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imaging and sequencing data using autoencoders
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The development of single-cell methods for capturing different data modalities including

imaging and sequencing has revolutionized our ability to identify heterogeneous cell states.

Different data modalities provide different perspectives on a population of cells, and their

integration is critical for studying cellular heterogeneity and its function. While various

methods have been proposed to integrate different sequencing data modalities, coupling

imaging and sequencing has been an open challenge. We here present an approach for

integrating vastly different modalities by learning a probabilistic coupling between the dif-

ferent data modalities using autoencoders to map to a shared latent space. We validate this

approach by integrating single-cell RNA-seq and chromatin images to identify distinct sub-

populations of human naive CD4+ T-cells that are poised for activation. Collectively, our

approach provides a framework to integrate and translate between data modalities that

cannot yet be measured within the same cell for diverse applications in biomedical discovery.
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Recent evidence has highlighted the importance of the 3D
organization of the genome to regulate cell-type-specific gene
expression programs1,2. High-throughput and high-content

single-cell technologies have provided important insights into
genome architecture (using imaging and chromosome capture
methods)3–5 as well as detailed genome-wide epigenetic profiles and
expression maps (using various sequencing methods)6–8. However,
obtaining high-throughput paired measurements of these different
data modalities within single cells is still a major challenge requiring
significant breakthroughs in single-cell technologies.

Different data modalities provide different perspectives on a
population of cells and their integration is critical for studying
cellular heterogeneity and its function (Fig. 1a). Current com-
putational methods allow the integration of datasets of the same
modality9–11 or of different modalities with the same data
structure such as various sequencing measurements12–15. We
here present a computational framework based on autoencoders
for integrating and translating between different data modalities
with very distinct structures. Several works have proposed using
autoencoders for domain adaptation (in particular batch correc-
tion) in the context of biological data16,17. Different from these
works, our method uses autoencoders to integrate and translate
between different data modalities that may have very different
representations. A separate line of work has proposed using
neural networks to directly translate between pairwise modalities
in an unsupervised manner18,19 or with side information20,21.
These methods tend to focus on modalities with similar repre-
sentations (e.g., image-to-image-translation) and directly trans-
late between pairs of modalities without learning a common
latent representation of the data. In contrast, our work maps each
data distribution to a common latent distribution using an
autoencoder. This not only enables data integration and trans-
lation between arbitrary modalities in a globally consistent
manner, but, importantly, it also enables performing downstream
analysis such as clustering across multiple modalities at once.
Other work has proposed coupled autoencoders to translate
between paired biological data22, which differs from our method
that does not require paired data. Building on Makhzani et al.23,
we align the latent space of an autoencoder using adversarial
training and leverage this technique for data integration and/or
translation. In particular, our framework can be applied to inte-
grate and translate imaging and sequencing data, which cannot
yet be obtained experimentally in the same cell, thereby providing
a methodology for hypothesis generation to predict the genome-
wide expression profile of a particular cell given its chromatin
organization and vice-versa. Such a methodology is valuable to
understand how features in one dataset translate to features in
the other.

Results
Cross-modal autoencoders: Multi-domain data integration and
translation using autoencoders. To integrate and translate
between data modalities with very distinct structures, we propose
a new strategy of mapping each dataset to a shared latent
representation of the cells (Fig. 1a, b). This mapping is achieved
using autoencoders24–26, neural networks consisting of an enco-
der (mapping to the latent space) and a decoder (mapping back to
the original space), whose architectures can be customized to the
specific data modality (Fig. 1b, c). Combining the encoder and
decoder modules of different autoencoders enables translating
between different data modalities at the single-cell level (Fig. 1d).
To enforce proper alignment of the embeddings obtained by the
different autoencoders, we employ a discriminative objective
function to ensure that the data distributions from the different
modalities are matched in the latent space. When prior

knowledge is available, an additional term in the objective func-
tion can be used that encourages the alignment between specific
markers or the anchoring of certain cells. In the following, we
formally introduce our framework.

We formalize the multi-modal data integration problem within
a probabilistic framework. Each modality or dataset presents a
different view of the same underlying population of cells.
Formally, we consider cells from each modality 1 ≤ i ≤ K as
samples of a random vector Xi that are generated independently
based on a common latent random vector Z:

Xi ¼ f iðZ;NiÞ; 8i ¼ 1; ¼ ;K; ð1Þ
where fi are deterministic functions, Z has distribution PZ, and Ni

are noise variables. The domain of Z, here denoted by Z,
represents some underlying latent representation space of cell
state, and each function fi represents a map from cell state to data
modality i. For simplicity of notation, we assume for the
remainder of this section that each Xi is 1-dimensional and
obtained via a deterministic function of Z, so that the noise
variables Ni can be ignored. This model implies the following
factorization of the joint distribution PX (with density pX) of the
data over all modalities:

pXðxÞ ¼
Z

Z
ΠK

i¼1 pXijZðxijzÞpZðzÞdz; ð2Þ

where pZ is the probability density of Z, and pXijZ is the
conditional distribution of Xi given Z that reflects the generative
process. Multi-modal data integration can then be formalized as
the problem of learning conditional distributions PXijZ as well as
the latent distribution PZ based on samples from the marginal
distributions PX1

; PX2
; ¼PXK

, which are given by the datasets.
Note that the assumption that each Xi is obtained via a
deterministic function of Z implies that the latent distribution
of each dataset is the same. However, by including the noise
variables Ni as in Equation (2), our method extends to the case
where only a subset of the latent dimensions is shared between
the different modalities and the remaining dimensions are specific
to each modality.

