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Pulse oximetry is routinely used to non-invasively monitor oxygen saturation levels. A low oxygen level in the blood means low
oxygen in the tissues, which can ultimately lead to organ failure. Yet, contrary to heart rate variability measures, a field which has
seen the development of stable standards and advanced toolboxes and software, no such standards and open tools exist for
continuous oxygen saturation time series variability analysis. The primary objective of this research was to identify, implement and
validate key digital oximetry biomarkers (OBMs) for the purpose of creating a standard and associated reference toolbox for
continuous oximetry time series analysis. We review the sleep medicine literature to identify clinically relevant OBMs. We
implement these biomarkers and demonstrate their clinical value within the context of obstructive sleep apnea (OSA) diagnosis on
a total of n =3806 individual polysomnography recordings totaling 26,686 h of continuous data. A total of 44 digital oximetry
biomarkers were implemented. Reference ranges for each biomarker are provided for individuals with mild, moderate, and severe
OSA and for non-OSA recordings. Linear regression analysis between biomarkers and the apnea hypopnea index (AHI) showed a
high correlation, which reached R = 0.82. The resulting python OBM toolbox, denoted “pobm”, was contributed to the open
software PhysioZoo (physiozoo.org). Studying the variability of the continuous oxygen saturation time series using pbom may
provide information on the underlying physiological control systems and enhance our understanding of the manifestations and

etiology of diseases, with emphasis on respiratory diseases.
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INTRODUCTION

Pulse oximetry is routinely used for non-invasive monitoring of
oxygen saturation levels. A low oxygen level in the blood means
low oxygen in the tissues, which can ultimately lead to organ
failure. Oximetry can be used to sporadically measure the oxygen
saturation level during a medical examination or continuously
monitor patients in the intensive care unit (ICU) or overnight for a
polysomnography (PSG) study. Identification of digital biomarkers
extrapolated from the oxygen saturation time series can support
the diagnosis and continuous monitoring of patient pulmonary
function to predict deteriorations (prognosis). Specifically, study-
ing the variability of the oxygen saturation signal may provide
information on the underlying physiological control systems.
Furthermore, it may enhance our understanding of the manifesta-
tion and etiology of diseases and identify digital oximetry
biomarkers (OBMs) for the purpose of health monitoring. Sleep
medicine makes standard usage of oximetry biomarkers, where
overnight drops in oxygen saturation are characteristic of
obstructive sleep apnea (OSA). Beyond the presence of OSA, the
repetitive nocturnal hypoxemia may cause oxidative stress,
contributing to the pathogenesis of cardiovascular morbidity’.
Similarly, patients with advanced chronic obstructive pulmonary
disease (COPD), and with no primary sleep-related breathing
disorders, commonly exhibit overnight hypoxemia®. Yet, contrary
to heart rate variability (HRV) measures, a field which has

benefited from the development of stable standards® and
advanced toolboxes and software®®, there are currently no such
standards and open tools for analyzing oxygen saturation time
series in terms of its variability, dynamics, and the statistical
characterization of specific patterns.

This contribution

Research on the use of existing and development of new oximetry
biomarkers has mainly focused on the diagnosis of OSA, as
echoed by five recent reviews in this field”™'". Although this paper
will naturally somewhat overlap with these reviews, we present a
new comprehensive review focusing on the physiological inter-
pretation and clinical use of oximetry biomarkers, in the spirit of
the work of Malik et al.> in the field of HRV analysis. We also
develop a complete Python toolbox (denoted “pobm”) and
software interface (“PhysioZoo OBM”) for usage of these
biomarkers, similar to our previous work in HRV analysis®. This
will support rigorous research in oximetry time series analysis and
ensure reproducibility of research. We apply the developed
toolbox to a large dataset of overnight recordings in order to
demonstrate its usability and clinical value in the context of OSA
diagnosis. While the work mainly focuses on OBM developed in
the field of sleep medicine, the reviewed OBMs can be applied to
the analysis of continuous oximetry recordings for any other
condition and we thus introduce a general purpose flow diagram
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for continuous oximetry analysis. We limit the scope of the
biomarkers to single-channel oximetry analysis, thereby implicitly
excluding OBMs that may require additional channels, such as
airflow, to be engineered'2 The paper defines categories of OBMs
and a review of the literature to identify evidence-based OBMs in
the field of sleep medicine as well as some additional suggested
OBMs. The biomarkers are applied to a large PSG dataset totaling
3806 individual oximetry recordings.

