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Programmable phase-change metasurfaces on
waveguides for multimode photonic convolutional
neural network
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Neuromorphic photonics has recently emerged as a promising hardware accelerator, with

significant potential speed and energy advantages over digital electronics for machine

learning algorithms, such as neural networks of various types. Integrated photonic networks

are particularly powerful in performing analog computing of matrix-vector multiplication

(MVM) as they afford unparalleled speed and bandwidth density for data transmission.

Incorporating nonvolatile phase-change materials in integrated photonic devices enables

indispensable programming and in-memory computing capabilities for on-chip optical com-

puting. Here, we demonstrate a multimode photonic computing core consisting of an array of

programable mode converters based on on-waveguide metasurfaces made of phase-change

materials. The programmable converters utilize the refractive index change of the phase-

change material Ge2Sb2Te5 during phase transition to control the waveguide spatial modes

with a very high precision of up to 64 levels in modal contrast. This contrast is used to

represent the matrix elements, with 6-bit resolution and both positive and negative values, to

perform MVM computation in neural network algorithms. We demonstrate a prototypical

optical convolutional neural network that can perform image processing and recognition tasks

with high accuracy. With a broad operation bandwidth and a compact device footprint, the

demonstrated multimode photonic core is promising toward large-scale photonic neural

networks with ultrahigh computation throughputs.
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The unmet gap between the rate of energy efficiency
improvement of current digital electronics and the fast-
growing load of computation by emerging applications such

as machine learning and artificial intelligence1,2 has once again
brought optical computing into focus3–6. Integrated photonics
provides a scalable hardware platform to realize large-scale optical
networks on a chip, which affords an enormous bandwidth den-
sity that is unreachable for electronics7–9. To use integrated
photonics for optical computing, programmable photonic com-
ponents and nonlinear elements are indispensable building blocks.
Phase-change materials (PCM) recently emerged as an ideal
material system to realize optical programmability10–12. The
optical properties of PCMs change dramatically during the phase
transition, which can be electrically or optically controlled. Har-
nessing this has allowed for embodiments of programmable
optical switches, couplers, lens, and metamaterials to be demon-
strated13–21. The phase change in the chalcogenide family of Ge-
Sb-Te alloys is nonvolatile, requiring no sustaining power supply
to retain the programmed state or stored information19–26. Their
use in programmable photonic devices thus can have a significant
advantage in power consumption over electro-optic27–29 or
thermo-optic methods30–32. Photonic devices incorporating those
nonvolatile PCMs thus can realize optical memories and perform
in-memory computing simply by measuring the transmission of
the optical input data through the programmed device33–35.
Proliferating these phase-change photonic devices in a scalable
network, prototypes of optical neural networks (ONN) have been
proposed and demonstrated35–38.

Here, we report a programmable waveguide mode converter
based on a phase-gradient metasurface made of phase-change
material Ge2Sb2Te5 (GST). This phase-change metasurface
mode converter (PMMC) utilizes GST’s large refractive index
change during its phase transition to control the conversion of
the waveguide’s two spatial modes (TE0 and TE1 modes). The
PMMC can be programmed to control the waveguide mode
contrast precisely at 64 distinguishable levels, which is used to
represent the weight parameters with 6-bit precision in MVM
computation. We build a 2 × 2 array of PMMCs and implement
them as programmable kernels to realize a multimode optical
convolutional neural network (OCNN). By performing image
processing tasks such as edge detection and pattern recognition,
we demonstrate the OCNN’s viability and potential in large-
scale optical computing.

Results
High-precision programmable phase-change mode converter.
The design of the PMMC is based on the principle of a phase-
gradient metasurface but replacing noble metals with phase-change
materials39. Fig. 1a shows a 3D schematic of the design, which
consists of a linear array of GST nano-antennae directly integrated
on a silicon nitride (SiN) waveguide. Each GST nano-antenna
scatters the waveguide mode and causes a phase shift Φ, which
depends on its geometry (e.g., width), as well as the refractive index
of its material (Fig. 2b). A linear array of such nano-antennae with
tapering widths thus produces a spatial gradient of the scattering
phases dΦ/dx, which is equivalent to a wavevector kg. If the phase-
gradient metasurface is designed such that kg matches the wave-
vector difference between two spatial modes of the waveguide:
kmode1−kmode2, it satisfies the phase-matching condition and facil-
itates the conversion between the two modes. Such phase-gradient
metasurfaces for waveguide mode conversion were realized using
noble metals or dielectrics materials and thus lacked tunability.
Here, we use GST, which has a large change in its optical properties
when a phase transition happens. When the GST is in the

