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Fast automated detection of COVID-19 from
medical images using convolutional neural
networks
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Coronavirus disease 2019 (COVID-19) is a global pandemic posing significant health risks.
The diagnostic test sensitivity of COVID-19 is limited due to irregularities in specimen
handling. We propose a deep learning framework that identifies COVID-19 from medical
images as an auxiliary testing method to improve diagnostic sensitivity. We use pseudo-
coloring methods and a platform for annotating X-ray and computed tomography images to
train the convolutional neural network, which achieves a performance similar to that of
experts and provides high scores for multiple statistical indices (F1 scores > 96.72% (0.9307,
0.9890) and specificity >99.33% (0.9792, 1.0000)). Heatmaps are used to visualize the
salient features extracted by the neural network. The neural network-based regression
provides strong correlations between the lesion areas in the images and five clinical indi-
cators, resulting in high accuracy of the classification framework. The proposed method
represents a potential computer-aided diagnosis method for COVID-19 in clinical practice.
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disease with the basic reproductive number (R,) of 5.7

(reported by the US Centers for Disease Control and
Prevention), is caused by the most recently discovered cor-
onavirus! and was declared a global pandemic by the World
Health Organization (WHO) on March 11, 2020%. It poses a
serious threat to human health worldwide, as well as substantial
economic losses to all countries. As of 7 September 2020,
27,032,617 people have been infected by COVID-19 after testing,
and 881,464 deaths have occurred, according to the statistics of
the WHO3. The Wall Street banks have estimated that the
COVID-19 pandemic may cause losses of $5.5 trillion to the
global economy over the next 2 years*. The WHO recommends
using real-time reverse transcriptase-polymerase chain reaction
(rRT-PCR) for laboratory confirmation of the COVID-19 virus in
respiratory specimens obtained by the preferred method of
nasopharyngeal swabs®. Laboratories performing diagnostic test-
ing for COVID-19 should strictly comply with the WHO bio-
safety guidance for COVID-196. Tt is also necessary to follow the
standard operating procedures (SOPs) for specimen collection,
storage, packaging, and transport because the specimens should
be regarded as potentially infectious, and the testing process can
only be performed in a Biosafety Level 3 (BSL-3) laboratory’. Not
all cities worldwide have adequate medical facilities to follow the
WHO biosafety guidelines. According to an early report (Feb 17,
2020), the sensitivity of tests for the detection of COVID-19 using
rRT-PCR analysis of nasopharyngeal swab specimens is around
30-60% due to irregularities during the collection and transpor-
tation of COVID-19 specimens®. Recent studies reported a
higher sensitivity range from 71% (Feb 19, 2020) to 91% (Mar 27,
2020)%10, A recent systematic review reported that the sensitivity
of the PCR test for COVID-19 might be in the range of 71-98%
(Apr 21, 2020), whereas the specificity of tests for the detection of
COVID-19 using rRT-PCR analysis is about 95%!!. Yang et al.8
discovered that although no viral ribonucleic acid (RNA) was
detected by rRT-PCR in the first three or all nasopharyngeal swab
specimens in mild cases, the patient was eventually diagnosed
with COVID-19 (Feb 17, 2020). Therefore, the WHO has stated
that one or more negative results do not rule out the possibility of
COVID-19 infection!?. Additional auxiliary tests with relatively
higher sensitivity to COVID-19 are urgently required.

The clinical symptoms associated with COVID-19 include
fever, dry cough, dyspnea, and pneumonia, as described in the
guideline released by the WHO!3. It has been recommended to
use the WHOQ’s case definition for influenza-like illness (ILI)
and severe acute respiratory infection (SARI) for monitoring
COVID-1913. As reported by the CHINA-WHO COVID-19
joint investigation group (February 28, 2020)!4, autopsies
showed the presence of lung infection in COVID-19 victims.
Therefore, medical imaging of the lungs might be a suitable
auxiliary diagnostic testing method for COVID-19 since it uses
available medical technology and clinical examinations. Chest
radiography (CXR) and chest computed tomography (CT) are
the most common medical imaging examinations for the lungs
and are available in most hospitals worldwide!>. Different tis-
sues of the body absorb X-rays to different degrees!®, resulting
in grayscale images that allow for the detection of anomalies
based on the contrast in the images. CT differs from normal
CXR in that it has superior tissue contrast with different shades
of gray (about 32-64 levels)!”. The CT images are digitally
processed!8 to create a three-dimensional image of the body.
However, CT examinations are more expensive than CXR
examinations!®. Recent studies reported that the use of CXR
and CT images resulted in improved diagnostic sensitivity for
the detection of COVID-1920-21. The interpretation of medical
images is time-consuming, labor-intensive, and often

C oronavirus disease 2019 (COVID-19), a highly infectious

subjective. The medical images are first annotated by experts to
generate a report of the radiography findings. Subsequently, the
radiography findings are analyzed, and clinical factors are
considered to obtain a diagnosis!'>. However, during the current
pandemic, the frontline expert physicians are faced with a
massive workload and lack of time, which increases the physical
and psychological burden on staff and might adversely affect
the diagnostic efficiency. Since modern hospitals have advanced
digital imaging technology, medical image processing methods
may have the potential for fast and accurate diagnosis of
COVID-19 to reduce the burden on the experts.

Deep learning (DL) methods, especially convolutional neural
networks (CNNs), are effective approaches for representation
learning using multilayer neural networks?? and have provided
excellent performance solutions to many problems in image
classification?324, object detection?®, games and decisions?®, and
natural language processing?’. A deep residual network?8 is a type
of CNN architecture that uses the strategy of skip connections to
avoid degradation of models. However, the applications of DL for
clinical diagnoses remains limited due to the lack of interpret-
ability of the DL model and the multi-modal properties of clinical
data. Some studies have demonstrated excellent performance of
DL methods for the detection of lung cancer with CT images®,
pneumonia with CXR images®, and diabetic retinopathy with
retinal fundus photographs®!. To the best of our knowledge, the
DL method has been validated only on single modal data, and no
correlation analysis with clinical indicators was performed. Tra-
ditional machine learning methods are more constrained and
better suited than DL methods to specific, practical computing
tasks using features®2. As demonstrated by Jin et al,, the tradi-
tional machine learning algorithm using the scale-invariant fea-
ture transform (SIFT)33 and random sample consensus
(RANSAC)3* may outperform the state-of-the-art DL methods
for image matching3>. We designed a general end-to-end DL
framework for information extraction from CXR images (X-data)
and CT images (CT-data) that can be considered a cross-domain
transfer learning model.

In this study, we developed a custom platform for rapid expert
annotation and proposed the modular CNN-based multi-stage
framework (classification framework and regression framework)
consisting of basic component units and special component units.
The framework represents an auxiliary examination method for
high precision and automated detection of COVID-19. This study
makes the following contributions:

First, a multi-stage CNN-based classification framework con-
sisting of two basic units (ResBlock-A and ResBlock-B) and a
special unit (control gate block) was established for use with
multi-modal images (X-data and CT-data). The classification
results were compared with evaluations by experts with different
levels of experience. Different optimization goals were established
for the different stages in the framework to obtain good perfor-
mances, which were evaluated using multiple statistical
indicators.

