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The role of water in host-guest interaction
Valerio Rizzi1,2, Luigi Bonati 2,3, Narjes Ansari1,2 & Michele Parrinello 1,2,4✉

One of the main applications of atomistic computer simulations is the calculation of ligand

binding free energies. The accuracy of these calculations depends on the force field quality

and on the thoroughness of configuration sampling. Sampling is an obstacle in simulations

due to the frequent appearance of kinetic bottlenecks in the free energy landscape. Very

often this difficulty is circumvented by enhanced sampling techniques. Typically, these

techniques depend on the introduction of appropriate collective variables that are meant to

capture the system’s degrees of freedom. In ligand binding, water has long been known to

play a key role, but its complex behaviour has proven difficult to fully capture. In this paper we

combine machine learning with physical intuition to build a non-local and highly efficient

water-describing collective variable. We use it to study a set of host-guest systems from the

SAMPL5 challenge. We obtain highly accurate binding free energies and good agreement

with experiments. The role of water during the binding process is then analysed in some

detail.
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Host–guest interactions regulate the working of proteins
and have been intensively studied1,2. Atomistic simula-
tions have been widely used3–7 to calculate key para-

meters like ligand affinity and residence time, and to gain a
microscopic understanding of how protein–ligand binding works.
The accuracy of these simulations depends on two key aspects:
the quality of the model used to describe the interatomic inter-
actions and the thoroughness of the statistical sampling8,9. In this
work, we will focus only on the latter and we will show that
sampling can be much improved if the role of water in the
binding–unbinding processes is duly taken into account.

Binding processes take place on a timescale that is unreachable
with current computer resources; thus, the use of enhanced
sampling methods is mandatory. We will frame our discussion in
the context of Metadynamics (MetaD)10–12 or, more precisely, of
its most recent evolution, the on-the-fly probability-enhanced
sampling method (OPES)13. OPES, like MetaD and many other
methods14–16, relies on the identification of suitable order para-
meters or collective variables (CVs). In these methods14,17, the
CV distribution is made to follow a preassigned law. This allows
CV fluctuations to be amplified in a controlled way. For such
methods to work in an accurate and efficient manner, the CVs
must be able to describe the slow degrees of freedom of the
system. Here we will identify one such powerful CV of general
applicability aimed at describing the role of water in the ligand-
binding process.

Water is expected to play an important role since, upon
entering the binding site, the ligand has to shed its solvation
shell in total or in part, while the water that originally was in the
binding site has to rearrange and negotiate its way out of the
binding cavity. Not surprisingly, much effort has been devoted to
the role of water in ligand–host binding18–24. In the context of
enhanced sampling, many attempts have been made at capturing
the role of water in a CV, leading to an improvement in binding
free energy estimations5,25–28. We show here that there is room
for a further decisive step as none of these water-related CVs has
been able to describe accurately the highly non-local changes in
water structure that take place during binding, both in the vicinity
of the ligand and in and around the binding pocket.

In order to succeed in our endeavour, we rely on a combination
of physical considerations and modern machine learning (ML)
techniques. In particular, we use a method that we have recently
developed, which goes under the name of Deep Linear Dis-
criminant Analysis (Deep-LDA)29. Deep-LDA builds efficient
CVs from the equilibrium fluctuations of a large set of descrip-
tors, expressing them as a neural network (NN). In this context,
the choice of descriptors is essential and we appeal to our physical
understanding to introduce one such set that is capable of char-
acterising not only the ligand solvation shell but also the water
structure inside and outside the binding cavity. After building
such a CV, we use it in OPES for accelerating the sampling of
binding–unbinding events.

We measure the performance of our approach on a set of test
systems taken from the SAMPL5 competition30–32 and study the
interaction of six ligands with an octa-acid calixarene host
(OAMe) (see Fig. 1). We choose this system because, despite its
relative simplicity, it retains most of the key features of a biolo-
gically relevant protein–ligand system. Very recently, a closely
related system has been used to investigate how water flows in
and out of the system in the absence of a ligand33. Furthermore,
the host’s symmetry simplifies the analysis, and a comparison can
be made to existing theoretical calculations32. The choice to
perform simulations on a system with a standard set of simula-
tion parameters allows our results to be compared to a range of
different techniques, among which are the attach-pull-release
method34, alchemical protocols35, and metadynamics36.