When the latent distribution PZ is known, then learning the
conditional distributions PXijZ given the marginals PX1

; PX2
; ¼ ; PXK

can be solved by learning multiple autoencoders. Specifically, for each
domain 1 ≤ i ≤ K, we propose training a regularized encoder-decoder
pair (Ei, Di) to minimize the loss

Ex�PXi
½L1ðx;DiðEiðxÞÞÞ þ λL2ðEi#PXi

jPZÞ�; ð3Þ
where λ > 0 is a hyperparameter, L1 is the (Euclidean) distance
metric, L2 represents a divergence between probability distributions,
and Ei#PXi

is the distribution of Xi after embedding to the latent
space Z. Translation from domain i to j is accomplished by
composing the encoder from the source domain with the decoder
from the target domain, i.e.,

Xi!jðxiÞ :¼ DjðEiðxiÞÞ: ð4Þ
The autoencoders obtained by minimizing the loss in Equation (3)
satisfy various consistency properties; see ref. 27.

Since PZ is not usually known in practice, it must also be
estimated from the data. This can be done using the following
approaches: (i) learn PZ by training a regularized autoencoder on
data from a single representative domain; or (ii) alternate between
training multiple autoencoders until they agree on an invariant
latent distribution. The first approach is typically more stable in
practice, while the second captures variability across multiple
domains and is therefore more suitable for integrating multiple
datasets. Note that PZ is by no means unique; there are multiple
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solutions that can result in the same observed data distributions
in the different domains.

To be concrete, an invariant latent distribution based on two
domains i, j ∈ {1, …, K} is learned as follows. Let P̂Zi0 ; i

0 2 fi; jg
denote the empirical latent distribution based on the encoded
data from domain i0, i.e., P̂Zi0 ¼ Ei0#PXi0 . Then for domain i, we
optimize the objective

min
Ei;Di

Ex�PXi
L1ðx;Di � EiðxÞÞ þ λL2ðEi#PXi

jPẐj
Þ; ð5Þ

while for domain j, we optimize the objective

min
Ej;Dj

Ex�PXj
L1ðx;Dj � EjðxÞÞ þ λL2ðEj#PXj

jPẐi
Þ: ð6Þ

In practice, we parameterize (Ei, Di) by neural networks and
minimize the objective function via stochastic gradient updates.
In particular, L2 can be chosen to be the discriminative loss,

L2ðPjQÞ :¼ max
f

Ex�P log f ðxÞ þEx�Q log ð1� f ðxÞÞ; ð7Þ
which is equivalent to the Jensen-Shannon divergence up to a
constant factor. In practice, the model architecture of each
autoencoder is selected based on the input data representation

(e.g., fully-connected network for gene expression data and
convolutional network for images). The dimensionality of the latent
distribution is a hyperparameter that is tuned to ensure that the
autoencoders are able to reconstruct the respective data modalities
well. For sequencing data, PCA can be used to obtain an initial
estimate of the intrinsic dimensionality of the data, which can then be
fine-tuned by analyzing the reconstruction loss of the model. For
imaging data the reconstruction quality can also be assessed
qualitatively (see Supplementary Fig. 5) and a variational autoencoder
with a small weight on the KL divergence regularization term can be
used to improve image generation quality.

Incorporating prior knowledge. Prior knowledge is sometimes
available to guide the integration of different data modalities. For
example, there may be knowledge of alignment of specific mar-
kers or clusters, or knowledge of certain samples from different
datasets corresponding to the same cell, i.e., the same point in the
latent space. In this case, training of the autoencoders can be
guided by additional loss functions that incorporate the prior
knowledge.