Second, principal component analysis (PCA) was used to
determine the characteristics of the X-data and CT-data of dif-
ferent categories (normal, COVID-19, and influenza). Gradient-
weighted class activation mapping (Grad-CAM) was used to
visualize the salient features in the images and extract the lesion
areas associated with COVID-19.

Third, data preprocessing methods, including pseudo-coloring
and dimension normalization, were developed to facilitate the
interpretability of the medical images and adapt the proposed
framework to the multi-modal images (X-data and CT-data).

Fourth, A knowledge distillation method was adopted as a
training strategy to obtain high performance with low computa-
tional requirements and improve the usability of the method.
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Table 1 Number of cases from four public data sets and the Youan hospital (X-data, CT-data, clinical indicator data).
Study X-data CT-data Clinical data

Train + Val Test Train + Val Test Train + Val Test
*Normal (RSNA + LUNA16) 5000 100 100 20 - -
Pneumonia (RSNA + ICNP) 3000 100 83 20 - -
COVID-19 (CCD) 150 62 - - - -
Influenza (Youan Hospital) 100 45 35 15 - -
*Normal (Youan Hospital) 478 25 139 20 - -
Pneumonia (Youan Hospital) 380 55 180 35 - -
COVID-19 (Youan Hospital) 35 10 75 20 75 20
Total 9143 397 612 130 75 20
The term *Normal in this work means the cases where the lungs are not manifest evidence of COVID-19, influenza, or pneumonia on imaging and the RT-PCR testing of the COVID-19 is negative.
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Fig. 1 Demonstrations of data preprocessing methods including pseudo-
coloring and dimension normalization. a Pseudo-coloring for abnormal
examples in the CXR and CT images. The original grayscale images were
transformed into color images using the pseudo-coloring method and were
annotated by the experts. The scale bar on the right is the range of pixel
values of the image data. b Dimension normalization to reduce the
dimensions in the CT images. The number of CT images were first
resampled to a multiple of three and then divided into three groups.
Followed by the 1 x 1 convolution layers to reduce the dimensions of

the data.

Last, The CNN-based regression framework was used to
describe the relationships between the radiography findings and
the clinical symptoms of the patients. Multiple evaluation indi-
cators were used to assess the correlations between the radio-
graphy findings and the clinical indicators.

Results

Data set properties. Multi-modal data from multiple sources
were used in this study. X-data, CT-data, and clinical data used in
our research were collected from four public data sets and one
frontline hospital data (Youan hospital). Each data set was

divided into two parts: train-val part and test part using a train-
test-split function (TTSF) of the scikit-learn library which is
shown in Table 1. The details of the multi-modal data types are
described in the “Methods” section (see “Data sets splitting”
section).

A platform was developed for annotating lesion areas of
COVID-19 in medical images (X-data, CT-data). Medical
imaging uses images of internal tissues of the human body or a
part of the human body in a non-invasive manner for clinical
diagnoses or treatment plans3®. Medical images (e.g., X-data and
CT-data) are usually acquired using computed radiography and
are typically stored in the Digital Imaging and Communications
in Medicine (DICOM) format3’. X-data are two-dimensional
grayscale images, and CT-data are three-dimensional data, con-
sisting of slices of the data in the z axis direction of a two-
dimensional grayscale image. Machine learning methods are
playing increasingly important roles in medical image analysis,
especially DL methods. DL uses multiple non-linear transfor-
mations to create a mapping relationship between the input data
and output labels38. The objective of this study was to annotate
lesion areas in medical images with high accuracy. Therefore, we
developed a pseudo-coloring method, which is a technique that
helps enhance medical images for physicians to isolate relevant
tissues and groups different tissues together3®. We converted the
original grayscale images to color images using the open-source
image processing tools Open Source Computer Vision Library
(OpenCV) and Pillow. Examples of the pseudo-color images are
shown in Fig. la. We developed a platform that uses a client-
server architecture to annotate the potential lesion areas of
COVID-19 on the CXR and CT images. The platform can be
deployed on a private cloud for security and local sharing. All the
images were annotated by two experienced radiologists (one was
a 5th-year radiologist and the other was a 3rd-year radiologist) in
the Youan Hospital. If there was disagreement about a result, a
senior radiologist and a respiratory doctor made the final decision
to ensure the precision of the annotation process. The details of
the annotation pipeline are shown in Supplementary Fig. 1.

PCA was used to determine the characteristics of the medical
images for the COVID-19, influenza, and normal cases. PCA
was used to visually compare the characteristics of the medical
images (X-data, CT-data) for the COVID-19 cases with those of
the normal and influenza cases. Figure 2a shows the mean image
of each category and the five eigenvectors that represent the
principal components of PCA in the corresponding feature space.
Significant differences are observed between the COVID-19,
influenza, and normal cases, indicating the possibility of being
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Fig. 2 PCA visualizations and example heatmaps of both X-data and CT-data. a Mean image and eigenvectors of five different sub-data sets. The first
column shows the mean image and the other columns show the eigenvectors. The first row shows the mean image and five eigenvectors of the normal
CXR images; second row: COVID-19 CXR images, third row: normal CT images, fourth row: influenza CT images, last row: COVID-19 CT images. The scale
bar on the right is the range of pixel values of the image data. b Heatmaps of both X-data and CT-data were demonstrated for better interpretability of the
proposed frameworks. The scale bar on the right is the probability of the areas being suspected as infections.
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Fig. 3 CNN-based frameworks. a The classification framework for the identification of COVID-19. b The regression framework for the correlation analysis
between the lesion areas and the clinical indicators. ¢ is the workflow of the classification framework for the identification of COVID-19.

able to distinguish COVID-19 cases from normal and influenza
cases.

The CNN-based classification framework exhibited excellent
performance based on the validation by experts using multi-
modal data from public data sets and Youan hospital. The
structure of the proposed framework, consisting of the stage I
sub-framework and the stage II sub-framework is shown in
Fig. 3a, where Q, L, M, and N are the hyper-parameters of the
framework for general use cases. The values of Q, L, M, and N
were 1, 1, 2, and 2, respectively, in this study; this framework
referred to as the CNNCF framework. The stage I and stage II
sub-frameworks were designed to extract features corresponding
to different optimization goals in the analysis of the medical
images. The performance of the CNNCF was evaluated using
multi-modal data sets (X-data and CT-data) to ensure the gen-
eralization and transferability of the model, and five evaluation
indicators were used (sensitivity, precision, specificity, F1, kappa).
The salient features of the images extracted by the CNNCF were
visualized in a heatmap (four examples are shown in Fig. 2b). In

4

this study, multiple experiments were conducted (including
experiments that included data from the same source and from
different sources) to validate the generalization ability of the
framework while avoiding the possible sample selection bias. Five
experts evaluated the images, i.e., a 7th-year respiratory resident
(Respira.), a 3rd-year emergency resident (Emerg.), a 1st-year
respiratory intern (Intern), a 5th-year radiologist (Rad-5th), and a
3rd-year radiologist (Rad-3rd). The definition of the expert group
can be found in Supplementary Note 1. The abbreviations of all
the data sets used in the following experiments including XPDS,
XPTS, XPVS, XHDS, XHTS, XHVS, CTPDS, CTPTS, CTPVS,
CTHDS, CTHTS, CTHVS, CADS, CATS, CAVS, XMTS, XMVS,
CTMTS, and CTMVS were defined in the “Methods” section (see
“Data sets splitting” section). The following results were obtained.