Results
Collective variables from equilibrium fluctuations with Deep-
LDA. In this work, we are mainly interested in computing the free
energy difference ΔG between the bound state (B) in which the
ligand sits in the lowest free energy binding pose and the
unbound state (U) where the ligand is solvated in water and free
to diffuse. In order to obtain a CV able to capture water beha-
viour, we use the recently developed machine learning Deep-LDA
method29.

Deep-LDA is a non-linear evolution of the time-honoured
Linear Discriminant Analysis (LDA) classification method37. In
LDA, one takes two sets of data, in our case the configurations
visited in short unbiased simulations in B and U, and defines a set
of Nd descriptors d that are able to distinguish between the two.
The aim of LDA is to find the linear combination of descriptors
s = wTd that best separates the two sets of data, w being an Nd-
dimensional vector.

To this effect, one calculates for each set of data the vectors of the
average descriptor values μB, μU, and their variance matrices SB, SU.
With these quantities, one then computes the so-called Fisher’s ratio:

J ðwÞ ¼ wTSbw
wTSww

: ð1Þ

where one has defined the within–scatter matrix Sw = SB + SU and
the between one Sb ¼ ðμB � μUÞðμB � μUÞT. The w that maximises
this ratio is the direction that optimally discriminates the two states
and gives the best-separated projection of the data in the one-
dimensional s space. The variable thus obtained has been shown to
perform well as the CV in many cases, especially if one uses its
Harmonic LDA variant38,39.

In Deep-LDA, a similar paradigm applies with the key difference
that LDA is performed on a non-linear transformation of the
descriptors. The non-linearity is introduced by a neural network
(NN) (see Fig. 2) whose input is the set of Nd descriptors d and the
outputs are the Nh components of the last hidden layer h. LDA is
performed on the components of h, so that, after determining the
corresponding Sw and Sb, the NN is optimised using J ðwÞ as the loss
function. At convergence, one determines the weights of the NN and
the Nh-dimensional optimal vector w that produces the Deep-LDA
projection:

s ¼ wTh: ð2Þ
Deep-LDA is a powerful classifier that tends to compress

the data into very sharp distributions which are unsuitable for
enhanced sampling applications. To address this issue, we
smooth the distributions by applying the following cubic
transformation sw = s + s3, in the spirit of what was done in
ref. 40. The CV thus obtained will be used to describe the water
behaviour in our simulations.

Including water in the model. The choice of the descriptors d is
of paramount importance since it implies the physics that we
want to describe. In our case, we are interested in capturing the
role of water in the binding process. To this effect, we choose two
sets of points around which we compute the water coordination
number. One set is located on the ligand, while the other one is
fixed along the host’s axis z at regular intervals (see Fig. 1 and
the Supplementary Methods).

The first set of coordination numbers {Li} describes water
solvation around the ligand and is similar in spirit to the ligand
solvation variables that have been used in the past5,28. The second
one {Vi} is aimed instead at capturing the water arrangement
inside and outside the binding pocket without any explicit
reference to the ligand. It is essential that the descriptors capture
all the water molecules that contribute to the host and the guest
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solvation. Missing some of them would create an incomplete
picture of solvation, which in turn would lead to Deep-LDA
classification errors and ineffective bias.

The set of descriptors {Li, Vi} gives information on the
structure of water and its non-local changes on a small to
medium length scale during the binding–unbinding process. Its
effectiveness does not lie in the individual action of each
descriptor but in its collective capability to capture the many-
body concerted movements of the host, guest, and water
molecules. The use of these descriptors is one of the elements
of novelty in our approach and one of the keys to its success.