Discriminative loss to align shared markers/clusters among
datasets: If there are shared markers or clusters that are present in

Fig. 1 Schematic of multimodal data integration and translation strategy using our cross-modal autoencoder model. a Each modality or dataset
(represented by different colors) presents a different view of the same underlying population of cells of interest. b Our computational strategy to integrate
multiple modalities involves embedding each dataset into a shared space that represents the latent state of the cells, such that the distributions of each
dataset mapped into the latent space are aligned. c The embedding of each dataset is performed using an autoencoder, a neural network with separate
encoder and decoder modules, whose architectures can be customized to the specific data modality (autoencoders for each modality are represented by
different colors). d Combining the encoder and decoder modules of different autoencoders enables translation between different data modalities at the
single-cell level.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20249-2 ARTICLE

NATURE COMMUNICATIONS |           (2021) 12:31 | https://doi.org/10.1038/s41467-020-20249-2 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


two datasets, they can be aligned by replacing L2 above with the
following discriminative loss that is conditioned on these factors:

L2ðPjQÞ :¼ max
f

Ex;y�P log f ðx; yÞ þEx;y�Q log ð1� f ðx; yÞÞ;

ð8Þ
where P and Q are now joint distributions over the data and the
markers and/or clusters. This approach is valid for both discrete
and continuous values of the cluster/marker y. For example, in
ref. 27, this approach was used to align a continuous differentia-
tion marker between RNA-seq and ChIP-seq data. Alternatively,
if the markers or clusters can take m discrete values (i.e., 1,…, m),
then we can add a simple classifier model pθ(Y∣Z) with
parameters θ and minimize the loss

X
modality i

Ex;y�Pi

Xm
j¼1

1ðy ¼ jÞ pθðY ¼ jjZ ¼ EiðxÞÞ ð9Þ

with respect to θ and the parameters of the encoders Ei; here Pi is
the distribution of the ith data modality. This loss function
encourages data points with the same class label irrespective of
the data modality to be clustered together in the latent space.

Anchor loss to match paired samples: If ðx1; x01Þ, ðx2; x02Þ; ¼ ,
ðxm; x0mÞ are corresponding points from two datasets that are
embedded by encoders E and E0, we can add the following anchor
loss,

Xm
i¼1

j jEðxiÞ � E0ðx0iÞj j ð10Þ

to minimize their distance in the latent embedding space.

Model validation on paired single-cell RNA-seq and ATAC-seq
data. Recent technological advances have made it possible to
obtain paired single-cell RNA-seq and ATAC-seq data. Such
paired data was collected from human lung adenocarcinoma-
derived A549 cells treated with dexamethasone (DEX) for 0, 1, or
3 hours in ref. 28. While our autoencoder framework is designed
to integrate vastly different data structures, in the following we
show that our framework is competitive with previous methods
for the simpler problem of integrating different modalities with
similar data structures. For details on the implementation see
Supplementary Methods, Supplementary Table 1, Supplementary
Table 2, and Supplementary Data 1. Since the RNA-seq and
ATAC-seq data was collected in the same cell, we could evaluate
the accuracy of our method in matching samples from RNA-seq
to ATAC-seq (and vice-versa). We evaluated the accuracy of the
matching by the following two measures: (a) the fraction of cells
whose cluster assignment (0, 1, or 3 hours treatment with DEX) is
predicted correctly based on the latent space embedding, and (b)
k-nearest neighbors accuracy, i.e., the proportion of cells whose
true match is within the k closest samples in the latent space (in
ℓ1-distance) or in the original space for methods that do not rely
on the latent space.

In Fig. 2, we compare our cross-modal autoencoder model to
methods that align modalities in the latent space, namely deep
canonical correlation analysis (DCCA)29, which determines a
nonlinear transformation of the two datasets to maximize the
correlation of the resulting representations, as well as Seurat, a
prominent method for biological data intergration of similar
modalities9,12. In addition, we compare our cross-modal auto-
encoder model to two additional methods that do not rely on the
latent space for alignment of modalities, namely CycleGAN19 and
MAGAN21. Similar to CycleGAN, our cross-modal autoencoder
does not require paired samples, which is advantageous for many
modalities, where the process of data collection results in
destruction of the cell (e.g., RNA-seq) and thus the same cell

cannot be used in another assay to measure a different modality
(e.g., imaging). However, if additional information is available
such as shared markers measured in all modalities and/or paired
data, similar to the MAGAN approach, this prior information can
be incorporated through additional terms in the loss function (see
section on incorporating prior knowledge). In terms of compar-
isons with methods that align modalities in the latent space, our
autoencoder framework outperforms Seurat and is competitive
with DCCA for integrating single-cell RNA-seq and single-cell
ATAC-seq data both in terms of fraction of cells assigned to the
correct cluster (Fig. 2a) as well as k-nearest neighbor accuracy
(Fig. 2b). While paired data was only used to evaluate the accuracy
in Figs. 2a, b and 2c–e explore the setting in which paired data on
a fraction of samples is used for training. Although paired data is
not necessary for our method, such prior knowledge can be
incorporated using the anchor loss described above, which ensures
that paired samples are close in the latent space. Figure 2c, d show
that our autoencoder model outperforms DCCA, CycleGAN and
MAGAN when trained on varying amounts of paired data. In fact,
as shown in Fig. 2e, our autoencoder model trained with just 25%
of the paired samples has similar performance to DCCA trained
on all (i.e., 100%) of the paired samples, thereby indicating that
our method is practical and competitive also in the setting where
some paired data is available.