amorphous phase (aGST), its refractive index n is ~4.7 (repre-
sentative value in the literature, the same hereafter)40. In contrast,
when it is turned to the crystalline phase (cGST), n increases to ~7.5
with a drastic change of 2.8 over the whole measured spectral range
from 1540 nm to 1580 nm (See Supplementary Fig. 1a for more
detailed information). This change will significantly modify the
scattered phase of each GST nano-antenna (Fig. 2b) so as to modify
the metasurface’s function. Fig. 1c plots the simulated phase of the
scattered fields inside the waveguide by a single nano-antenna of 30-
nm-thick GST as a function of its width and for aGST and cGST
phases. Since cGST has a much larger n, the scattered phase shows a
much stronger dependence on the width than the aGST phase. By
controlling the geometry of the GST nano-antennae and the interval
between adjacent ones in the array, a well-defined phase gradient
dΦ/dx is established (see Supplementary Note 2 and 3 for details).
The entire metasurface consists of an array of 25 nano-antennae
with tapering widths from 510 nm to 84 nm (shaded region in
Fig. 1c) and is patterned on a SiN waveguide 1.8 µm wide and 330
nm thick. The waveguide supports two transverse-electric modes:
the fundamental TE0 mode and the first-order TE1 mode. We
design the metasurface, in the cGST phase, to have a uniform dΦ=
2.5° for every dx= 400 nm to satisfy the generalized phase-matching
condition, k0ðnTE0 � nTE1Þ ¼ N � dΦ=dx, where k0 is the free-space
wavevector, nTE0 and nTE1 are the effective index of the TE0 and TE1
modes, respectively, and N is the number of interactions between
the guided modes and the metasurface. The cGST metasurface thus
can efficiently convert the TE0 mode to the TE1 mode, as shown by
the finite-difference time-domain (FDTD) simulation result in
Fig. 1d. When the GST is transitioned to the aGST phase, as shown
in Fig. 1c, the dΦ/dx is much reduced and thus insufficient for the
phase-matching condition so that mode conversion between TE0
and TE1 modes does not occur, which is clearly seen in Fig. 1e.
Therefore, the GST phase-gradient metasurface, as designed here,
functions as a programmable waveguide mode converter controlled
by the tunable material phase of the GST.

Fig. 2a–c shows the scanning electron microscope images of the
complete PMMC device. The 30 nm thick GST film is deposited by
sputtering on Si3N4 on an oxidized silicon substrate. It is then
patterned into metasurface with electron beam lithography and
plasma etching, and conformally encapsulated with a 218-nm-thick
layer of Al2O3 deposited by atomic layer deposition. The photonic
circuits of Si3N4, including multimode waveguides, directional
couplers and grating couplers, are patterned with standard
processes17. A pair of asymmetric directional couplers (Fig. 2c) is
designed to function as mode selectors to selectively couple only the
TE1 mode component in the multimode waveguide with the TE0
mode component in the single-mode waveguide (See Supplemen-
tary Note 5 for details). Fig. 2a depicts the measurement and control
scheme. To program the PMMC, we use optical pulses to control
the phase of the GST film for simplicity41. Previously, electrical
control using integrated micro-heaters has been demonstrated by a
number of groups, including us17,26,42–44. When operating the
PMMC, an optical signal is input in the TE0 mode to the PMMC
and converted to TE1 mode with a proportion controlled by the
state of the GST metasurface. At the output of the PMMC, the TE1
component is separated by the mode selector and coupled out at the
second port while the TE0 component remains in and outputs from
the multimode waveguide. The output powers of both modes are
measured to determine their respective transmission coefficients.
Fig. 2d shows the transmission spectrum of the PMMC when the
metasuface is set to be either in the fully aGST or cGST phases. The
insertion losses of the input and output fibers and grating couplers
have been accounted for by calibration measurements. In the aGST
phase, the device is in the on-state for the TE0 mode with a high
transmission Ton over a broad wavelength range (1540–1580 nm).
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The lowest insertion loss is 0.9 dB at 1575 nm wavelength. A small
portion (<−10 dB) of the TE1 mode is generated due to the
asymmetric perturbation induced by the metasurface even though
the aGST phase has a low refractive index. The situation changes
dramatically when the metasurface is transitioned to the cGST
phase and converts the TE0 mode to the TE1 mode effectively. In
this off-state for the TE0 mode, its transmission Toff is <−15 dB
over the entire measured bandwidth. The corresponding switching
extinction ratio, defined as ΔT=Toff ¼ Ton � Toff