Binding free energies from enhanced sampling simulations.
We perform OPES simulations to estimate the binding free
energies of all the six ligands of Fig. 1. We use the Deep-LDA CV
sw together with a second CV sz, which is the projection of the

ligand centre of mass on the binding axis z. In the ligand-binding
context, using the latter is a natural choice5,36 as it has a clear
physical interpretation and helps in distinguishing B from U.
Furthermore, we employ a funnel-like restraint potential4 to
encourage the ligand to find its way back to the binding site once
it is out in the solution. The entropic correction to the free energy
due to the funnel restriction can be calculated analytically (see Eq.
4 in the Supplementary Methods) and is taken into account when
computing the binding free energies ΔG. We refer the interested
reader to the Supplementary Methods for further details.

The combined use of these two CVs leads to an efficient sampling,
which is reflected in a high number of binding–unbinding events per
unit time (see for example Supplementary Fig. 18). We notice a clear
improvement over a more standard set of CVs36, namely sz itself, and
the cosine of the angle θ between the binding axis z and the ligand
orientation (see Supplementary Fig. 17). The introduction of a water-
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Fig. 1 Sketch of the octa-acid host OAMe with the funnel restraint geometry and the guest molecules from the SAMPL5 challenge. We indicate the
position of the points where the descriptors are centred and hint at their spatial outreach by drawing surfaces at a constant radius around some of them.

Fig. 2 Schematics of the Deep-LDA architecture used in this work. The descriptors d are fed to a NN that generates s as a linear combination of the last
NN hidden layer h and the LDA eigenvector w. The Deep-LDA CV is then sw = s + s3.
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based CV in enhanced sampling simulations allows the system to
reach a regime where it diffuses without hysteresis from one
metastable state to another, yielding a high accuracy in estimating
ensemble averages of physical quantities. This makes it possible to
significantly reduce the error bars without having to increase the
computational time relative to what is reported in the literature34.

Performing enhanced sampling simulations allows retrieving
the equilibrium distribution P(s) of any collective variable s14.
Here we focus on the free energy surface (FES), defined as
FESðsÞ ¼ �kBT log PðsÞ, where kB is the Boltzmann constant and
T is the temperature of the system. In the context of ligand
binding, it is customary to look at the FES as a function of the
host–guest distance sz. For each of the six ligands, we compute the
FES and estimate the errors with a block average analysis. We
report these results in Fig. 3, in which we also assess the
robustness of the Deep-LDA CV by showing the results
corresponding to three different rounds of Deep-LDA training.

We then report the binding free energies ΔG corrected for the
presence of the funnel in Table 1. In Fig. 4 we compare them with
experimental values and theoretical calculations performed on the
same model but with different sampling techniques34–36. We
assess the quality of our estimates through the metrics used in the
SAMPL5 overview paper32 and obtain a root-mean-squared error
of 0.68 kcal mol−1, a Pearson coefficient of determination of 0.93,
a linear regression slope of 1.21, and a Kendall correlation
coefficient of 0.87. With some exceptions, we are in line with the
SAMPL5 results (see Fig. 4 and Supplementary Tables 1 and 2).
However, the error bars are significantly reduced over the whole
set of ligands investigated.

To test the generality of our procedure, we investigate the
interaction of the six ligands with the OAH host also studied in
the SAMPL5 challenge. The results are in agreement with those
reported in refs. 34–36 and in Supplementary Figs. 31–57 and
Tables 9–16 we provide a complete report. As a further check of
our method and of the role of water, we also perform simulations
of the host OAMe with the six ligands using the TIP4P/EW water
model41 instead of the TIP3P model42. While the binding/
unbinding process is unchanged, we find that the binding free
energies depend on the water model chosen. Modulo a shift of
about 1.3 kcal mol−1, the two sets of results correlate reasonably
well with one another and with the experiments. For a

Fig. 3 Free energy surfaces projected along the host–guest distance. For
each of the six ligands, we compute the free energy along the sz variable
using a standard umbrella-sampling-like reweighting formula to recover the
unbiased distribution13. The shaded areas indicate the errors, whose
calculation is detailed in the Supplementary Methods. To ensure that the
results do not depend on a specific realisation of the Deep-LDA CV, we
repeat the training three times by using different initial weights of the NN.
The resulting CVs are denoted as saw, s

b
w, s

c
w, and the corresponding FES are

indicated, respectively, by dashed, dotted, and dash-dotted lines. For clarity,
curves related to the same ligand but with different CVs are shifted by 1
kcal mol−1, while the shift between different ligand curves is 5 kcal mol−1.