Experimental validation on single-cell RNA-seq and chromatin
images of naive CD4+ T-cells. We applied our method to
integrate single-cell RNA-seq data with chromatin images in
order to study the heterogeneity within naive T-cells. T-cell
activation is a fundamental biological process and identifying
naive T-cells poised for activation is critical to understanding
immune response30. Moreover, linking genome organization with
gene expression generates hypotheses that can be tested experi-
mentally to validate our methodology.

Single-cell RNA-seq analysis of naive CD4+ T-cells revealed
two distinct subpopulations. We analyzed single-cell RNA-seq
data of human peripheral blood mononuclear cells (PBMCs)
from ref. 31; for details on the analysis see Supplementary
Methods. We used known markers to identify naive and activated
(CD4+) T-cells (Fig. 3a and Supplementary Fig. 1, Supplemen-
tary Table 3, Supplementary Data 2. An in-depth analysis of the
naive T-cell population revealed two distinct subpopulations
(Fig. 3a, see Methods). The number of subpopulations/clusters
was obtained via two separate analyses, namely by maximizing
the silhouette coefficient (Supplementary Fig. 2a) and by mini-
mizing the Bayesian information criterion (Supplementary
Fig. 2b). The co-association matrix shown in Fig. 3b, which
quantifies how often each pair of cells was clustered together for
different clustering methods, shows that the two clusters were
highly robust to the choice of clustering method. Differential gene
expression and gene ontology (GO) enrichment analysis indi-
cated that one cluster corresponded to quiescent cells while the
other was poised for activation, with an expression profile more
similar to that of activated T-cells (Fig. 3c, d and Supplementary
Data S2). Specifically, we observed that one of the two clusters of
naive CD4+ T-cells contained “immune response” and “cell
activation” as one of the top significant GO terms as well as a
well-known activation marker IL32 as one of the differentially
expressed (DE) genes.

Analysis of single-cell chromatin images of naive CD4+ T-cells
revealed two distinct subpopulations. Given the link between
expression and chromatin organization32, we hypothesized the
presence of two subpopulations of naive T-cells with distinct
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chromatin packing features. To test this, we carried out DAPI-
stained imaging experiments of naive CD4+ human T-cells and
analyzed their chromatin organization (Methods, Fig. 3e, and
Supplementary Fig. 3). We extracted image features by quanti-
fying the chromatin density in concentric spheres with increasing
radii (Methods, Fig. 3f). Cluster analysis based on the extracted
features revealed two distinct subpopulations of cells, with higher
chromatin density in the central and peripheral nuclear regions
respectively (Fig. 3g, Supplementary Fig. 4). These observations
are consistent with previous experiments in mouse naive T-cells
that also showed two subpopulations with distinct chromatin
organization patterns, where naive T-cells with more central
heterochromatin were shown to be poised for activation33.

Cross-modal autoencoder framework allows integrating and
translating between single-cell expression and imaging data.
Up to this point, we had observed two subpopulations of naive
T-cells based on a separate analysis of gene expression (from
single-cell RNA-seq data) and chromatin packing (from single-
cell imaging data). To link the identified subpopluations from the
unpaired datasets, we used our cross-modal autoencoder frame-
work to integrate the single-cell RNA-seq data with the

chromatin images (Methods and Supplementary Table 4), thereby
enabling translation between the two data modalities at the
single-cell level (Fig. 4a and Supplementary Fig. 5). Visual
inspection of the latent representations indicates that the sub-
populations from the two datasets are appropriately matched
(Fig. 4b and Supplementary Fig. 6). To quantitatively assess
whether our methodology aligns imaging features and gene
expression features in a consistent manner, we next analyzed the
latent embeddings as well as the results of translation between the
two datasets. Consistent with other methods used for data inte-
gration and translation in the biological domain, where the goal is
to provide a matching between samples in the observed data-
sets12, our evaluation is based on the full dataset used for training
rather than a held-out evaluation set.

ROC analysis on translated datasets indicates that imaging and
gene expression features are consistently aligned. In order to
assess whether translated image (or RNA-seq respectively) data-
sets are still able to separate poised and quiescent subpopulations
(or central and peripheral subpopulations respectively) and ana-
lyze if the clusters obtained separately from gene expression and
imaging datasets align with each other, we performed Receiver