RESULTS

pobm toolbox and PhysioZoo OBM interface

The pobm toolbox was implemented in Python. For the purpose
of quality control, functions were benchmarked against compara-
tive reference source code (Supplementary Table 1) or ranges
published in the literature (Supplementary Table 2). For the
comparison to range reported in the literature, we compared the
order of magnitude of some biomarkers with those reported by
other for the non-OSA group. Figure 1 shows the PhysioZoo OBM
interface for oximetry analysis. In PhysioZoo OBM, a SpO, time
series can be loaded (File — Open data file) and pre-filtered using
one of the preprocessing filters introduced in section “Preproces-
sing”. After computation, OBM can be exported together with
standard data representation figures. The PhysioZoo software
handles data in .txt, .mat (The MathWorks, Inc., Natick, MA, USA)
and WFDB'?® formats. In addition, the PhysioZoo OBM enables
oximetry analysis of multiple segments, thereby enabling tracking
of temporal changes in oximetry measures for a given record. The
pobm toolbox and PhysioZoo software are available at https://
physiozoo.com/.

Standard ranges for oximetry biomarkers

Tables 1 and 2 summarize the median and interquartile range for
all the OBMs implemented in the PhysioZoo software for
individuals participating in SHHS1. This provides a standard
reference range for each oximetry biomarker. The null hypothesis
of Kruskal-Wallis test was rejected for most biomarkers (43/44)
with the smallest p value obtained for Px, CA,, and CT,. Following
the Dunn post hoc analysis, a total of 30 biomarkers were
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statistically discriminative between every pair of classes, i.e, p <
0.05 for all pairs (Tables 1 and 2).

Added value in combining multiple biomarkers

When performing simple regression analysis for individual OBM
against the AHI, CTM, with p=0.25 achieved the highest

goodness of fit (R = 0.77) followed by the ODI3 (R = 0.74).
When combining the 10 oximetry biomarkers with the best score
within a multivariable linear regression framework, the goodness

of fit was further improved to R =082 (Fig. 2).

DISCUSSION

We showed that OBMs engineered from continuous oximetry
recordings may provide discriminative information of groups of
individuals suffering from respiratory disorders. Within the context

of OSA, we found that CTM, with p = 0.25 had the highest R” in

estimating the AHI, with R =0.77. Furthermore, we demon-
strated that combining multiple oximetry biomarkers for estimat-

ing the AHI increased the R to 0.82. This highlights the
complementary value in using multiple OBMs versus a single one.