� �
=Toff , is ~16 dB

or 4000%, which is more than 10-fold improvement compared to
previously reported switch devices using GST24,43,45. This large
switching ratio stems from the phase engineering approach to
effectively use GST’s large refractive index change during its phase-
transition, as opposed to only using the absorption coefficient
change, to facilitate scattering into a different mode that is filtered.
The total area of the GST in the metasurface is only 1.3 µm2,
significantly smaller than that in prior devices, and thus in principle,
our device consumes less energy to switch. As expected from energy
conservation, the TE1 mode is switched in the opposite way to the
TE0 mode. From aGST to cGST phase, the TE1 transmission
increases from ~−10 dB to ~−6.5 dB, with the insertion loss due to
cGST’s absorption. Another important parameter to quantify a
mode converter’s performance is the mode purity in the multimode
waveguide, defined as βTE0ðTE1Þ ¼ PTE0ðTE1Þ= PTE0 þ PTE1ð Þ, where
PTE0 (PTE1) is the power in the TE0 (TE1) mode. The PMMC shows
very high performance in controlling mode purity. As shown in
Fig. 2e, when switching the GST from aGST to cGST phase, the
PMMC efficiently converts TE0 mode to TE1 mode, changing the
mode purity from βTE0 > 80% to βTE1 > 85% over a broad
bandwidth, showing an excellent agreement with the numerical
simulation results.

PMMC photonic kernel. The phase composition of the GST in the
metasurface can be continuously tuned by partial phase transition
so that the PMMC can be continuously programmed to multiple
intermediate levels of phase purity values. We program the PMMC
with a sequence of 50-ns-long control pulses to “quench” the GST
progressively from the fully cGST phase toward the fully aGST
phase. As a result, the TE1 mode purity βTE1 increases stepwise.
Since the mode selector separates the two modes, we can measure
their power and calculate the difference to determine the mode
contrast Γ ¼ βTE0 � βTE1, which is used as a programming para-
meter. Fig. 2f demonstrates the multi-level programmability of the
PMMC, in which Γ is sequentially set to 64 distinguishable levels
between−0.73 to+0.67 at 1555 nm. Since the theoretical range of Γ
is ð�1; 1Þ, it is an ideal parameter to represent the elements in the
matrix w, with both positive and negative values, in a multiply-
accumulate (MAC) operation: x → x ∙w + b, where b is the bias
parameter. MAC is the constitutional step of matrix-vector multi-
plication (MVM) in all neural network algorithms. The PMMC
allows storing w by programming Γ in the GST metasurface as a
nonvolatile memory. In-memory MAC computing can be per-
formed with the PMMC by a measurement of the transmitted
power when the input data x is encoded in the power of the input
optical signal. The lower inset of Fig. 2f shows the histograms of 20
repeated programming operations to set the PMMC mode contrast
at two adjacent levels (levels 30 and 31), respectively. The well-
separated histograms clearly demonstrate the device’s programming
resolution and accuracy. The demonstrated 64-level program-
mability of the PMMC—the highest to the best of our knowledge
for phase-change photonic devices24—corresponds to 6-bit resolu-
tion in setting w, which is critical to the training and inference
precision of the neural network46,47.
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Fig. 1 Design of the phase-gradient metasurface mode converter. a 3D illustration of the devices. b FDTD simulation of the scattered electric field by one
nano-antenna when the GST is in aGST (left panel) and cGST (right panel) phases, respectively, showing the distinctive difference. c. The phase of the
scattered mode as a function of the GST nano-antenna width for cGST and aGST phases. The shaded region indicates the range of antenna widths that are
used in the phase gradient metasurface. Inset: cross-sectional view of the structure. d, e FDTD simulation results showing effective mode conversion from
the TE0 mode to the TE1 mode when the GST is in crystalline phase (d), but only a small perturbation when the GST is in amorphous phase (e).
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We harness the PMMC’s high-precision programmability and
in-memory computing capability to demonstrate an optical
convolutional neural network (OCNN)28–30,48. A typical CNN
consists of an input layer and an output layer, which are
connected by multiple hidden layers in between. The hidden
layers usually consist of a series of convolutional layers followed
by pooling layers and fully connected layers at the end. We design
a prototype OCNN using a small network of PMMCs to
implement patch-kernel matrix multiplication to compute
convolution. Fig. 3a illustrates the operation principle of the
OCNN for image processing, where an input grayscale image of
dimensions n × n is convolved with a kernel of dimensions k × k
to compute an activation map of dimension (n–k+1) × (n–k+1),
assuming the convolution stride is 1. When operating the OCNN,
we group the input image into (n–k+1)2 patches (the shaded area
in the upper panel of Fig. 3a) with the same dimensions as the
convolution kernel, k2. Each patch corresponds to the receptive
field of an element in the activation map accordingly. Thus, a
convolution operation requires (n–k+1)2 × k2 MAC operations in
total, which is a high load of computation and can most benefit
from optical computing’s speed and energy advantages.