Fig. 2 Performance of our multimodal data integration method (cross-modal autoencoders), deep canonical correlation analysis (DCCA), Seurat,
CycleGAN, and MAGAN on paired RNA-seq and ATAC-seq data. a Fraction of cells that were assigned to the correct treatment time cluster based on
their embedding in the integrated latent space that was learned by fitting our cross-modal autoencoder model, DCCA, or Seurat. b k-nearest neighbor
accuracy for quantifying the quality of matching between local neighborhoods for our cross-modal autoencoder model, DCCA, Seurat, and CycleGAN
trained with 0% supervision (no paired samples). c Fraction of cells that were assigned to the correct treatment time cluster for our cross-modal
autoencoders and DCCA trained with varying amount of paired samples. d k-nearest neighbor accuracy for our cross-modal autoencoders, DCCA,
MAGAN, and CycleGAN trained with 0, 5, 50, and 100% of the paired samples. e k-nearest neighbor accuracy for our cross-modal autoencoder model
trained with varying amount of paired samples versus DCCA trained on all paired samples. In a–c colors denote different domain translation methods and
in d–e colors denote different levels of supervision (paired samples). Additionally, different markers denote different domain translation methods.
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Operating Characteristic (ROC) analysis on the translated
datasets. For RNA-seq, we first trained a random forest clas-
sifier (using 100 trees in a forest with 2 as the maximum depth
of a tree) on the RNA-seq data with labels based on poised
versus quiescent clustering of naive CD4+ T-cell gene expres-
sion data. This classifier learned the genes that separate the two
clusters. Next, we translated chromatin images into RNA-seq
using our autoencoder method and assessed the performance of
the pre-trained classifier on its ability to separate central versus
peripheral clusters on images translated to RNA-seq (Fig. 4c,
top). Similarly, to assess translation of RNA-seq into images, we
trained a classifier to separate central versus peripheral chro-
matin patterns. Then, we translated RNA-seq data into images
and evaluated the performance of the pre-trained classifier in
being able to separate poised versus quiescent clusters (Fig. 4c,
bottom). The area under the curve (AUC) was computed for
both of these tasks. The high AUCs demonstrate that classifiers
trained to distinguish between the subpopulations in the

original datasets also performed well when evaluated on the
translated datasets.

Strong correlation of DE genes between original RNA-seq and
images translated to RNA-seq indicates consistent alignment.
Imaging datasets can provide a rich quantification of cells, such as
their chromatin organization. Based on image analysis, subpopula-
tions of cells with different characteristics may be found (e.g., central
versus peripheral chromatin organization), and it is often of interest
to study which genes might be markers of each subpopulation such
that these subpopulations can be separated for example using anti-
bodies against the marker genes. However, generally the full gene
expression and imaging features cannot be measured in the same cell.
Our computational framework can translate chromatin images into
RNA-seq and calculate the predicted mean difference in expression
between the subpopulations (e.g., for central versus peripheral
chromatin organization). As shown in Fig. 4d, the observed mean

Fig. 3 Analysis of single-cell RNA-seq data and single-cell chromatin images of naive CD4+ T-cells reveals two distinct subpopulations respectively.
a t-SNE and PCA (inset) embeddings of single-cell RNA-seq data derived from31. Cluster analysis reveals activated (red) population of T-cells and naive
population of T-cells divided into two subpopulations (poised and quiescent, denoted in green and blue, respectively). b Consensus clustering plot
demonstrating the robustness of quiescent (blue) and poised (green) clusters of naive T-cells to various clustering methods. Gene expression data was
clustered using k-means, Gaussian mixture models, and spectral clustering based on a k-nearest neighbor graph with k ∈ {10, 20, 50, 100} with 100
initializations for each method. c Differential gene expression analysis between the blue and green subpopulations reveals two distinct gene expression
programs. The green subpopulation of naive T-cells is more similar to the activated T-cells and hence poised for activation, while the blue subpopulation
shows an upregulation of ribosomal genes and has a relatively more quiescent expression profile. d Gene ontology enrichment analysis of marker genes for
quiescent and poised naive T-cell subpopulations supports two distinct gene expression programs. e Examples of DAPI-stained nuclear images of naive
CD4+ T-cells. f Cluster analysis of the 3D nuclear images is performed by first quantifying the chromatin signal in concentric spheres with increasing radii,
and then using hierarchical clustering on these spatial chromatin features. The features were clustered using hierarchical clustering with complete linkage
based on the distance matrix obtained from 1-Spearman’s correlation. g Average chromatin signal, calculated using n = 729 cells from two biologically
independent replicates, (mean represented by the solid line and standard deviation represented by shading) in concentric spheres with increasing radii for
central (green) and peripheral (blue) clusters. One cluster has higher concentration of chromatin in the central region of the nucleus (green), while the
other cluster has higher concentration of chromatin in the peripheral region of the nucleus (blue).
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difference in expression is strongly correlated with the predicted
mean expression difference. In addition, we obtained a set of marker
genes associated with central and peripheral chromatin organization
by performing two-sided Welch’s t-test on the generated RNA-seq
data (considering marker genes for each cluster to be the top 50 genes
that had the highest mean difference in expression for the two
clusters as well as p-value < 0.05 after adjustment for multiple
hypothesis testing using the Benjamini-Hochberg procedure). Note
the considerable overlap between the true and predicted marker
genes (Fig. 4e). We also performed GO analysis on the marker genes
for each cluster; we report the top 5 GO biological process terms with
lowest p-values (FDR adjusted p-value < 0.05). In summary, in the
gene expression matrix translated from the imaging dataset, we found

that the differential expression of genes was strongly correlated with
the true observed differential gene expression and that the predicted
and observed marker genes showed considerable overlap.