Experiment-A. In this experiment, we used the X-data of the
XPVS where the normal cases were from the RSNA data set and
the COVID-19 cases were from the COVID CXR data set (CCD)
data set. The results of the five evaluation indicators for the
comparison of the COVID-19 cases and normal cases of the
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Table 2 Performance indices of the classification framework (CNNCF) of experiment A and the average performance of the 7th-year respiratory resident (Respira.), the 3rd-year

emergency resident (Emerg.), the 1st-year respiratory intern (Intern), the 5th-year radiologist (Rad-5th), and the 3rd-year radiologist (Rad-3rd).

Precision (95% CI)

0.9833 (0
0.9254 (0

Sensitivity (95% Cl)

0.9516 (0.8889
1.0000 (1.0000
1.0000 (1.0000
0.9355 (0.8596

Kappa (95% CI) Specificity (95% CI)

F1 (95% CI)

9444, 1.0000)
8095, 0.9571)
8095, 0.9571)
6708, 0.8649)
9219, 1.0000)
6974, 0.8873)

0.8857 (0
0.7733 (0
0.9688 (0
0.7945 (0

1.0000)
1.0000)
1.0000)
0.984)

1.0000)
0.9841)

1.0000 (1.0000
0.9355 (0.8666

1.0000)
0.9933)

0.9797)
1.0000)

0.9343)
8541, 0.9481)

9792
9363
9091
8333
9662

9933 (0
9667 (0
9467 (0
8867 (0

9867 (0
0.9000 (O

0
0
0
0
0

9030, 0.9924)
8912, 0.9887)
8492, 0.9677)
6730, 0.8592)
9433, 1.0000)
7062, 0.8779)

0.9540 (0
0.9443 (0
0.9121 (0
0.7745 (O
0.9774 (0
0.7942 (0

9307, 0.9890)
9231, 0.9920)
8947, 0.9781)
7692, 0.9041)
9593, 1.0000)

7931, 0.9180)

0.9672 (0
0.9612 (0
0.9394 (0
0.8467 (O
0.9841 (0
0.8593 (0

CNNCF
Respire.
Emerg.
Intern.
Rad-5th
Rad-3rd

XPVS are shown in Table 2. An excellent performance was
obtained, with the best score of specificity of 99.33% and a pre-
cision of 98.33%. The F1 score was 96.72%, which was higher
than that of the Respire. (96.12%), the Emerg. (93.94%), the
Intern (84.67%), and the Rad-3rd (85.93%) and lower than that of
the Rad-5th (98.41%). The kappa index was 95.40%, which was
higher than that of the Respire. (94.43%), the Emerg. (91.21%),
the Intern (77.45%), and the Rad-3rd (79.42%), and lower than
that of the Rad-5th (97.74%). The sensitivity index was 95.16%,
which was higher than that of the Intern (93.55%) and the Rad-
3rd (93.55%) and lower than that of the Respire. (100%), the
Emerg. (100%) and Rad-5th (100%). The receiver operating
characteristic (ROC) scores for the CNNCF and the experts are
plotted in Fig. 4a; the area under the ROC curve (AUROC) of the
CNNCEF is 0.9961. The precision-recall scores for the CNNCF and
the experts are plotted in Fig. 4d; the area under the precision-
recall curve (AUPRC) of the CNNCEF is 0.9910.

Experiment-B. In this experiment, we used the CT-data of the
CTPVS and CTHVS where the normal cases were from the
LUNA data set and the COVID-19 cases were from the Youan
hospital. The results of the five evaluation indicators for the
comparison of the COVID-19 cases and normal cases of the
CTHYVS and the CTPVS are shown in Table 3, where the normal
cases are from CTPVS and the COVID-19 cases are from the
CTHVS. The CNNCF exhibits good performance for the five
evaluation indices, which are similar to that of the Respire. and
the Rad-5th and higher than that of the Intern, the Emerg. and
Rad-3rd. The ROC scores are plotted in Fig. 4b; the AUROC of
the CNNCF is 1.0. The precision-recall scores are shown in
Fig. 4e; the AUPRC of the CNNCEF is 1.0.

Experiment-C. In this experiment, we used the CT-data of the
CTHYVS where the normal cases and the COVID-19 cases were all
from the Youan hospital. The results of the five evaluation indi-
cators for the comparison of the COVID-19 cases and influenza
cases of the CTHVS are shown in Table 3 where the influenza
cases and the COVID-19 cases are all from the CTHVS. The
CNNCEF achieved the highest performance and the best score of
all five evaluation indices. The ROC scores are plotted in Fig. 4c;
the AUROC of the CNNCEF is 1.0. The precision-recall scores are
shown in Fig. 4f, and the AUPRC of the CNNCF is 1.0.

Experiment-D. The boxplots of the five evaluation indicators, the
F1 score (Fig. 5a, d, g), the kappa coefficient (Fig. 5b, e, h), and
the specificity (Fig. 5¢, f, i) of experiments A-C are shown in
Fig. 5, and the precision and sensitivity are shown in Supple-
mentary Fig. 2. A bootstrapping method*? was used to calculate
the empirical distributions, and McNemar’s test*! was used to
analyze the differences between the CNNCF and the experts. The
p-values of the McNemar’s test (Supplementary Tables 1-3) for
the five evaluation indicators were all 1.0, indicating no statisti-
cally significant difference between the CNNCF results and the
expert evaluations.

We also conducted extra experiments with both configurations
of the same data source and different data sources: the
descriptions and graph charts can be found in the Supplementary
Experiments and Tables (Supplementary Tables 4-19 and
Supplementary Figs. 3-18). The data used in experiments E-G
were CTHVS and the data were all from the Youan hospital. The
data used in experiments H-K were XHVS and the data were all
from the Youan hospital. The data used in experiments L-N were
XPVS and CTPVS. The data used in the experiment L was from
the same data set RSNA, while the data used in experiment M was
from different data sets where the pneumonia cases were from the
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Fig. 4 ROC and PRC curves for the CNNCF of the experiments A-C. NC indicates that the positive case is a COVID-19 case, and the negative case is
*Normal. Cl indicates that the positive case is COVID-19, and the negative case is influenza. The points are the results of experts, corresponding to the
results in Tables 2 and 3. The background gray dashed curves in the PRC curve correspond to the iso-F1 curves. a ROC curve for the NC using X-data. b
ROC curve for the NC using CT-data. € ROC curve for the Cl using CT-data. d PRC curve for the NC using X-data. e PRC curve for the NC using CT-data. f

PRC curve for the Cl using CT-data.

