 compounds (Fig. 5) pass these two 
rules, therefore, those have a higher probability of good oral 
bioavailability.

The protease targeted peptidomimetic inhibitors design 
is very challenging due to their undesirable pharmacoki-
netic properties. In contrast, compounds with low molecu-
lar weight or non-peptidomimetics exhibit good druglikeli-
ness. However, non-peptidomimetics/low molecular weight 
derivatives fail to effectively block the proteolytic activity 
of SARS-CoV-2 Mpro. In these circumstances, the struc-
ture of SARS-CoV-2 Mpro in complex with a small mol-
ecule baicalein (M033) may be a good option for baicalein-
derived lead optimization. The binding mode of baicalein 
at the active site of SARS-CoV-2 Mpro facilitated a unique 
protein–ligand interaction pattern.

Since baicalein (M033) possesses a molecular weight 
of 270.24 Da, it encourages us to anticipate new derivative 
design by keeping the baicalein core. Lead optimization of 
baicalein with good molecular fingerprint (as suggested by 
the Bayesian modeling study) may render new derivatives 
directed toward S1 and/or S4 site(s). It may effectively block 
the proteolytic activity of SARS-CoV-2 Mpro.

Taken together these modeling efforts may give rise in 
a new candidate with broad-spectrum anti-viral properties. 

However, substitution at the wrong position (as in case of 
baicalin) resulted in ~ sevenfold loss in SARS-CoV-2 Mpro 
inhibition (baicalein vs baicalin) [14].

Designing of newer molecules

Considering the finding of the performed QSAR studies, we 
have designed a set of four chromenone-based molecules 
(Fig. 6).

Bayesian classification model

Primarily, the Bayesian classification model was used to pre-
dict the Mpro inhibitory activity of these molecules. The 
designed compounds (D1–D4) predicted as active. Hence, 
these compounds may serve as promising molecules against 
SARS-CoV-2 Mpro.

Multiple linear regression model

To further revalidate prediction credibility, a stepwise mul-
tiple linear regression (S-MLR) model has been constructed 
on the available data. At first, a pool of 2D and fingerprint 
descriptors for these derivatives was calculated [37]. Then, 
dataset thinning was introduced followed by several genetic 
function approximation (GFA) runs [38, 39]. The best 
model (Eq. 1) through the S-MLR analysis (the stepping 
criterion of F = 4 for inclusion and F = 3.99 for exclusion) 
is as follows

Fig. 5   Comparison of Lipinski 
and Vaber rules criteria for the 
dataset compounds
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Equation (1) explains 94.4% and predicts 92.8% variances 
of the SARS-CoV-2 Mpro inhibitory activity. The definition 
and contributions of the descriptors used to develop Eq. (1) 
are depicted in Table 2. Other details are given in the Sup-
plementary files (Table S2–S4).

Additionally, Euclidean distance-based applicability 
domain was constructed [23, 38] as illustrated in Fig. 7. It 
justifies that all the compounds are within the boundary of 
the hypothetical domain (Fig. 7). Hence, there is no outlier 
for this dataset.

(1)
SARS - CoV - 2 Mpro pIC50 = 0.987(±0.304) + 2.599(±0.147)MLFER_A + 0.056(±0.004)

AATS5m − 0.073(±0.008)MDEC−33 − 0.792(±0.119)PubchemFP184 − 0.443(±0.125)

PubchemFP695

R = 0.978;R2 = 0.956;R2
A
= 0.944;SEE = 0.212;F(5, 19) = 81.716;p < 0.000;Q2 = 0.928;

PRESS = 1.377, SDEP = 0.234;r2
m(LOO)

= 0.919;Δr2
m(LOO)

= 0.041.

The designed molecules (D1–D4) predicted pIC50 more 
than 7.523 as depicted in Table 3. This result supports the 
potential of these designed molecules to become promising 
Mpro inhibitors.

Since the drug-likeliness is one of the major challenges 
in drug discovery. The drug-likeliness of these designed 
molecules (D1–D4) was investigated using the DruLiTo 
software [48]. The drug-like properties of the designed 
molecules are also given in Table 3.