Experimental validation of matching via protein immuno-
fluorescence staining. Our model generates predictions of gene
expression programs based on patterns of chromatin density
(Fig. 4e). To validate these results experimentally, we chose two
genes, CORO1A and RPL10A, which were predicted to be strongly
upregulated in the naive T-cell subpopulations with central and
peripheral patterns of chromatin density respectively (Figs. 4d, 5a).
We analyzed the immunofluorescence staining data of these proteins
obtained along with chromatin images (Fig. 5b). Consistent with the

Fig. 4 Integration of single-cell RNA-seq data and single-cell nuclear images of naive T-cells using our methodology allows translating between
chromatin packing and gene expression profiles. a Illustration of data integration and translation: (left) t-SNE plots of observed single-cell RNA-seq data
(red) and single-cell RNA-seq data translated from single-cell images (yellow); (middle) PCA visualization of single-cell RNA-seq data (red) and single-cell
imaging data (yellow) embedded in 128-dimensional latent space; (right) examples of observed single-cell images (yellow) and images translated from
single-cell RNA-seq data (red). b–e Evidence that our data integration methodology correctly aligns gene expression features and imaging features.
b Linear Discriminant Analysis (LDA) plots of single-cell RNA-seq (top) and imaging (bottom) datasets embedded in the latent space. The clusters with
more quiescent (blue) and poised (green) gene expression programs from the RNA-seq dataset are aligned with the clusters with peripheral (blue) and
central (green) chromatin patterns from the imaging dataset. c (top) Receiver Operating Characteristic (ROC) curve illustrating performance of a classifier
trained to distinguish between peripheral and central chromatin patterns in images when evaluated on images translated from RNA-seq data. (bottom)
ROC curve illustrating performance of a classifier trained to distinguish between quiescent and poised gene expression programs when evaluated on RNA-
seq data translated from images. High performance of both classifiers indicates that the alignment of the clusters in the latent space in b also holds in the
original gene expression and imaging spaces. The dotted line represents random guessing based on evenly-distributed classes. d Differential gene
expression analysis between cells with central and peripheral chromatin pattern performed on the predicted gene expression matrix translated from images
using our methodology. The predicted fold-change of gene expression based on images is strongly correlated with the observed fold-change of gene
expression between quiescent and poised naive T-cells from the actual RNA-seq dataset. e Analysis of gene ontology (GO) enrichment terms of cells with
central and peripheral chromatin pattern based on the predicted gene expression matrix translated from images using our methodology shows a high
overlap between predicted markers (orange) from the imaging dataset and actual markers (red) from the RNA-seq dataset.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20249-2 ARTICLE

NATURE COMMUNICATIONS |           (2021) 12:31 | https://doi.org/10.1038/s41467-020-20249-2 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


model predictions, we found that CORO1A was upregulated in the
cells with central chromatin pattern, while RPL10A was upregulated
in the images with peripheral chromatin pattern (Fig. 5c and Sup-
plementary Methods and Supplementary Fig. 7). These results alto-
gether demonstrate that our method properly aligns the gene
expression and image features that characterize two distinct sub-
populations of human naive T-cells, and suggests that peripheral and
central enrichment of chromatin are associated with gene expression
programs for more quiescent and poised naive CD4+ T-cells
respectively (Fig. 5d).

Discussion
In summary, we presented a powerful approach to integrate and
translate between different data modalities of very different
structures, namely single-cell chromatin images and RNA-seq.
Using our cross-modal autoencoder methodology, we established
a quantitative link between chromatin organization and

expression, jointly characterizing a subpopulation of naive T-cells
that is poised for activation using both data modalities. Addi-
tionally, we validated our model’s predictions of gene expression
using protein fluorescence experiments.

While we used our method to align RNA-seq and imaging
datasets, we have presented a general framework that can be
adapted to numerous other biological problems. As indicated in Fig.
1, our framework can be used to integrate datasets of different
modalities simply by incorporating autoencoder architectures tai-
lored to those modalities. For example, Hi-C data could be inte-
grated using a graph neural network and multi-channel cell images
using a convolutional neural network with different input channels.
Also, while we focused on aligning datasets each containing two
distinct clusters, our method can be applied to datasets with other
distributions as long as the samples are taken from the same cell
population. For example, in applications where there are no clear
clusters in the datasets, our method can be used to align continuous