Recent studies have shown that nocturnal hypoxemia correlates
better with cardiovascular disease, cancer incidence, and mortality
than traditional nocturnal respiratory disturbance indexes, such as
the AHI'>™. This suggests that alternative nocturnal OBMs may
provide important health information. Both intermittent hypoxia
and sleep fragmentation are responsible for clinical manifestations
and most related comorbidities of OSA'®. In OSA, recurrent
collapse of the upper airway leads to a reduced tidal volume and
both intermittent hypoxemia and hypercapnia. In consequence,
activity of the sympathetic nervous system increases and cortical
arousals occur, leading to disrupted sleep architecture and restless
sleep. In addition, repetitive hypoxemia-reoxygenation periods
are linked to the production of free oxygen radicals, inflammation,
and endothelial dysfunction'®. In this regard, OBMs, such as CT90
and overnight mean and minimum saturation, have been
significantly linked with dysfunction in cardiovascular modulation,
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Fig. 1
are computed for the selected window (in light green).
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PhysioZoo OBM interface for oximetry time series analysis. The analysis of an oximetry time series is shown. All the OBM biomarkers
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Table 1. Summary statistics (median and interquartiles Q1-Q3) for the General statistics, Complexity and Periodicity OBMs evaluated on the SHHS1
database.
Biomarker Non-OSA (n=1195) Mild (n = 1303) Moderate (n = 833) Severe (n =475) Kruskal test
General statistics
AV 95.90 (94.77-96.93) 95.14 (94.01-96.09) 94.43 (93.36-95.41) 93.51 (92.23-94.67) p<0.001*
MED 96.00 (95.00-97.00) 95.00 (94.00-96.00) 95.00 (93.00-96.00) 94.00 (93.00-95.00) p<0.001*
Min 79.00 (72.00-85.00) 79.00 (74.00-84.00) 79.00 (73.00-83.00) 76.00 (70.00-81.00) p <0.001
SD 1.42 (1.08-1.90) 1.55 (1.29-1.90) 1.81 (1.50-2.19) 2.33 (1.88-3.04) p<0.001*
RG 20.00 (14.00-27.00) 19.00 (14.00-25.00) 20.00 (15.00-26.00) 22.00 (18.00-29.00) p <0.001
Pxx 91.00 (88.00-93.00) 90.00 (88.00-92.00) 89.00 (86.00-90.12) 85.00 (81.00-88.00) p<0.001*
Mx 2.14 (1.18-3.82) 3.44 (1.94-5.51) 5.84 (3.49-8.96) 10.98 (6.78-17.00) p<0.001*
ZCxx 435.00 (346.00-540.00) 481.00 (391.00-579.00) 557.00 (463.50-638.00) 690.00 (592.00-812.50) p <0.001*
Al 0.36 (0.30-0.42) 0.47 (0.41-0.54) 0.66 (0.57-0.76) 1.03 (0.86-1.44) p<0.001*
Complexity
ApEn 0.17 (0.13-0.20) 0.21 (0.17-0.26) 0.28 (0.23-0.34) 0.39 (0.31-0.48) p<0.001*
LZ 2389.00 (2241.00-2511.00)  2435.00 (2314.00-2547.00)  2492.00 (2374.50-2587.50)  2587.00 (2483.50-2698.00)  p <0.001¥
CTMx 0.92 (0.90-0.93) 0.89 (0.88-0.91) 0.86 (0.84-0.87) 0.79 (0.73-0.82) p <0.001*
SampEn 0.06 (0.04-0.08) 0.08 (0.06-0.11) 0.12 (0.09-0.15) 0.21 (0.14-0.31) p<0.001*
DFA 1.14 (0.99-1.37) 1.35 (1.18-1.54) 1.70 (1.49-1.98) 2.47 (2.05-3.24) p<0.001*
Periodicity
PRSAD. 0.56 (0.53-0.60) 0.56 (0.54-0.59) 0.59 (0.56-0.63) 0.67 (0.61-0.78) p<0.001*
PRSAD,q 1.55 (1.34-1.89) 1.83 (1.58-2.16) 242 (2.01-2.97) 3.68 (2.86-4.94) p <0.001
PRSAD, 0.11 (0.09-0.13) 0.13 (0.11-0.15) 0.17 (0.14-0.20) 0.25 (0.20-0.33) p<0.001*
PRSADg, 0.01 (0.00-0.03) 0.03 (0.02-0.05) 0.07 (0.05-0.10) 0.14 (0.09-0.21) p<0.001*
PRSAD,, 0.02 (0.01-0.04) 0.04 (0.03-0.06) 0.08 (0.05-0.11) 0.14 (0.09-0.20) p <0.001
AC(x10% 18.20 (17.83-18.54) 17.97 (17.58-18.29) 17.69 (17.30-18.04) 17.33 (16.90-17.79) p <0.001
PSD_total 91.49 (89.48-93.71) 94.65 (92.36-97.49) 99.81 (96.76-103.93) 109.27 (103.81-118.61) p<0.001*
PSD_band 3.22 (2.78-3.91) 4.28 (3.66-5.06) 6.18 (5.18-7.39) 9.46 (7.60-13.42) p<0.001*
PSD_ratio 0.04 (0.03-0.04) 0.05 (0.04-0.05) 0.06 (0.05-0.07) 0.09 (0.07-0.11) p<0.001*
PSD_peak 0.02 (0.02-0.02) 0.03 (0.02-0.03) 0.04 (0.03-0.05) 0.06 (0.05-0.10) p<0.001*
The symbol % indicate when the result of the Dunn post hoc test between all pairs of groups was p < 0.05. Results presented for the categories general
statistics, complexity, and periodicity.