To compute the convolution, (n–k+1)2 patch matrices of the
input image are optically fed into the photonic kernel sequentially
while the kernel elements, that is, the PMMCs, are programmed to
fixed values. At each timeframe of the computation, the
corresponding patch matrix is reshaped into a single column of
data with the length k2. The data is input into the optical system in
k2 channels as sequences of incoherent optical pulses, whose power

amplitude is controlled by a variable optical attenuator (VOA) to
encode the value of each pixel value Xij in the greyscale image. The
corresponding element Wij of the kernel matrix is programmed as
the mode contrast Γ of each PMMC. The resulting transmitted
power of TE0 and TE1 modes are then summed incoherently using
two photodetectors. Their output difference is calculated electro-
nically and used in post-processing steps. As a result, the output will
correspond to a time series of patch-kernel MVM with the
amplitude encoding the values of the computation results, which is
the activation map of convolution. Since the modal contrast Γ of
our PMMCs can assume both positive and negative values, it can
represent the kernel matrix elements without the need of an
additional offset, which otherwise would take additional steps to set
in each computation cycle.

Convolutional edge detection with PMMC core. Experimentally,
we build a small-scale, four-channel system with four PMMCs to
represent a 2 × 2 kernel matrix, as shown in the optical image in
Fig. 3b. As a demonstration, we perform the convolution of a 256 ×
256 8-bit grayscale image of a cameraman (Fig. 3c) to detect its edge
features. As shown in Fig. 3b, the TE0 mode output coming from all
the PMMCs is combined using on-chip Y-junctions, while the TE1
mode output power is combined off-chip because the same ports
are used to program the PMMCs optically. Because combining four
incoherent sources using Y-junctions will inherently reduce the
power by a factor of 4, we rescale the measured TE0 mode power by
this factor when calculating the power differences between two

c

Fig. 2 Operation of the programmable metasurface mode converter (PMMC). a Scanning electron microscope (SEM) image of the complete device and
the measurement and control schematics. The complete PMMC device consists of an encapsulated GST phase gradient metasurface (red box) and a mode
selector (yellow box). The white box appears because of the edge of the 218-nm-thick Al2O3 encapsulating layer. b Zoomed-in SEM image of the phase-
gradient metasurface on the waveguide before depositing the Al2O3 encapsulation layer for better imaging. c Zoomed-in SEM image of the TE0/TE1 mode
selector. d The transmission coefficient (insertion loss) of the devices for TE0 and TE1 modes and aGST and cGST phases. The transmission of the TE0
mode is switched with a high extinction ratio of >16 dB or 4000%. e The mode purity is controlled by the mode converter to >80% for both modes. f The
programable mode converter controls the mode contrast Γ at 64 distinct levels, corresponding to 6-bit programming resolution. Upper inset: zoomed-in
view of the contrast levels. Lower inset: histograms of 20 programming operations to set the contrast at two adjacent levels (level 30 and 31). The well-
separated histograms demonstrate the programming repeatability and accuracy.
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modes. To detect vertical and horizontal edges, kernel matrices as in
the right column of Fig. 3d, e are used, and so are the PMMCs
programmed. Take the vertical edge detection for example, the