ICNP, and the normal cases were from LUNA16. The data used
in the experiments O-R, from the four public data sets and one
hospital (Youan hospital) data set (including normal cases,
pneumonia cases and COVID-19 cases), were XMVS and
CTMVS. In all the experiments (experiments A-R), the CNNCF
achieved good performance. Notably, in order to obtain a more
comprehensive evaluation of the CNNCF while further improv-
ing the usability in clinical practice, experiment-R was performed.
In the experiment-R, the CNNCF was used to distinguish three
types of cases simultaneously (Including the COVID-19,
pneumonia, and normal cases) on both the XMVS and CTMVS.
Good performances were obtained on the XMVS, with the best
score of F1 score of 91.89%, kappa score of 89.74%, specificity of
97.14%, sensitivity of 94.44%, and a precision of 89.47%,
respectively. Excellent performances were obtained on the
CTMVS, with the best score of the five evaluation indicators
were all 100.00%. The ROC score and PRC score in the
experiment-R were also satisfactory which were shown in
Supplementary Fig. 18. The results of the experiment-R further
demonstrated the effectiveness and robustness of the
proposed CNNCF.

Image analysis identifies salient features of COVID-19. In
clinical practice, the diagnostic decision of a clinician relies on the
identification of the SAs in the medical images by radiologists.
The statistical results show that the performance of the CNNCF
for the identification of COVID-19 is as good as that of the
experts. A comparison consisting of two parts was performed to
evaluate the discriminatory ability of the CNNCF. In the first
part, we used Grad-CAM, which is a non-intrusive method to
extract the salient features in medical images, to create a heatmap
of the CNNCEF result. Figure 2b shows the heatmaps of four
examples of COVID-19 cases in the X-data and CT-data. In the
second part, we used density-based spatial clustering of applica-
tions with noise (DBSCAN) to calculate the center pixel coordi-
nates (CPC) of the salient features corresponding to COVID-19.

All CPCs were normalized to a range of 0 to 1. Subsequently, we
used a significance test (ST)*2 to analyze the relationship between
the CPC of the CNNCF output and the CPC annotated by the
experts. A good performance was obtained, with a mean square
error (MSE) of 0.0108, a mean absolute error (MAE) of 0.0722, a
root mean squared error (RMSE) of 0.1040, a correlation coeffi-
cient (r) of 0.9761, and a coefficient of determination (R2) of
0.8801.

A strong correlation was observed between the lesion areas
detected by the proposed framework and the clinical indica-
tors. In clinical practice, multiple clinical indicators are analyzed
to determine whether further examinations (i.e., medical image
examination) are needed. These indicators can be used to assess
the predictive ability of the model. In addition, various exam-
inations are required to perform an accurate diagnosis in clinical
practice. However, the correlations between the results of various
examinations are often not clear. We used the stage II sub-
framework and the regressor block of the CNNRF to conduct a
correlation analysis between the lesion areas detected by the
framework and five clinical indicators (white blood cell count,
neutrophil percentage, lymphocyte percentage, procalcitonin, C-
reactive protein) of COVID-19 using the CADS. The inputs of the
CNNREF were the lesion area images of each case, and the output
was a 5-dimensional vector describing the correlation between the
lesion areas and the five clinical indicators.

The MAE, MSE, RMSE, r, and R? were used to evaluate the
results. The ST and the Pearson correlation coefficient (PCC)43
were used to determine the correlation between the lesion areas
and the clinical indicators. A strong correlation was obtained,
with MSE = 0.0163, MAE = 0.0941, RMSE = 0.1172, r = 0.8274,
and R? = 0.6465. At a significance level of 0.001, the value of r
was 1.27 times the critical value of 0.6524. This result indicates a
high and significant correlation between the lesion areas and the
clinical indicators. The PCC was 0.8274 (range of 0.8-1.0),
indicating a strong correlation. The CNNRF was trained on the
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Table 3 Performance indices of the classification framework (CNNCF) of the experiments B and C, and the average performance of the 7th-year respiratory resident (Respira.),

the 3rd-year emergency resident (Emerg.), the 1st-year respiratory intern (Intern), the 5th-year radiologist (Rad-5th), and the 3rd-year radiologist (Rad-3rd).

F1 (95% CI)

Kappa (95% Cl)
Specificity (95% Cl)
Sensitivity (95% CI)
Precision (95% CI)

CT (Influenza and COVID-19 cases)

Rad-3rd

Rad-5th

Intern.

Emerg.

Respire.

CNNCF

0.8667 (0.7199,

0.9744)

0.9677 (0.8889,

1.0000)

0.8000 (0.6207,

0.9412)

0.8966 (0.7332,

1.0000)

1.0000 (1.0000,

1.0000)

1.0000 (1.0000,

1.0000)

F1 (95%CI)

0.7667 (0.5349,

0.9429)

0.9421 (0.8148,

1.0000)

0. 6500 (0.3698,

0.8852)

0.8236 (0.5817,

1.0000)

1.0000 (1.0000,

1.0000 (1.0000,
1.0000)

1.0000)

Kappa (95%

o=
(&)

0.9000 (0.7619,
1.0000)

0.9500 (0.8333,

1.0000)

0.8500 (0.6818,

1.0000)

0.9048 (0.7619,

1.0000)

1.0000 (1.0000,

1.0000)

1.0000 (1.0000,

1.0000)

Specificity

(95%CI)

0.8667 (0.6667,

1.0000)

1.0000 (1.0000,

1.0000)

0.8000 (0.5714,

1.0000)

0.9286 (0.7500,

1.0000)

1.0000 (1.0000,

1.0000)

1.0000 (1.0000,

1.0000)

Sensitivity
(95%Cl)
Precision

0.8667 (0.6667,

1.0000)

0.9375 (0.8000,

1.0000)

0.8000 (0.5881,

1.0000)

0.8667 (0.6874,

1.0000)

1.0000 (1.0000,

1.0000)

1.0000 (1.0000,

1.0000)

(95%ClI)

CATS and evaluated using the CAVS. The initial learning rate
was 0.01, and the optimization function was the stochastic
gradient descent (SGD) method*4. The parameters of the CNNRF
were initialized using the Xavier initialization method®°.

Discussion

We developed a computer-aided diagnosis method for the iden-
tification of COVID-19 in medical images using DL techniques.
Strong correlations were obtained between the lesion areas
identified by the proposed CNNRF and the five clinical indica-
tors. An excellent agreement was observed between the model
results and expert opinion.

Popular image annotation tools (e.g., Labelme#® and VOTT#)
are used to annotate various images and support common for-
mats, such as Joint Photographic Experts Group (JPG), Portable
Network Graphics (PNG), and Tag Image File Format (TIFF);
these formats are not used in the DICOM data. Therefore, we
developed an annotation platform that does not require much
storage space or transformations and can be deployed on a pri-
vate cloud for security and local sharing. Our eyes are not highly
sensitive to grayscale images in regions with high average
brightness*8, resulting in relatively low identification accuracy.
The proposed pseudo-color method increased the information
content of the medical images and facilitated the identification of
the details. PCA has been widely used for feature extraction and
dimensionality reduction in image processing**. We used PCA to
determine the feature space of the sub-data sets. Each image in a
specified sub-data set was represented as a linear combination of
the eigenvectors. Since the eigenvectors describe the most infor-
mative regions in the medical images, they represent each sub-
data set. We visualized the top-five eigenvectors of each sub-data
set using an intuitive method.