arterial hypertension, atrial fibrillation, increased insulin resistance,
higher incidence of lung cancer, and worst prognosis after
myocardial infarction, as well as higher risk of post-surgery
complications in OSA patients'’. However, it remains very unclear
which oximetric biomarkers (or combinations of biomarkers) are
most predictive of clinical endpoints, such as metabolic and
cardiovascular diseases. For example, the average duration and
morphology of the events are not considered in routine OSA
diagnosis. This is limiting, since longer apnea or hypopnea events
will likely result in increased desaturation (in length and depth),
which will likely result in more hypoxic stress, leading to more
severe cardiovascular consequences. At the same time, longer
desaturation events may result in a decrease in AHI, that is, a lower
number of events per hour. Thus the relationship between duration
and morphology of events and a clinical endpoint (e.g., cardiovas-
cular complication) remains unclear. For this reason, additional
desaturation biomarkers may provide valuable information on
disease phenotyping. This has been suggested, for example, in the
work of Kulkas et al'®, who showed, albeit on a very small
population sample (n = 19), that additional oximetry biomarkers, i.e.,
duration and morphology related, enhance OSA phenotyping.
Nocturnal hypoxemia can be present in many respiratory
diseases that are either acute or chronic. For example, OSA
patients show cyclic desaturation-resaturation episodes during
the night, which are linked with partial or complete obstruction of
the upper airway, leading to the well-known chronic intermittent
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hypoxia pattern. On the other hand, COPD patients show slower
and longer desaturations linked with sustained hypoventilation,
mainly during rapid eye movement (REM) sleep, leading to a state
of nocturnal chronic hypoxemia. Characterization of hypoxemia is
therefore different during REM sleep. In subjects with OSA, oxygen
desaturation indices (ODIs) of 3 and 4%, as well as mean,
minimum, and CT90, are widely used in sleep medicine. On the
contrary, criteria for classifying a COPD patient as a nocturnal
desaturator are not well established. Showing at least one episode
with saturation <90% lasting for >5 min and reaching a minimum
saturation of at least 85% has been proposed'®, while some
authors define nocturnal desaturators as patients with
CT90 =30%2°. This example highlights that a standard to
characterize and quantify some respiratory conditions, such as
COPD, using nocturnal oximetry, remain to be defined. Usage of
multiple OBM may also enable to identify patterns for different
apnea types such as central apnea versus mixed apnea versus
obstructive apnea as ongoing research studies such as the
SomnaPatch intend (Somnarus Inc., ClinicalTrials.gov Identifier:
NCT02034175). Machine learning algorithms will play an impor-
tant role in engineering models that can learn complex
combinations of OBM for the purpose of regression or classifica-
tion tasks. Such models will uncover the OBM combinations that
best reflect the unique patterns of a given condition.