kernel is set to be
�1 1
�1 1

� �
so to compute the discrete first-order

derivative, Xiþ1;j þ Xiþ1;jþ1 � Xi;j � Xi;jþ1, where i, j are the indices
of the input image matrix. Each kernel element Wij is stored as the
mode contrast value Γ in the corresponding PMMC, with Wij= 1
(−1) corresponding to the fully aGST (cGST) phase (see Supple-
mentary Note 9 for a more detailed description about the operation
procedure). The computed images after convolution without any
post-processing are shown in the left column of Fig. 3d, e, for
horizontal and vertical edge detection, respectively. The two images
are then added to produce the right image in Fig. 3b, which
highlights silhouettes of the objects with sharp edges such as the
cameraman and the buildings in the original image, while sup-
pressing smooth features such as the sky and the water. The opti-
cally computed edge detection image agrees very well with the
calculated result using conventional image processing algorithms
(see Supplementary Fig. 16). This result verifies the capacity and
fidelity of optical convolution performed with the PMMC-based
photonic kernel, which is a prerequisite for an OCNN.

OCNN for image recognition. Beyond the convolution layer, the
MAC computation performed with optical signals and the
PMMC network can also be applied to the pooling (average
pooling) and the fully connected layers, where the PMMCs are
used as weight banks instead, to realize a complete OCNN. In our
experiment, we sequentially reuse the PMMC array in both
convolution and fully connected layers to demonstrate an OCNN

and perform proof-of-concept imaging recognition tasks of dis-
tinguishing handwritten numbers “1” and “2” from the MNIST
database. Fig. 4a illustrates the architecture and processes of the
OCNN. The 28 × 28 pixels, 8-bit grayscale images of number “1”
or “2” are fed into the input layer as optical signals. The data is
then convolved with two 2 × 2 photonic kernels K1 and K2 to
generate two 27 × 27 images of activation maps. After adding a
bias b1 and applying the nonlinear ReLu function, the output
images are sent to an average pooling layer with a subsampling
factor of 27, which reduces the images a 2 × 1 vector. This vector
is then fed into the fully connected layer with a 2 × 2 photonic
weight bank K3 programmed in the PMMC array, added with a
bias b2 and applied the standard sigmoid function. The final
output is a vector that gives the identified class of the input image,
that is, 1 0½ �T corresponds to the number “1” and 0 1½ �T
corresponds to the number “2”. In this OCNN, the MVM com-
putations such as the convolution and the fully connected layers
are all performed optically with the PMMCs, whereas bias and
nonlinear functions are realized electronically.

Before using the OCNN, we first train all the parameters in
the layers with the standard back-propagation algorithm using
the gradient descent method49. The training set consists of
11,000 images of the handwritten number “1” or “2” from
MNIST training images. The training yields values for each
element in the convolutional kernels and the weight bank, as
shown in Fig. 4b, d. We then program the PMMC array to
represent these elements. In Fig. 4c, we show the raw data of the
convolutional activation maps encoded in time series of optical
signals, which are the output from the PMMC array after the
input image convolves with the photonic kernel K1 and K2.
Since each photonic processing layer results in electrical signals

Fig. 3 Using a PMMC array as a photonic computing core for convolutional image processing. a Schematic of optical convolution for image processing.
An array of k2 PMMC is programmed to store the kernel matrix. A patch of pixels of an image is encoded as optical pulses and input into k2 optical
channels to perform MAC operation with the kernel. The output in TE0 and TE1 are summed incoherently and measured with photodetectors. The
activation map is represented by the mode contrast and could be both positive and negative. b Optical microscope image of the photonic core consisting of
four PMMCs with four input channels. The TE0 mode outputs are summed on-chip with Y-junctions whereas TE1 mode outputs are summed off-chip.
Optical control pulses are input using the same set of grating couplers used for the TE1 mode detection. c The greyscale image of “cameraman” (with
permission from its copyright owner Massachusetts Institute of Technology) is used as the input image. d, e Left: the raw image generated by convolution
with the kernel matrix for detection of horizontal (d) and vertical (e) edges. Right: the corresponding kernel matrix for edge detection. f Combined image of
horizontal and vertical edge detection, highlighting all the sharp edges in the original image.
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output from the photodetectors, electronic post-processing is
performed to add bias and apply nonlinear function and
pooling. The resultant data is re-coded into optical signals and
fed to the next photonic layer. Further experimental details are
included in the Supplementary Note 9. We evaluate the
system’s performance after training on a recognition test set,
which consists of 100 randomly chosen “1” or “2” images (55
number “1” and 45 number “2”) from the MNIST testing image
database. Fig. 4e shows the result that our OCNN correctly
identified 91 out of 100 cases (9% error rate), which compares
squarely with the result of a computer (10% error rate). The
slight difference is mainly caused by the small deviation of the
experimentally programmed values in the matrices (K1, K2 and
K3) from the trained values, which occurs when the system’s
conditions drift during operation. This result successfully
demonstrates the OCNN’s viability and accuracy in performing
standard neural network algorithms.