The CNNCEF is a modular framework consisting of two stages
that were trained with different optimization goals and controlled
by the control gate block. Each stage consisted of multiple resi-
dual blocks (ResBlock-A and ResBlock-B) that retained the fea-
tures in the different layers, thereby preventing the degradation of
the model. The design of the control gate block was inspired by
the synaptic frontend structure in the nervous system. We cal-
culated the score of the optimization target, and a score above a
predefined threshold was acceptable. If the times of the neuro-
transmitter were above another predefined threshold, the control
gate was opened to let the features information pass. The fra-
mework was trained in a step-by-step manner. Training occurred
at each stage for a specified goal, and the second stage used the
features extracted by the first stage, thereby reusing the features
and increasing the convergence speed of the second stage. The
CNNCF exhibited excellent performance for identifying the
COVID-19 cases automatically in the X-data and CT-data. Unlike
traditional machine learning methods, the CNNCF was trained in
an end-to-end manner, which ensured the flexibility of the fra-
mework for different data sets without much adjustment.

We adopted a knowledge distillation method in the training
phrase; a small model (called a student network) was trained to
mimic the ensemble of multiple models (called teacher networks)
to obtain a small model with high performance. In the distillation
process, knowledge was transferred from the teacher networks to
the student network to minimize knowledge loss. The target was
the output of the teacher networks; these outputs were called soft
labels. The student network also learned from the ground-truth
labels (also called hard labels), thereby minimizing the knowledge
loss from the student networks, whose targets were the hard
labels. Therefore, the overall loss function of the student network
incorporated both knowledge distillation and knowledge loss
from the student networks. After the student network had been
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Fig. 5 Boxplots of the F1 score, kappa score, and specificity for the CNNCF and expert results for COVID-19 identification. NC indicates that the positive
case is a COVID-19 case, and the negative case is *Normal. Cl indicates that the positive case is COVID-19, and the negative case is influenza.
Bootstrapping is used to generate n =1000 resampled independent validation sets for the XVS and the CTVS. a F1 score for the NC using X-data. b Kappa
score for the NC using X-data. ¢ Specificity for the NC using X-data. d F1 score for the NC using CT-data. e Kappa score for the NC using CT-data. f
Specificity for the NC using CT-data. g F1 score for the Cl using CT-data. h Kappa score for the Cl using CT-data. i Specificity for the Cl using CT-data.

well-trained, the task of the teacher networks was complete, and
the student model could be used on a regular computer with a fast
speed, which is suitable for hospitals without extensive computing
resources. As a result of the knowledge distillation method, the
CNNCEF achieved high performance with a few parameters in the
teacher network.

The CNNREF is a modular framework consisting of one stage II
sub-framework and one regressor block to handle the regression
task. In the regressor block, we used skip connections that con-
sisted of a convolution layer with multiple 1 x 1 convolution
kernels for retaining the features extracted by the stage II sub-
framework while improving the non-linear representation ability
of the regressor block. We made use of flexible blocks to achieve
good performance for the classification and regression tasks,
unlike traditional machine learning methods, which are com-
monly used for either of these tasks.

Five statistical indices, including sensitivity, specificity, preci-
sion, kappa coefficient, and F1 were used to evaluate the per-
formance of the CNNCEF. The sensitivity is related to the positive
detection rate and is of great significance in the diagnostic testing
of COVID-19. The specificity refers to the ability of the model to
correctly identify patients with the disease. The precision

indicates the ability of the model to provide a positive prediction.
The kappa demonstrates the stability of the model’s prediction.
The F1 is the harmonic mean of precision and sensitivity. Good
performance was achieved by the CNNCF based on the five
statistical indices for the multi-modal image data sets (X-data and
CT-data). The consistency between the model results and the
expert evaluation was determined using McNemar’s test. The
good performance demonstrated the model’s capacity of learning
from the experts using the labels of the image data and mimicking
the experts in diagnostic decision-making. The ROC and PRC of
the CNNCF were used to evaluate the performance of the clas-
sification model°?, The ROC is a probability curve that shows the
trade-off between the true positive rate (TPR) and false-positive
rate (FPR) using different threshold settings. The AUROC pro-
vides a measure of separability and demonstrated the dis-
criminative capacity of the classification model. The larger the
AUROC, the better the performance of the model is for pre-
dicting the true positive (TP) and true negative (TN) cases. The
PRC shows the trade-off between the TPR and the positive pre-
dictive value (PPV) using different threshold settings. The larger
the AUPRGC, the higher the capacity of the model is to predict the
TP cases. In our experiments, the CNNCF achieved high scores
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for both the AUPRC and AUROC (>99%) for the X-data and CT-
data.

DL has made significant progress in numerous areas in recent
years and has provided best-performance solutions for many
tasks. In areas that require high interpretability, such as auton-
omous driving and medical diagnosis, DL has disadvantages
because it is a black-box approach and lacks good interpretability.
The strong correlation obtained between the CNNCF output and
the experts’ evaluation suggested that the mechanism of the
proposed CNNCEF is similar to that used by humans analyzing
images. The combination of the visual interpretation and the
correlation analysis enhanced the ability of the framework to
interpret the results, making it highly reliable. The CNNCF has a
promising potential for clinical diagnosis considering its high
performance and hybrid interpretation ability. We have explored
the potential use of the CNNCEF for clinical diagnosis with the
support of the Beijing Youan hospital (which is an authoritative
hospital for the study of infectious diseases and one of the
designated hospitals for COVID-19 treatment) using both real
data after privacy masking and input from experts under
experimental conditions and provided a suitable schedule for
assisting experts with the radiography analysis. However, medical
diagnosis in a real situation is more complex than in an experi-
ment. Therefore, further studies will be conducted in different
hospitals with different complexities and uncertainties to obtain
more experience in multiple clinical use cases with the proposed
framework.

The objective of this study was to use statistical methods to
analyze the relationship between salient features in images and
expert evaluations and test the discriminative ability of the model.
The CNNRF can be considered a cross-modal prediction model,
which is a challenging research area that requires more attention
because it is closely related to associative thinking and creativity.
In addition, the correlation analysis might be a possible optimi-
zation direction to improve the interpretability performance of
the classification model using DL.

In conclusion, we proposed a complete framework for the
computer-aided diagnosis of COVID-19, including data annota-
tion, data preprocessing, model design, correlation analysis, and
assessment of the model’s interpretability. We developed a
pseudo-color tool to convert the grayscale medical images to
color images to facilitate image interpretation by the experts. We
developed a platform for the annotation of medical images
characterized by high security, local sharing, and expandability.
We designed a simple data preprocessing method for converting
multiple types of images (X-data, CT-data) to three-channel color
images. We established a modular CNN-based classification fra-
mework with high flexibility and wide use cases, consisting of the
ResBlock-A, ResBlock-B, and Control Gate Block. A knowledge
distillation method was used as a training strategy for the pro-
posed classification framework to ensure high performance with
fast inference speed. A CNN-based regression framework that
required minimal changes to the architecture of the classification
framework was employed to determine the correlation between
the lesion area images of patients with COVID-19 and the five
clinical indicators. The three evaluation indices (F1, kappa, spe-
cificity) of the classification framework were similar to those of
the respiratory resident and the emergency resident and slightly
higher than that of the respiratory intern. We visualized the
salient features that contributed most to the CNNCF output in a
heatmap for easy interpretability of the CNNCF. The proposed
CNNCF computer-aided diagnosis method showed relatively
high precision and has a potential for the automatic diagnosis of
COVID-19 in clinical practice in the future. The outbreak of the
COVID-19 epidemic poses serious threats to the safety and health
of the human population. At present, popular methods for the