Because respiratory conditions may possess different oximetry
patterns/dynamics and oximetry recordings may be of different

npj Digital Medicine (2021) 1
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Table 2. Summary statistics (median and interquartiles Q1-Q3) for the Desaturations and Hypoxic Burden OBMs evaluated on the SHHS1 database.
Biomarker Non-OSA (n =1195) Mild (n = 1303) Moderate (n = 833) Severe (n =475) Kruskal test
Desaturations

DL, 39.44 (34.38 to 45.23) 41.95 (37.00 to 47.31) 42.10 (37.24 to 46.98) 38.04 (33.30 to 43.11) p <0.001
DL, 23.04 (18.65 to 26.82) 22.94 (19.62 to 26.16) 21.68 (18.69 to 24.36) 18.10 (15.10 to 21.04) p <0.001
DL, 493 (4.11 to 6.06) 4,60 (4.12 to 5.27) 453 (4.13 to 5.16) 5.00 (4.39 to 6.02) p< 0.001%
DDmax, 2.63 (1.43 to 3.97) 2.24 (1.48 to 3.26) 2.20 (1.57 to 2.95) 248 (1.84 to 3.34) p <0.001
DD100, 9.47 (8.20 to 10.91) 9.38 (8.42 to 10.50) 9.57 (8.54 to 10.63) 10.28 (8.98 to 11.88) p <0.001
DD100° 3.24 (1.85 to 5.06) 2.78 (1.90 to 4.03) 2.60 (1.95 to 3.58) 2.74 (2.11 to 3.84) p <0.001
DS, —0.22 (—0.26 to 0.18) —0.19 (—0.23 to 0.16) —0.18 (—0.21 to 0.16) —0.20 (—0.25 to 0.17) p< 0.001*
DS, 0.14 (0.11 to 0.19) 0.13 (0.10 to 0.16) 0.11 (0.09 to 0.14) 0.11 (0.09 to 0.14) p< 0.001*
DAmax, 104.74 (80.48 to 137.64) 104.55 (87.47 to 126.95) 108.16 (90.44 to 130.04) 115.22 (96.08 to 144.56) p <0.001
DAmax, 87.52 (53.67 to 144.54) 82.72 (58.97 to 122.55) 85.36 (64.67 to 117.12) 94.62 (70.51 to 127.90) p <0.001
DA100, 280.75 (223.36 to 352.90) 304.38 (251.74 to 362.10) 315.47 (258.35 to 377.54) 313.76 (262.60 to 380.12) p <0.001
DA100, 169.66 (120.29 to 262.66) 175.29 (133.78 to 233.17) 177.53 (134.72 to 222.65) 175.48 (135.08 to 225.74) p>0.05
TD, 1760.82 (1122.78 to 2804.90) 940.56 (673.65 to 1373.38) 429.00 (321.28 to 617.51) 181.61 (117.70 to 268.42) p< 0.001*
TD, 2365.50 (1660.51 to 3388.55) 1457.2 (1092.66 to 2014.68) 812.64 (635.57 to 1066.14) 375.70 (222.57 to 544.07) p <0.001
Hypoxic burden

POD, 1.72 (1.69 to 01.76) 10.20 (9.60 to 11.00) 18.23 (18.11 to 18.79) 31.10 (30.02 to 33.65) p< 0.001*
AODmax 0.06 (0.03 to 0.10) 0.11 (0.07 to 0.16) 0.24 (0.16 to 0.36) 0.61 (0.37 to 1.05) p< 0.001%
AOD100 0.15 (0.09 to 0.26) 0.31 (0.20 to 0.47) 0.70 (0.46 to 1.00) 1.65 (1.04 to 2.77) p< 0.001*
CT, 0.51 (0.15 to 1.34) 0.76 (0.30 to 1.69) 1.42 (0.58 to 3.29) 4.48 (1.68 to 11.58) p< 0.001*
CA, 0.45 (0.13 to 1.10) 0.64 (0.25 to 1.42) 1.21 (0.51 to 2.79) 3.84 (1.42 to 9.86) p< 0.001%
The symbol # indicate when the result of the Dunn post hoc test between all pairs of groups was p < 0.05. Results presented for the categories desaturation
measures and hypoxic burden.
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Fig. 2 Linear correlation between oximetry biomarkers and the
AHLI. The adjusted Ris reported for every biomarker and for the 10
biomarkers with the highest R°.