Table 1 Binding free energies.

Ligand Deep-LDA Exp

G1 −6.31 ± 0.06 −5.24
G2 −6.19 ± 0.08 −5.04
G3 −6.27 ± 0.07 −5.94
G4 −2.51 ± 0.07 −2.38
G5 −3.91 ± 0.09 −3.90
G6 −4.97 ± 0.07 −4.52

We show the mean binding free energy ΔG (kcal mol−1) for every ligand and the corresponding
experimental value. We calculate ΔG as a weighted block average over the simulations with all
Deep-LDA CVs (see the Supplementary Methods for further details).
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Fig. 4 Comparison of the binding free energies with experiments and other calculations. In a, we plot the value of ΔG obtained from the Deep-LDA
simulations (in blue crosses) for every ligand versus the experimental values and show the corresponding linear fit. In b, we report their difference with the
experimental values and compare them with other computational results performed using the same simulation setup. Results from ref. 36 are indicated with
red circles, from ref. 34 in green diamonds, and from ref. 35 in yellow squares.
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quantitative assessment of these statements, see Supplementary
Figs. 59–78 and Tables 19–26. The root of this change can be
possibly attributed to a different solubility of the ligand in the two
water models and to a different host–water interaction.

The case of G4. The use of the Deep-LDA CV sw allows us to
obtain not only accurate binding free energies but also a detailed
insight into water behaviour during the binding process. We
illustrate here the case of G4, the guest that exhibits the most
complex behaviour, and refer the interested reader to Supple-
mentary Figs. 5–30 and Tables. 3–8 for a detailed analysis of all
the other ligands.

In Fig. 5 we show the FES of G4 and the cylindrically averaged
water density in the metastable states. We find that the system
presents two binding poses B and B1. The lowest free energy
binding pose B is the same as the one found in the experiments
and contains no water. Our simulation discovered a second
binding pose B1 that differs from B for the presence of a water

molecule at the centre of the cavity. This second pose is ≈ 2 kBT
higher in free energy and thus it is occupied with a much lower
probability.

When the ligand exits the pocket, before being fully solvated, it
can pass through two intermediate short-lived states I and I1. In I,
the cavity is dry and the ligand is free to rotate in front of the
cavity entrance. In I1, the ligand sits again in front of the host
entrance but its rotation favours configurations in which the
ligand bromine atom points towards the cavity forming a linear
arrangement where a water at the centre of the cavity is bridged
by another water to the Br− anion (see Supplementary Fig. 21).
We underline that neither B1 nor I and I1 were part of the Deep-
LDA training.

The ability of the Deep-LDA CV sw to capture the non-local
water structural changes is the main reason behind our capability
to study the system’s FES and its metastable states at this level of
detail. For instance, the use of CVs that concentrate solely on the
position of the ligand with respect to the binding site such as sz
alone would clearly lead to an incomplete picture. In fact, B and

Fig. 5 Binding FES of ligand G4 with a study of the water presence in the visited states.We show the two-dimensional FES of the ligand G4 with respect
to sz and Deep-LDA CV sw. Different adjacent colours correspond to a free energy difference of 1 kBT ≈ 0.6 kcal mol−1. We highlight some relevant states
over which we perform plain molecular dynamics (MD) simulations to measure the presence of water. We show histograms of the water oxygen atoms’
density in cylindrical coordinates z, r. Each histogram is normalised by the density value in its top-right corner and darker colours correspond to higher-
water-density regions. The position of the ligand in these plots is illustrative.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20310-0 ARTICLE

NATURE COMMUNICATIONS |           (2021) 12:93 | https://doi.org/10.1038/s41467-020-20310-0 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


B1 (and similarly I and I1) cannot be distinguished properly by sz
and, without the presence of a bias changing the cavity’s
solvation, the limiting timescale of the simulations would be the
water movement in and out of the pocket. Furthermore, local
CVs that only describe the average ligand solvation can only
partially take into account these non-local effects.