diagnosis and monitoring of viruses include the detection of viral
RNAs using PCR or a test for antibodies. However, one negative
result of the RT-PCR test (especially in the areas of high infection
risk) might not be enough to rule out the possibility of a COVID-
19 infection. On June 14, 2020, the Beijing Municipal Health
Commission declared that strict management of fever clinics was
required. All medical institutions in Beijing were required to
conduct tests to detect COVID-19 nucleic acids and antibodies,
CT examinations, and the routine blood test (also referred to as
“1 + 3 tests”) for patients with fever that live in areas with high
infection risk®!. Therefore, the proposed computer-aided diag-
nosis using medical imaging could be used as an auxiliary diag-
nosis tool to help physicians identify people with high infection
risk in the clinical workflow. There is also a potential for broader
applicability of the proposed method. Once the method has been
improved, it might be used in other diagnostic decision-making
scenarios (lung cancer, liver cancer, etc.) using medical images.
The expertise of a specialist will be required in clinical cases in
future scenarios. However, we are optimistic about the potential
of using DL methods in intelligent medicine and expect that
many people will benefit from the advanced technology.

Methods

Data sets splitting. We used the multi-modal data sets from four public data sets
and one hospital (Youan hospital) in our research and split the hybrid data set in
the following manner.

a. For X-data: The CXR images of COVID-19 cases collected from the public
CCD>?2 contained 212 patients diagnosed with COVID-19 and were resized
to 512 x 512. Each image contained 1-2 suspected areas with inflammatory
lesions (SAs). We also collected 5100 normal cases and 3100 pneumonia
cases from another public data set (RSNA)%3. In addition, The CXR images
collected from the Youan hospital contained 45 cases diagnosed with
COVID-19, 503 normal cases, 435 cases diagnosed with pneumonia (not
COVID-19 patients), and 145 cases diagnosed as influenza. The CXR images
collected from the Youan hospital were obtained using the Carestream
DRX-Revolution system. All the CXR images of COVID-19 cases were
analyzed by the two experienced radiologists to determine the lesion areas.
The X-data of the normal cases (XNPDS), that of the pneumonia cases
(XPPDS), and that of the COVID-19 cases (XCPDS) from public data sets
constituted the X public data set (XPDS). The X-data of the normal cases
(XNHDS), that of the pneumonia cases (XPHDS), and that of the COVID-
19 cases (XCHDS) from the Youan hospital constituted the X hospital data
set (XHDS).

b. For CT-data: We collected CT-data of 120 normal cases from a public lung
CT-data set (LUNALSG, a large data set for automatic nodule detection in the
lungs®*#), which was a subset of LIDC-IDRI (The LIDC-IDRI contains a total
of 1018 helical thoracic CT scans collected using manufacturers from eight
medical imaging companies including AGFA Healthcare, Carestream
Health, Inc., Fuji Photo Film Co., GE Healthcare, iCAD, Inc., Philips
Healthcare, Riverain Medical, and Siemens Medical Solutions)>®. It was
confirmed by the two experienced radiologists from the Youan Hospital that
no lesion areas of COVID-19, pneumonia, or influenza were present in the
120 cases. We also collected the CT-data of pneumonia cases from a public
data set (images of COVID-19 positive and negative pneumonia patients:
ICNP)*%. The CT-data collected from the Youan hospital contained 95
patients diagnosed with COVID-19, 50 patients diagnosed with influenza
and 215 patients diagnosed with pneumonia. The images of the CT scans
collected from the Youan hospital were obtained using the PHILIPS
Brilliance iCT 256 system (Which was also used for the LIDC-IDRI data
set). The slice thickness of the CT scans was 5 mm, and the CT-data images
were grayscale images with 512 x 512 pixels. Areas with 2-5 SAs were
annotated by the two experienced radiologists using a rapid keystroke-entry
format in the images for each case, and these areas ranged from 16 x 16 to
64 x 64 pixels. The CT-data of the normal cases (CTNPDS) and that of the
pneumonia cases (CTPPDS) from the public data sets constituted the CT
public data set (CTPDS). The CT-data of the COVID-19 cases from the
Youan hospital (CTCHDS), the influenza cases from the Youan hospital
(CTIHDS), and the normal cases from the Youan hospital (CTNHDS)
constituted the CT hospital (clinically-diagnosed) data set (CTHDS).

c. For clinical indicator data: Five clinical indicators (white blood cell count,
neutrophil percentage, lymphocyte percentage, procalcitonin, C-reactive
protein) of 95 COVID-19 cases were obtained from the Youan hospital, as
shown in Supplementary Table 20. A total of 95 data pairs from the 95
COVID-19 cases (369 images of the lesion area and the 95 x 5 clinical
indicators) were collected from the Youan hospital for the correlation
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analysis of the lesion areas of the COVID-19 and the five clinical indicators.
The images of the SAs and the clinical indicator data constituted the
correlation analysis data set (CADS).

We split the XPDS, XHDS, CTPDS, CTHDS, and CADS into the training-
validation (train-val) and test data sets using TTSF. The details of the hybrid data
sets for the public data sets and Youan hospital data are shown in Table 1. The
train-val part of CTHDS is referred to as CTHTS, and the test part is called
CTHVS. The same naming scheme was adopted for XPDS, XHDS, CTPDS, and
CADS, i.e, XPTS, XPVS, XHTS, XHVS, CTPTS, CTPVS, CATS, and CAVS,
respectively. The training-validation part of the four public data sets and the
hospital (Youan Hospital) data set were mixed for X-data and CT-data, which were
named as XMTS and CTMTS respectively. While the test parts were split in the
same way and named XMVS and CTMVS.

Image preprocessing. All image data (X-data and CT-data) in the DICOM format
were loaded using the Pydicom library (version 1.4.0) and processed as arrays using
the Numpy library (version 1.16.0).

a. X-data: The two-dimensional array (x axis and y axis) of the image of the X-
data (size of 512 x 512) was normalized to pixel values of 0-255 and stored
in png format using the OpenCV library. Each preprocessed image was
resized to 512 x 512 and had 3 channels.

b. CT-data: The array of the CT-data was three-dimensional (x axis, y axis, and
z axis), and the length of the z axis was ~300, which represented the number
of image slices. Each image slice was two-dimensional (x axis and y axis, size
of 512 x 512). As shown in Fig. 1b, the array of the image was divided into
three groups in the z axis direction, and each group contained 100 image
slices (each case was resampled to 300 image slices). The image slices in each
group were processed using a window center of —600 and a window width
of 2000 to extract the lung tissue. The images of the CT-data with 300 image
slices were normalized to pixel values of 0-255 and stored in npy format
using the Numpy library. A convolution filter was applied with three 1 x 1
convolution kernels to preprocess the CT-data, which is a trainable layer
with the aim of normalizing the input; the image size was 512 x 512, with 3
channels.