durations, it is important to define a general methodology for
continuous oximetry time series analysis using the OBM toolbox. The
suggested flow for such analysis is illustrated in Fig. 3. Following
these steps, performance statistics relevant to the task at hand
should be reported and a clear discussion should be delivered
regarding the biomarkers that were most relevant to the data-driven
model including interpretation about the underlying physiology.
Oximetry biomarkers may vary significantly with the technology
used (transmission versus reflectance) as well as by the
manufacturer. Most oximeters use two light-emitting diodes
(LED) that face a translucent part of the body, such as the
fingertip or earlobe, and a photodiode that receives light rays. In
most cases, one LED is red and the second infrared. The oximeter

npj Digital Medicine (2021) 1

includes a processor that calculates the oxygen saturation using
the ratio between the amount of light that was emitted and the
amount that was received at each wavelength. Oximeters may be
transmissive or reflective. In a transmissive oximeter, the photo-
diode and the LEDs are placed on opposite sides of the
measurement site and the light passes through the site. In a
reflective oximeter, the LEDs are placed on the same side and the
light is reflected to the photodiode across the measurement site.

During the current coronavirus disease 2019 (COVID-19)
pandemic, many individuals with suspected or confirmed, but
mild, COVID-19 are told to monitor their symptoms at home or
from government-managed locations. Hospitalization is only an
option if there is a medical need. Monitoring the blood oxygen
level may be a meaningful way to remotely monitor individuals
with mild COVID-192". It could also be used for continuous
monitoring of patients in the ICU with pneumonia, a common
complication of COVID-19. However, there is a lack of smart
algorithms that can exploit the information encrypted within
these oxygen saturation physiological time series. The develop-
ment of such algorithms will facilitate the continuous monitoring
of COVID-19 ICU patients in predicting deteriorations. It remains to
be determined how the information contained in the oxygen
saturation physiological time series can be exploited. Are trends or
absolute values or the occurrence of specific patterns the most
meaningful information for identification of the disease and
prediction of its course? The pobm toolbox developed in this
publication can support researching novel biomarkers for
diagnosis and prognosis of COVID-19.

Additional OBMs, such as kernel entropy, bispectrum, and
wavelet, among others, should be considered and added to the
library in future works. Although we demonstrated the usage of
the PhysioZoo OBM resource on OSA, there is a need to assess the
value of these biomarkers for other respiratory disorders.

Typical oximetry biomarkers used in clinical practice include the
ODI and CT90. While these indices are standardized, to some extent,
and interpretable, they fail to capture important pathophysiological
characteristics. We reviewed evidence-based oximetry biomarkers,

Seoul National University Bundang Hospital
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Fig.3 Flowchart for continuous oximetry time series analysis. a The raw data are first preprocessed using some of the routines presented in
section “Preprocessing’; to remove any non-physiological values that are Ilkely caused by noise. b The recording is then windowed. The size of
the analysis windows and whether to consider overlapping windowing is an important consideration and will be research dependent.
¢ Oximetry biomarkers are then computed using the OBM toolbox. d A statistical analysis is performed to obtain a preliminary understanding
of the biomarker behavior for the different classes of interest. e Finally, a machine learning model can be used to combine the biomarkers for

a regression or classification task.
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suggested a classification system, and created a unique resource
(pobm toolbox and PhysioZoo OBM interface) for performing
oximetry time series analysis. This resource can be applied to gain
novel physiological, clinical, and epidemiological insights.

METHODS

Oximetry biomarker categorization

Various categorizations of OBMs have been previously suggested'®?% We
introduce a five-category classification scheme of our own, which we
believe best reflects the literature and usage of these biomarkers in medical
practice.

(i) General statistics: these are time-based statistics describing the
oxygen saturation time series data distribution.

(i) Complexity: quantifies the presence of long-range correlations in
non-stationary time series.

(i)  Periodicity: quantifies consecutive events to identify periodicity in
the oxygen saturation time series.

