Skip to main content
. 2021 Jan 4;12:25. doi: 10.1038/s41467-020-20284-z

Table 1.

Neural networks enable accurate performance prediction in flow-focusing droplet generation. The metrics are reported for a 20% test-set (training the models on 80% of the data and leaving 20% for the test-set).

Parameter Regime R2* RMSE** MAPE*** MAE****
Droplet diameter Dripping 0.893  ±  0.029 13.1  ±  1.6 μm 11.2  ±  1.3% 9.9  ±  1.2 μm
Droplet diameter Jetting 0.966  ±  0.010 8.2  ±  1.3 μm 4.8  ±  0.5% 5.9  ±  0.8 μm
Generation rate Dripping 0.889  ±  0.026 31.7  ±  5.8 Hz 33.5  ±  4.2% 19.6  ±  2.7 Hz
Generation rate Jetting 0.956  ±  0.009 21.9  ±  2.8 Hz 15.8  ±  2.9% 15.4  ±  2.1 Hz

*R2 coefficient of determination, **Root mean square error, ***Mean absolute percentage error, ****Mean absolute error. The provided values are reported using the average plus-minus (±) the standard deviation for ten different training and testing sessions. For each session the test-set and train-set were randomly chosen.