Annotation tool for medical images. The server program of the annotation tool
was deployed in a computer with large network bandwidth and abundant storage
space. The client program of the annotation tool was deployed in the office
computer of the experts, who were given unique user IDs for login. The interface of
the client program had a built-in image viewer with a window size of 512 x 512 and
an export tool for obtaining the annotations in text format. Multiple drawing tools
were provided to annotate the lesion area in the images, including a rectangle tool
for drawing a bounding box around the target, a polygon tool for outlining the
target, and a circle tool the target. Multiple categories could be defined and
assigned to the target areas. All annotations were stored in a structured query
language (SQL) database, and the export tool was used to export the annotations to
two common file formats (comma-separated values (csv) and JavaScript object
notation (json)). The experts could share the annotation results. Since the size of
the X-data and the CT slice-data were identical, the annotations for both data were
performed with the annotation tool. Here we use one image slice of the CT-data as
an example to demonstrate the annotation process. In this study, two experts were
asked to annotate the medical images. The normal cases were reviewed and con-
firmed by the experts. The abnormal cases, including the COVID-19 and influenza
cases, were annotated by the experts. Bounding boxes of the lesion areas in the
images were annotated using the annotation tool. In general, each case contained
2-5 slices with annotations. The cases with the annotated slices were considered
positive cases, and each case was assigned to a category (COVID-19 case or
influenza case). The pipeline of the annotation was shown in Supplementary Fig. 1.

Model architecture and training. In this study, we proposed a modular CNNCF
to identify the COVID-19 cases in the medical images and a CNNRF to determine
the relationships between the lesion areas in the medical images and the five
clinical indicators of COVID-19. Both proposed frameworks consisted of two units
(ResBlock-A and ResBlock-B). The CNNCF and CNNRF had unique units, namely
the control gate block and regressor block, respectively. Both frameworks were
implemented using two NVIDIA GTX 1080TI graphics cards and the open-source
PyTorch framework.

a. ResBlock-A: As discussed in ref. °7, the residual block is a CNN-based block
that allows the CNN models to reuse features, thus accelerating the training
speed of the models. In this study, we developed a residual block (ResBlock-
A) that utilized a skip-connection for retaining features in different layers in
the forward propagation. This block (Fig. 6a) consisted of a multiple-input
multiple-output structure with two branches (an upper branch and a bottom
branch), where input 1 and input 2 have the same size, but the values may
be different. In contrast, output 1 and output 2 had the same size, but output
1 did not have a ReLu layer. The upper branch consisted of a max-pooling
layer (Max-Pooling), a convolution layer (Conv 1 x 1), and a batch norm

layer (BN). The Max-Pooling had a kernel size of 3 x 3 and a stride of 2 to
downsample the input 1 for retaining the features and ensuring the same
size as the output layer before the element-wise add operation was
conducted in the bottom branch. The Conv 1 x 1 consisted of multiple 1 x 1
convolution kernels with the same number as that in the second convolution
layer in the bottom branch to adjust the number of channels. The BN used a
regulation function to ensure the input in each layer of the model followed a
normal distribution with a mean of 0 and a variance of 1. The bottom
branch consisted of two convolution layers, two BN layers, and two ReLu
layers. The first convolution layer in the bottom branch consisted of
multiple 3 x 3 convolution kernels with a stride of 2 and a padding of 1 to
reduce the size of the feature maps when local features were obtained. The
second convolution layer in the bottom branch consisted of multiple 3 x 3
convolution kernels with a stride of 1 and a padding of 1. The ReLu function
was used as the activation function to ensure a non-linear relationship
between the different layers. The output of the upper branch and the output
of the bottom branch after the second BN were fused using an element-wise
add operation. The fused result was output 1, and the fused result after the
ReLu layer was output 2.

b. ResBlock-B: The ResBlock-B (Fig. 6b) was a multiple-input single-output
block that was similar to the ResBlock-A, except that there was no output 1.
The value of the stride and padding in each layer of the ResBlock-A and
ResBlock-B could be adjusted using hyper-parameters based on the
requirements.

c. Control Gate Block: As shown in Fig. 6¢, the Control Gate Block was a
multiple-input single-output block consisting of a predictor module, a
counter module, and a synapses module to control the optimization
direction while controlling the information flow in the framework. The
pipeline of the predictor module is shown in Supplementary Fig. 19a, where
the Input SI is the output of the ResBlock-B. The Input S1 was then
flattened to a one-dimensional feature vector as the input of the linear layer.
The output of the linear layer was converted to a probability of each
category using the softmax function. A sensitivity calculator used the Vireq
and Vi, as inputs to calculate the TP, TN, FP, and false-negative (FN) rates
to calculate the sensitivity. The sensitivity calculation was followed by a step
function to control the output of the predictor. The thy was a threshold
value; if the calculated sensitivity was greater or equal to th,, the step
function output 1; otherwise, the output was 0. The counter module was a
conditional counter, as shown in Supplementary Fig. 19b. If the input n was
zero, the counter was cleared and set to zero. Otherwise, the counter
increased by 1. The output of the counter was num. The synapses block
mimicked the synaptic structure, and the input variable num was similar to
a neurotransmitter, as shown in Supplementary Fig. 19c. The input num was
the input parameter of the step function. The th, was a threshold value; if
the input num was greater or equal to thy, the step function output 1;
otherwise, it output 0. An element-wise multiplication was performed
between the input S1 and the output of the synapses block. The multiplied
result was passed on to a discriminator. If the sum of each element in the
result was not zero, the Input S1 was passed on to the next layer. Otherwise,
the input S1 information was not passed on.

d. Regressor block: The regressor block consisted of multiple linear layers, a
convolution layer, a BN layer, and a ReLu layer, as shown in Fig. 6d. A skip-
connection architecture was adopted to retain the features and increase the
ability of the block to represent non-linear relationships. The convolution
block in the skip-connection structure was a convolution layer with multiple
numbers of 1 x 1 convolution kernels. The number of the convolution
kernels was the same as that of the output size of the second linear layer to
ensure the consistency of the vector dimension. The input size and output
size of each linear layer were adjustable to be applicable to actual cases.

Based on the four blocks, two frameworks were designed for the classification
task and regression task, respectively.

a. Classification framework: The CNNCF consisted of stage I and stage II, as
shown in Fig. 3a. Stage I was duplicated Q times in the framework (in this
study, Q =1). It consisted of multiple ResBlock-A with a number of M (in
this study, M = 2), one ResBlock-B, and one Control Gate Block. Stage II
consisted of multiple ResBlock-A with a number of N (in this study, N = 2)
and one ResBlock-B. The weighted cross-entropy loss function was used and
was minimized using the SGD optimizer with a learning rate of al (in this
study, al = 0.01). A warm-up strategy>® was used in the initialization of the
learning rate for a smooth training start, and a reduction factor of bl (in this
study, bl = 0.1) was used to reduce the learning rate after every cl (in this
study, c1 = 10) training epochs. The model was trained for d1 (in this study,
d1 = 40) epochs, and the model parameters saved in the last epoch was used
in the test phase.