(iv) Desaturations: time-based descriptive measures of the desaturation
patterns occurring throughout the time series.

(v)  Hypoxic burden: time-based measures quantifying the overall degree
of hypoxemia imposed on the heart and other organs during the
recording period.

A comprehensive summary of the OBMs reviewed and implemented in
this research is presented in Table 3 for the general statistics, complexity,
and periodicity categories and in Table 4 for the desaturation measures
and hypoxic burden categories. A total of 44 oximetry biomarkers were
engineered. A glossary with variables symbols and definition is presented
in Supplementary Table 3.

Preprocessing

Raw oximetry data is often associated with missing values and artefacts
caused, for example, by motion of the oximeter or lack of proper contact
between the finger and the probe. Therefore, the toolbox includes an
option for two preprocessing filters:

Delta filter. A delta filter is applied to the SpO, time series, in which, when
two consecutive samples are >x%/s apart, they are considered non-
physiological and are discarded. By default, x = 4%/s apart as in the work
of Taha et al.%>. As an example, applying the delta filter to the SpO, time
series is shown in Fig. 4a.

Block of data filter. An error value is considered a value <50%. For each
error value, a small block of data of length x s (default is x = 20 s) around it
is discarded. Once the small blocks are removed, the mean is computed for
each block of data of length 100s around the original error value. The
mean of the overall SpO, signal is also computed. Each block with a mean
<6% smaller than the overall mean is discarded. This technique was used
by Buekers et al.>*. As an example, applying the block of data filter to the
SpO, time series is shown in Fig. 4b.

General statistics

Average (AV): average of SpO, values. Median (MED): median of SpO,
values. Min (Min): minimum of SpO, values representing the physiological
minimum of the SpO.,. Standard deviation (SD): standard deviation of SpO,
values. Range (RQ): the difference between the maximal and minimal SpO,
values. Percentile (Px): The xth percentile of SpO, values. BelowMedian
(Mx): Percentage of the signal x% below median oxygen saturation.

Table 3. List of digital oximetry biomarkers for the categories: general statistics, complexity, and periodicity.

Biomarker Definition Unit
General statistics
1 AV Blood oxygen saturation (SpO,) mean %
2 MED SpO, median %
3 Min SpO, min %
4 SD SpO, standard deviation %
5 RG SpO, range %
6 Px x™ percentile SpO, value, by default x =1 %
7 Mx Percentage of the signal at least x% below median oxygen saturation, by default x = 2, used by Deviaene et al.?? %
8 ZCx Number of zero-crossing points at the x% SpO, level®®, by default x = AV nu
9 Alx Delta index®®, by default x=12s. %
Complexity
10 ApEn Approximate entropy® with, by default, m =1, r=0.25 times the standard deviation of the data nu
1 Lz Lempel-Ziv complexity®’ nu
12 CT™M, Central tendency measure®” with radius p, by default p = 0.25 nu
13 SampEn Sample entropy®® with, by default, m=1, r=0.25 nu
14 DFA Detrended fluctuation analysis®® with, by default, n = 20 %
Periodicity
15 PRSAD, Phase-rectified signal averaging (PRSA) capacity®>*%. With d the fragment duration, by default d =10 %
16 PRSAD,q PRSA amplitude difference??3#>”, With d the fragment duration, by default d =10 %
17 PRSAD,s PRSA overall slope®®>”. With d the fragment duration, by default d =10 %/s
18 PRSADp, PRSA slope before the anchor point®®*”. With d the fragment duration, by default d =10 %/s
19 PRSAD;, PRSA slope after the anchor point®®*’. With d the fragment duration, by default d =10 %/s
20 AC Autocorrelation %°
21 PSD_total The integral of the power spectral density (PSD) function®® %
22 PSD_band The integral of the PSD function within the band 0.014—0.033 Hz*® %
23 PSD_ratio The integral of the PSD function within the band 0.014—0.033 Hz with respect to the total integral® nu
24 PSD_peak Peak amplitude of the PSD function within the band 0.014—0.033 Hz* %
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Table 4. List of digital oximetry biomarkers for the categories: desaturation measures and hypoxic burden.