Analysis of the role of water. We can gain a deeper insight into
the role of water by investigating the dependence of the Deep-
LDA CV on the {Li, Vi} descriptors. This can be done by ana-
lysing the descriptors’ relevance in the action of sw and, for doing
that, we use the derivative ranking method illustrated in ref. 29.
Here, we separate the role of the descriptors in the bound and
unbound states and we report the results of ligand G4 in Fig. 6
(see Supplementary Fig. 22 for analysis over all the G4 metastable
states).

In both states B and U, the weights are distributed over a wide
range of descriptors, pointing to the fact that the Deep-LDA CV
is able to capture the complex non-local action of water.
However, different descriptors act in different ways in the two
states. In the B state, the descriptors V4, V5, which are linked to
the water molecules that reside in the proximity of the host’s
entrance, have more weight. This indicates that the fluctuations in
this part of the water system need to be amplified for the ligand
to exit.

In contrast, in the U state, the descriptors that gain more
weight are L4, which measures the solvation around the bromine
atom of the ligand, and V1, V2, which control the quantity of
water contained in the binding cavity. Fluctuations towards the
dry state of the cavity need to occur for the ligand to bind. Such
fluctuations can occur with a small but not negligible probability
also in the holo state (see Supplementary Fig. 2). Even larger
fluctuations have been observed experimentally in ref. 33 in a
related system. We expect these fluctuations to be an important
part of the reaction process in many host–guest systems.

The non-local action of the Deep-LDA CV is thus reflected in
the relevance given to different water-based descriptors, depend-
ing on whether the system is in the bound or unbound state.
When enhancing the sampling of this CV, this non-locality

determines a collective motion of water that encourages the
occurrence of binding/unbinding events.

Discussion
We have shown that, even in the relatively simple systems studied
here, a complex and subtle reorganisation of water structure takes
place and our strategy is able to capture it. Our calculations offer a
powerful analysis tool and lead to accurate binding free energies.

Often, in the paper, we have underlined the efficiency of our
method. However, this was not done in a spirit of competition
with the SAMPL5 participants who, by the way, did not have the
benefit of knowing the results beforehand. Our aim was instead to
uncover and describe the role of water through the design and the
application of an effective CV. In a scheme like MetaD, the
efficiency of a CV is measured by its ability to capture the physics
of the problem, hence our insistence on efficiency.

Having been able to reduce this much the sampling error on a
commonly used model, we might even be tempted to claim that
the discrepancies with respect to experiments can be blamed
mainly on the inaccuracy of the force field. It would be interesting
in this respect to investigate the force field limitations and how the
inclusion of effects like polarisation could bring the results closer
to experiments. The method is very robust and defines a protocol
that can be naturally applied to larger and more complex systems.
In fact, the sampling proficiency of our method will prove even
more crucial in complex scenarios where a large number of water
molecules can be trapped in multiple pocket locations.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The simulation inputs were taken from https://github.com/michellab/Sire-SAMPL5.
We perform the simulations with GROMACS 2019.443 using the GAFF force field44

with RESP charges45 and the TIP3P water model42. For enhanced sampling, we use a
custom version of the PLUMED plugin 2.5.446 where we include OPES13 and the
Pytorch library 1.447. More details can be found in the Supplementary Methods.
Simulations data are available on the Materials Cloud Archive at https://doi.org/
10.24435/materialscloud:p3-1x.

Code availability
All the inputs and instructions to reproduce the results presented in this manuscript are
deposited in the PLUMED-NEST repository at plumID:20.025. A tutorial about the
Deep-LDA training can be found at this link.
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