Fig. 6   Designed SARS-CoV-2 
Mpro inhibitors (D1–D4)

Table 2   The definition and contributions of descriptors used to develop Eq. (1)

Descriptor Type Definition Contribution

MLFER_A PaDEL; 2D Overall or summation solute hydrogen bond acidity Positive
AATS5m 2D autocorrelations Average Broto-Moreau autocorrelation—lag 5/weighted by mass Positive
MDEC-33 PaDEL; 2D Molecular distance edge between all tertiary carbons Negative
PubchemFP184 Fingerprint 1 unsaturated non-aromatic heteroatom-containing ring size 6 Negative
PubchemFP695 Fingerprint O=C–C–C–C–C–N Negative
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Molecular docking and dynamic simulation

To understand the structural basis of inhibition by com-
pounds (D1–D4), protein–ligand docking studies were 
performed using AutoDockVina [40]. The outcome of 

molecular docking shows that all compounds are found to 
be docked into the active site of SARS-CoV-2 Mpro (Fig. 8).

The binding energies of the selected conformation of the 
compounds are depicted in the Supplementary Table S5, 
which indicates that the complex with compound D4 has 
higher binding energy in comparison with the other com-
pounds. Moreover, interacting residues of the docked com-
plexes also reveals similarity with the interacting residues 
of the reported protein co-crystal structure (PDB: 6LZE).

The respective average RMSD of apo, prt_D1, prt_D2, 
prt_D3, and prt_D4 are enumerated as 0.284, 0.292, 0.213, 
0.258, and 0.276 nm, respectively. Wherein, protein shows 
lesser deviations in the structure with compound D2 in 
comparison with the other compounds as well as apo form 
(Fig. 8). The analysis infers an increase in the stabilization 
of protein backbone structure after interaction with D2 
during the simulation. Simultaneously, the fluctuations in 
the backbone atom of the protein residues in each system 
was analyzed by RMSF, which shows apo, prt_D1, prt_D2, 
prt_D3, and prt_D4 system to possess average RMSF of 
0.135, 0.137, 0.117, 0.138, and 0.126 nm, respectively. 
However, protein residues presented lower fluctuation after 
interacting with compound D2 than the other complex and 

Fig. 7   Graphical representation of the applicability domain of Eq. (1) 
by the Euclidean distance approach

Table 3   Drug-like properties 
and predicted activity of 
designed SARS-CoV-2 Mpro 
inhibitors

Compound MW LogP HBA HBD TPSA nRB Prediction Pred pIC50

D1 493.16 2.431 8 4 116.76 6 Active 8.151
D2 473.2 2.699 8 4 116.76 7 Active 7.706
D3 489.19 3.047 9 5 136.99 7 Active 8.879
D4 507.18 2.669 8 4 116.76 7 Active 8.479

Fig. 8   Molecular docking and dynamic simulation analysis: a–d 
Compounds D1, D2, D3, and D4 are represented as magenta, yellow, 
gray, and cyan sticks, respectively. The Mpro protein residues show-
ing interaction with compounds are labeled and displayed as stick 

model in element colors (carbon colored green, nitrogen colored blue, 
and oxygen colored red), while interactions are represented by black 
dashed lines. e–g MDS plots are showing RMSD, RMSF, and Rg of 
the backbone-atoms of the apo Mpro and its complexes
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apo forms. Decrease in fluctuation of the residues side 
chain in the presence of D2 indicates the induced stability 
in rotameric switching of protein residues during dynamic 
environment.

Further, the comparative analysis of Rg data was per-
formed to determine the protein compactness after inter-
action with compounds. The respective average Rg value 
of 2.13, 2.10, 2.13, 2.10, and 2.12 nm are computed for 
apo, prt_D1, prt_D2, prt_D3, and prt_D4, respectively. 
The obtained data reveals that all protein complex forms 
attain level of compactness similar to the apo form, which 
indicates that each compound interact with protein without 
disturbing its structural folding in the dynamic environ-
ment (Fig. 8). Altogether, our study highlighted that the 
compound D2 has shown much stable interaction along 
with the induction of low deviations and fluctuations in 
the protein structure as compared to apo form and other 
compounds during MD simulation.