Discussion
In summary, we have demonstrated a compact programmable
waveguide mode converter using GST-based phase-gradient
metasurface with high programming resolution, efficiency and
broadband operation. We have built a photonic kernel based on
an array of such PMMC devices and implemented an optical
convolutional neural network to perform image processing and
recognition tasks. Our results show that phase-change photonic
devices, such as the PMMC demonstrated here, can enable robust
and flexible programmability and realize a plethora of unique
optical functionalities that are scalable for large-scale optical
computing and neuromorphic photonics. Although optical
computation in this work is performed at a low speed of ~1 kHz
by using low-speed VOAs to encode data into optical signals,
state-of-the-art integrated photonic transmitters and photo-
detectors can drive the system at a speed of many 10 s of Gbits/
sec50,51. Using wavelength division multiplexing (WDM) can
further increase the number of parallel computation. The 2 × 2
array prototype system demonstrated in this work performs
optical computation incoherently in a broadband. It can be scaled
up toward a large network using a photonic crossbar array

architecture52–57 (see Supplementary Note 10 for details of such a
design), and compares favorably with other photonic computing
schemes using coherent methods30 or optical resonators28,58,59.
The feasible size (n × m) of such crossbar arrays will not be
limited by the insertion loss of the PMMC (~7 dB for TE1 mode,
Fig. 2d); rather it will be limited by the directional couplers with
coupling efficiency of 1/n, as is needed to equally combine signals
from n units. Scaling up to a large network thus faces the chal-
lenge of diminishing optical power unless with on-chip optical
amplification, which is not yet available. Still, an OCNN system
using the PMMC device can afford an extremely high areal
computing density (defined as MAC operations per time per unit
area) because of its compact footprint of ~80 × 20 µm2 (Fig. 2a,
including the mode selector). For example, assuming a moderate
datarate of 10 Gbits/sec and 4 WDM wavelengths in parallel per
channel, the computing density will reach an upperbound value
of 25 TOPS/mm2 (Tera-operations per second per mm2), which
is significantly higher than that of digital electronic accelerators
such as GPUs and tensor processing units (TPUs)60,61. Using
silicon instead of silicon nitride can further reduce the device
footprint to increase the computing density62. Besides MAC
operation, the equally important computing processes of applying
nonlinear functions and pooling can also be achieved optically by
using elements such as nonlinear optical resonators, modulators,
and amplifiers27,28,63. Alternatively, a hybrid photonic-electronic
system may optimally balance energy-efficiency and speed
advantages of photonic systems, while realizing flexible non-lin-
earity, connectivity, and training precision using
microelectronics26,64,65. With these advances and after over-
coming the scaling challenge, the photonic neural network
accelerator will be very promising for AI in data centers where
massive optical interconnects have already been deployed.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
No custom computer code or mathematical algorithm is used to generate the results that
are reported in this study.

Fig. 4 Building an optical CNN for imaging recognition. a Operation procedure of using the OCNN to recognize handwriting numbers from the MNIST
database. The OCNN consists of a convolution layer with two kernels, a pooling and a fully connected layer. The output gives the answer whether the input
image is “1” or “2”. b The convolution kernel matrices K1 and K2 generated by training the OCNN. c. Raw output data of the convolution layer of two kernel
matrices. d The weight bank matrix used in the fully connected layer. e The recognition results from the experiment with the OCNN (left) and
the calculation with a computer (right) show an excellent agreement.
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