b. Regression framework: The CNNRF (Fig. 3b) consisted of two parts (stage II
and the regressor). The inputs to the regression framework were the images
of the lesion areas, and the output was the corresponding vector with five
dimensions, representing the five clinical indicators (all clinical indicators
were normalized to a range of 0-1). The stage II structure was the same as
that in the classification framework, except for some parameters. The loss
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Fig. 6 The four units of the proposed framework. a ResBlock-A architecture, containing two convolution layers with 3 x 3 kernels, one convolution layer
with a 1 x 1 kernel, three batch normalization layers, two Relu layers, and one max-pooling layer with a 3 x 3 kernel. b ResBlock-B architecture; the basic
unit is the same as the ResBlock-A, except for output 1. € The Control Gate Block has a synaptic-based frontend architecture that controls the direction of
the feature map flow and the overall optimization direction of the framework. d The Regressor architecture is a skip-connection architecture containing one
convolution layer with 3 x 3 kernels, one batch normalization layer, one Relu layer, and three linear layers.

function was the MSE loss function, which was minimized using the SGD
optimizer with a learning rate of a2 (in this study, a2 =0.01). A warm-up
strategy was used in the initialization of the learning rate for a smooth
training start, and a reduction factor of b2 (in this study, b2 = 0.1) was used
to reduce the learning rate after every c2 (in this study, c2 = 50) training
epochs. The framework was trained for d2 (in this study, d2 = 200) epochs,
and the model parameters saved in the last epoch were used in the
test phase.

The workflow of the classification framework. The workflow of the classification
framework was demonstrated in Fig. 3c. The preprocessed images are sent to the
first convolution block to expand the channels and processed as the input for the
CNNCEF. Given the input F; with a size of M x N x 64, the stage I output feature
maps F'; with a size of M/8 x N/8 x 256 in the default configuration. As we
introduced above, the Control Gate Block controls the optimization direction while
controlling the information flow in the framework. If the Control Gate Block is
open, the feature maps F'; are passed on to stage II. Given the input F';, the stage II
output the feature maps F”; with a size of M/64 x N/64 x 512 which is defined as
follows:

F; =SI(F) 1)
F! = $2(F) ® CGB(F})’

where S1 denotes the stage I block, S2 denotes the stage II block, and CGB is the
Control Gate Block. ® is the element-wise multiplication operation. Stage II is
Followed by a global average pooling layer (GAP) and a fully connect layer (FC
layer) with a softmax function to generate the final predictions. Given F’; as input,
the GAP is adopted to generate a vector Vywith a size of 1 x 1 x 512. Given Vyas
input, the FC layer with the softmax function outputs a vector V. with a size of 1 x
1xC

V; = GAP(F))
v, = sMax(Fc(v;))’
where GAP is the global average pooling layer, the FC is the fully connect layer,

SMax is the softmax function, V;is the feature vector generated by the GAP, V., is
the prediction vector, and C is the number of case types used in this study.

@)

Training strategies and evaluation indicators of the classification framework.
The training strategies and hyper-parameters of the classification framework were
as follows. We adopted a knowledge distillation method (Fig. 7) to train the
CNNCEF as a student network with one stage I block and one stage II block, each of
which contained two ResBlock-A. Four teacher networks (the hyper-parameters
are provided in Supplementary Table 21) with the proposed blocks were trained on
the train-val part of each sub-data set using a 5-fold cross-validation method. All
networks were initialized using the Xavier initialization method. The initial
learning rate was 0.01, and the optimization function was the SGD. The CNNCF
was trained using the image data and the label, as well as the fused output of the
teacher networks. The comparison of RT-PCR test results using throat specimen
and the CNNCEF results were provided in Supplementary Table 22. Supplementary
Fig. 20 shows the details of the knowledge distillation method. The definitions and
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Fig. 7 Knowledge distillation consisting of multiple teacher networks and
a target student network. The knowledge is transferred from the teacher
networks to the student network using a loss function.

details of the five evaluation indicators used in this study were given in Supple-
mentary Note 2.

Gradient-weighted class activation maps. Grad-CAM>? in the Pytorch frame-
work was used to visualize the salient features that contributed the most to the
prediction output of the model. Given a target category, the Grad-CAM performed
back-propagation to obtain the final CNN feature maps and the gradient of the
feature maps; only pixels with positive contributions to the specified category were
retained through the ReLU function. The Grad-CAM method was used for all test
data set (X-data and CT-data) in the CNNCF without changing the framework
structure to obtain a visual output of the framework’s high discriminatory ability.

Statistics and reproducibility. We used multiple statistical indices and empirical
distributions to assess the performance of the proposed frameworks. The equations
of the statistical indices are shown in Supplementary Fig. 21 and all the abbre-
viations used in this study are defined in Supplementary Table 23. All the data used
in this study followed the criteria: (1) sign informed consent prior to enrollment.
(2) At least 18 years old. This study was conducted following the declaration of
Helsinki and was approved by the Capital Medical University Ethics Committee.
The following statistical analyses of the data were conducted for both evaluating the
classification framework and the regression framework.

a. Statistical indices to evaluate the classification framework. Multiple
evaluation indicators (PRC, ROC, AUPRC, AUROC, sensitivity, specificity,
precision, kappa index, and F1 with a fixed threshold) were computed for a
comprehensive and accurate assessment of the classification framework.
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Multiple threshold values were in the range from 0 to 1 with a step value of
0.005 to obtain the ROC and PRC curves. The PRC showed the relationship
between the precision and the sensitivity (or recall), and the ROC indicated
the relationship between the sensitivity and specificity. The two curves
reflected the comprehensive performance of the classification framework.
The kappa index is a statistical method for assessing the degree of agreement
between different methods. In our use case, the indicator was used to
measure the stability of the method. The F1 score is a harmonic average of
precision and sensitivity and considers the FP and FN. The bootstrapping
method was used to calculate the empirical distribution of each indicator.
The detailed calculation process was as follows: we conducted random
sampling with replacement to generate 1000 new test data sets with the same
number of samples as the original test data set. The evaluation indicators
were calculated to determine the distributions. The results were displayed in
boxplots (Fig. 5 and Supplementary Fig. 2).

b. Statistical indices to evaluate the regression framework. Multiple evaluation
indicators (MSE, RMSE, MAE, R?, and PCC) were computed for a
comprehensive and accurate assessment of the regression framework. The
MSE was used to calculate the deviation between the predicted and true
values. The RMSE was the square root of the MSE result. The two indicators
show the accuracy of the model prediction. The R? was used to assess the
goodness-of-fit of the regression framework. The r was used to assess the
correlation between two variables in the regression framework. The
indicators were calculated using the open-source tools scikit-learn and the
scipy library.

Data availability

The data sets used in this study (named Hybrid Datasets) are composed of public data
sets from four public data repositories and a hospital data set provided by the cooperative
hospital (Beijing Youan hospital). The four public data repositories are Covid-ChestXray-
Dataset (CCD), Rsna-pneumonia-detection-challenge (RSNA), Lung Nodule Analysis
2016 (LUNA16), and Images of COVID-19 positive and negative pneumonia patients
(ICNP), respectively. Full data of the Hybrid Data sets are available at Figshare (https://
doi.org/10.6084/m9.figshare.13235009).

Code availability

We used standard software packages as described in the “Methods” section. The
implementation details of the proposed framework can be downloaded from https://
github.com/SHERLOCKLS/Detection-of-COVID-19-from-medical-images.
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