The affinity of the compounds with protein was also 
analyzed by the binding energy calculation. The average 
binding energy calculated for each protein–ligand complex 
is presented in Table 4, which shows that the compound 
D4 has more binding affinity with Mpro protein during 
the simulation.

Wherein, the van der Waals energy plays a major role in 
the binding of compound D4 at the active site of the Mpro 
in comparison to the other free energies. Moreover, the bind-
ing energy analysis shows corroboration with docking stud-
ies of the compounds. It infers that the compound D4 has 
more affinity for the static and dynamic SARS-CoV-2 Mpro 
structure.

Conclusion

COVID-19 shows worldwide impact as a global pandemic. 
Till date over million confirmed cases have been reported 
worldwide. In this communication, QSAR analyses were 
performed on recently reported structurally diverse Mpro 
inhibitors to understand structural requirements for higher 
activity. The study is able to extract the significant molecular 
attributes of these SARS-CoV-2 Mpro inhibitors.

The main problems for design of SARS-CoV-2 Mpro 
inhibitors are the perfect binding of susbtituents in putative 
binding site and the ADME properties. To overcome these 
problems, we suggest baicalein-derived design as well as 
lead optimization. Since different ligands induce different 
conformational changes, the conformation of binding pocket 
residues could not be easily predicted for different inhibitors. 
Nonetheless, the S1, S1’, S2, and S4 pockets bear intrinsic 
flexibility where hydrophobic susbtitutents may trigger the 
SARS-CoV-2 Mpro inhibition. Our structure-based contours 
result suggests that Mpro binding pockets should be ana-
lyzed carefully to design inhibitors with such flexibilities.

In our previous study, the Monte Carlo optimization-
based QSAR, structural and physico-chemical interpre-
tation (SPCI) analysis were successful to deliver several 
important molecular features from the SARS-CoV Mpro 
inhibitors [21]. This can be useful to develop effective 
inhibitors against SARS-CoV-2 Mpro. Additionally, 
compared to the recent attempts to identify the promising 
attributes for previous coronavirus inhibitors (Table 5), the 
current study deals with the existing SARS-CoV-2 Mpro 
inhibitors.

Table 4   Binding energy calculation of design compounds (D1–D4)

Compound van der Waal energy 
(kJ/mol)

Electrostatic energy 
(kJ/mol)

Polar solvation 
energy (kJ/mol)

SASA energy (kJ/mol) Binding Energy (kJ/mol)

D1 − 268.79 ± 2.67 − 33.40 ± 0.77 98.17 ± 1.19 − 19.61 ± 0.15 − 223.54 ± 2.31
D2 − 254.25 ± 1.59 − 42.77 ± 0.71 140.68 ± 1.11 − 20.26 ± 0.10 − 176.66 ± 1.49
D3 − 277.68 ± 1.72 − 46.58 ± 0.91 147.95 ± 1.10 − 21.52 ± 0.08 − 197.92 ± 1.71
D4 − 307.53 ± 2.30 − 41.80 ± 0.83 133.44 ± 1.26 − 22.45 ± 0.10 − 238.28 ± 1.88

Table 5   Comparison of recent QSAR analysis on SARS-CoV and SARS-CoV-2 inhibitors

Sl Target Dataset QSAR model References

1 SARS-CoV Mpro Diverse set of molecules Monte Carlo optimization-based QSAR and SPCI analysis [21]
2 SARS-CoV Mpro Aromatic disulfide compounds Monte Carlo optimization-based QSAR [49]
3 SARS-CoV Mpro Diverse set of molecules Partial least square study (PLS) [50]
4 SARS-CoV Mpro Carboxamide derivatives Multiple linear regression (MLR) [51]
5 SARS-CoV Mpro Diverse set of molecules Multiple linear regression (MLR) [52]
6 SARS-CoV-2 Mpro Diverse set of molecules Bayesian classification study, Multiple linear regression (MLR) Current study
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In summary, the modeling results provide useful 
quantitative and qualitative information about the struc-
tural requirements of an effective Mpro inhibitor against 
SARS-CoV-2.
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