Fig. 5 Validation of our model alignment using single-cell immunofluorescence experiments. a Histograms of predicted CORO1A/RPL10A gene
expression ratio in cells with central (green) and peripheral (blue) chromatin pattern based on the gene expression matrix translated from the imaging
dataset. Our model predicts the upregulation of CORO1A and RPL10A in the cells with central and peripheral chromatin patterns respectively. b Examples of
immunofluorescence staining data of CORO1A and RPL10A proteins collected along with the chromatin images. c Histograms of measured CORO1A/
RPL10A protein ratio in cells with central (green) and peripheral (blue) chromatin pattern. Consistent with the model prediction, CORO1A and RPL10A
proteins are upregulated in the cells with central and peripheral chromatin patterns respectively (p-value < 2.2 × 10−16, two-sided Welch’s t-test).
d Schematic of the two naive T-cell subpopulations characterized by our multimodal analysis, in which peripheral and central patterns of chromatin density
are associated with gene expression programs for quiescent (blue) and poised (green) naive CD4+ T-cells respectively. The up and down arrows
represent which genes are upregulated and downregulated respectively as predicted by our model.
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markers between datasets by conditioning the adversarial loss on
the values of the continuous marker (Equation 3). In applications
where there is some shared signal between modalities as well as a
signal that is individual to each modality, our model can be
extended by introducing a subset of latent dimensions that is spe-
cific to each modality. Empirically validating this aspect of our
model is a potential direction for future work. An important con-
sideration, however, is that while our method can be applied for
data integration and cross-modal alignment in generic contexts,
depending on the data distributions, there may be multiple align-
ments that satisfy the same objective function. Additional con-
straints (in the form of prior knowledge) should be added to these
models where possible to enforce alignments that are biologically
accurate. Overall, we envision an iterative process of biological
discovery where our predictive model is used for hypothesis gen-
eration (for example linking particular image features to particular
gene regulatory modules), the hypotheses are validated (or dis-
proved) experimentally, and the new experimental results now serve
as additional data (prior knowledge) for improving the alignment of
the model. In summary, our methodology can be applied generally
to integrate single-cell datasets that cannot yet be measured in the
same cell by using a different autoencoder for each data modality,
and as such has broad implications for the integration of spatial
transcriptomics34, proteomics35 and metabolomics36 datasets. In
particular, our methodology can be applied to generate hypotheses
and predict the functional landscape of single cells in a tissue sec-
tion where only limited functional data is available by acquiring
chromatin imaging data.

Methods
Cell culture and immunostaning. CD4+/CD45RA+ naive helper T-cells from
human peripheral blood were purchased from AllCells. These cells were revived
and cultured in media (RPMI-1640 + 10% FBS + 1% pen-strep) as per the
manufacturer’s instructions. The cells for the experiments were used within two
days upon revival.

Cells in media were allowed to adhere to Poly-lysine coated slides for
30 minutes. Cells were then fixed with 4% Paraformaldehyde (Sigma) for
30 minutes and washed with PBS three times, which also removed unattached cells.
Permeabilization was done with 0.5% Triton X-100 (Sigma) for 10 minutes
followed by PBS washes. Blocking was done with 5% BSA in PBS for 30 minutes
and incubated with primary and secondary antibodies as per the dilution and
incubation time recommended by the manufacturer. The primary antibodies used
in this study are anti-RPL10A antibody (Abcam, ab174318, dilution 1/200) and
Anti-Coronin 1a/TACO antibody (Abcam ab14787, dilution 1/150). Cells were
washed with PBS (+0.1% Tween) three times after primary and secondary
antibody incubation. During the final step, excess liquid was removed by slanting
the slides. ProLong® Gold Antifade Mountant with DAPI (ThermoFischer
Scientific) was added to these slides and allowed to cure for 24 hours. Coverslips
were then sealed and imaged using a confocal microscope.

Confocal microscopy and image analysis. 1024 × 1024 and 12-bit multi-channel
images were obtained using a Nikon A1R confocal microscope. Z-stack images
were captured using a 100× objective with a pixel size of 0.1 μm and 0.5 μm depth.
Images were processed and further analyzed using custom programs in Fiji and R
(see below in code availability).

The nuclear boundaries were segmented in 3D using the DAPI channels to
identify individual nuclei. These nuclei were eroded by 0.5 microns in x, y, and z
iteratively until the volume of the eroded nucleus was less than 10 cubic microns.
Then the mean intensity of each 3D ring (width 0.5 microns) in the nucleus was
computed for all cells. The intensity fraction was calculated by normalizing the
mean ring intensity for each nucleus (maximum = 1). Linear interpolation was
then used to compute the intensity fraction of rings that occupy 0–10% to 90–100%
volume fraction of the nucleus. The heatmaps were visualized using functions from
gplots, RColorBrewer and dendextend.

In order to calculate the cellular levels of proteins, the 3D nuclear object was
dilated by 2 microns in x, y, and z. This was efficient as the cells were all spherically
shaped with high karyoplasmic index. The total intensity in the 3D cellular object
was computed for each protein channel and their ratio was obtained for each cell.

Gene expression analysis of naive CD4+ T-cells. We aimed to explore potential
heterogeneity in naive CD4+ T-cell gene expression in relation to CD4+ T-cells
that already underwent activation. We performed a feature selection step, keeping

genes which had average log-fold change of >0.05 between naive and activated
CD4+ T-cells (and vice-versa), resulting in 1187 genes. Similar to the analysis
of PBMCs (see Supplementary Methods), we applied PCA for dimensionality
reduction on the selected genes, keeping the top 30 components and clustered
the naive CD4+ T-cells using the default clustering method in Seurat version
2.3.0 with resolution of 0.8 (Supplementary Fig. 1c). Based on differential
expression analysis and t-SNE embedding, the smallest cluster (shown in gray
in Supplementary Fig. 1c) was determined to belong to the CD8+ T-cell
population since the top differentially overexpressed genes for this small
cluster were CD8A and CD8B. Therefore, this small cluster was removed from
the downstream gene expression analysis of the naive CD4+ T-cells. In order
to characterize the remaining two subpopulations, we performed differential
expression analysis on the two subpopulations of naive CD4+ T-cells using
Wilcoxon rank sum test. We defined marker genes as all genes with
Bonferroni-corrected p-value of <0.05. Fig. 3c, shows the resulting heatmap
for the genes that are markers between poised and quiescent subpopulations of
naive T-cells and are also part of the 1187 genes that have an average log-fold
change of >0.05 between naive and activated CD4+ T-cells (and vice-versa).
Gene ontology analysis was performed on these marker genes overexpressed in
each cluster (average log-fold change > 0) using g:Profiler37,38, keeping the top
5 gene ontology biological process terms with lowest p-values (Fig. 3d). All
reported p-values (after adjusting for multiple hypothesis testing using the
Benjamini-Hochberg procedure) were ≤0.05.

Since the identification of the two subpopulations of naive T-cells is an
important step in our analysis, we thoroughly evaluated its robustness with respect
to number of clusters and clustering methods. We re-clustered the data
corresponding to naive CD4+ T-cells using Seurat version 2.3.0 with different
resolution parameters, i.e., 0.9, 1.1, and 1.15 to obtain 3, 4, and 5 clusters
respectively. We computed the silhouette coefficient for each clustering, observing
that the number of clusters corresponding to 2 gave the highest score
(Supplementary Fig. 2a). This suggests that using 2 clusters is optimal. We also fit a
Gaussian mixture model to the data and computed the Bayesian information
criterion (BIC) for a model with 1, 2, 3, 4, and 5 mixture components (across 100
randomly initialized trials). Also with this method the model with 2 components
resulted in the lowest mean BIC, suggesting again that 2 clusters is optimal for this
data (Supplementary Fig. 2b). To test the robustness with respect to different
clustering methodologies, we also used k-means, Gaussian mixture models, and
spectral clustering based on a k-nearest neighbor graph with k ∈ {10, 20, 50, 100} to
cluster the data. We performed 100 different initializations for each method and
computed the co-association matrix, which quantifies how often each pair of cells
was clustered together; the result is shown in Fig. 3b. We observe that the chosen
clustering given by Seurat is in strong agreement with the other methods and that
the clusters are highly robust to the choice of the clustering method.

Autoencoder training for integration and translation between single-cell
RNA-seq data and single-cell chromatin images. Images were normalized to
range between [0, 1] and RNA-seq matrix was log ðx þ 1Þ normalized. Since the
imaging dataset is more difficult to reconstruct in comparison to the RNA-seq dataset,
we first pretrained the image autoencoder to reconstruct single-cell chromatin images
for 850 epochs using the reconstruction loss and the discriminative loss in Equation (9).
Subsequently, we trained the full model consisting of the pretrained image autoencoder,
the RNA-seq autoencoder, and latent space discriminator using reconstruction loss and
discriminative loss with hyperparameters λ1 = 0.1, λ2 = 1. The architectures of all
networks are shown in Supplementary Table 4. Models were trained with the Adam
optimizer with a learning rate of 1e-3. In Supplementary Figs. 8–9, we show that our
findings are robust to the choice of architecture (fully-connected versus convolutional
layers, number of layers, as well as latent space dimension).

Supplementary materials. Supplementary Methods, Supplementary Figs. 1 to 8,
Supplementary Tables 1 to 4, Supplementary Data 1, Supplementary Data 2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data for model validation on paired single-cell RNA-seq and ATAC-seq is publicly
available and was obtained from GSE11708928. The RNA-seq data for integration of
RNA-seq and chromatin images is publicly available and was obtained from https://
support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc8k. The
chromatin images are available at Zenodo from https://doi.org/10.5281/zenodo.4265737.

Code availability
The code for model training is available at39: https://github.com/uhlerlab/cross-modal-
autoencoders. Code containing the image processing scripts for the analysis of the
primary images is available at40: http://github.com/SaradhaVenkatachalapathy/
Radial_chromatin_packing_immune_cells. Data analysis was performed using standard
libraries and software such as scikit-learn, scipy, numpy, seaborn and R.
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