Biomarker Definition Unit
Desaturation measures
25 ODI, The oxygen desaturation index as defined in Jung et al. and Behar et al.>***', by default x =3 event/h
26 DL, Mean of desaturations length (e.g., related work in Kulkas et al®’) s
27 DL, Standard deviation of desaturations length (e.g., related work in Kulkas et al?) s2
28 DDmax, Mean of desaturations depth (e.g., related work in Kulkas et al.?’) %
29 DDmax, Standard deviation of desaturation depth (e.g. related work in Kulkas et al.*”) %?
30 DD100, Mean of desaturations depth using 100% SpO, level as baseline (e.g., related work in Terrill et al.’9) %
31 DD100, Standard deviation of desaturations depth using 100% SpO, level as baseline (e.g., related work in Terrill et al.'% %2
32 DS, Mean of the desaturation slope %l
33 DS, Standard deviation of the desaturation slope (%/s)?
34 DAmax, Desaturation area defined as the mean of the desaturation areas using the maximum SpO, value in each desaturation event %*s

as baseline’
35 DAmax, Standard deviation of desaturation area®” (%*s)?
36 DA100, Desaturation area: mean of desaturation area under the 100% SpO, level as baseline*’ %*s
37 DA100, Standard deviation of desaturation area under the 100% SpO, level as baseline®” (%*s)?
38 TD, Mean of time between two consecutive desaturation events sec
39 TD, Standard deviation of time between two consecutive desaturation events s2
Hypoxic burden
40 POD, Time of oxygen desaturation event, normalized by the total recording time'8, by default x =3 s
41 AODp.« The area under the oxygen desaturation event curve'd, using the maximum SpO, value as baseline and normalized by the %
total recording time

42 AODjqo Cumulative area of desaturations under the 100% SpO, level as baseline and normalized by the total recording time %
43 (T, Cumulative time below the x% oxygen saturation level, by default x = 90. Introduced by Olson et al.> %
44 CA, Integral of SpO, below the x SpO, level normalized by the total recording time, by default x= AV %

ZeroCrossing (ZCx). ZeroCrossing (ZCx) is the number of zero-crossing
points, used by Xie et al.?, using the x% SpO, level as baseline. A crossing
point is considered as two consecutive samples of the SpO, signal, one
lower than the baseline and the second greater, or vice versa. This
biomarker helps to understand how the signal oscillates around a baseline.
The intuition is that a SpO, time series from a patient with OSA as
compared to that of a non-OSA patient will oscillate more around the
baseline because of the presence of desaturations and then reach a higher
value. A common baseline used for this biomarker is the mean of the signal
(i.e., by default, x=AV). ZCx is defined as:

Nspo, 1
Zx= Y ZG(x), m
i=10
1 if(Sp02; — x)(Sp02i11 — x)<0
ZC,-(X) :{ I( pPOZ; X)( POZi 11 X) i Q)
0 else

where Ngpo; is the number of samples of the SpO, time series.

Delta index (Alx). AIx*® corresponds to the sum of the absolute variations
between two successive points divided by the number of intervals. The
original intuition was that SpO, oscillations, induced by repeated apnea
resumption of ventilation sequence, will lead to a high Al, while COPD-
induced prolonged desaturations or nearly constant SpO, would lead to a
low Al In the original paper of Pepin et al.?%, recordings from a total of 160
consecutive patients referred for PSG were used to set the threshold of the Al
distinguishing between OSA and non-OSA. When testing on the prospective
group of patients, i.e., n =36 patients with p =34 nights of recordings for
each patient, they obtained a sensitivity of 0.75 and specificity of 0.86. In
Magalang et al?’, the Al was the best predictor (P = 0.60) for the AHI versus
other OBMs including the ODI. The Al index is defined as:

Nysindow
. |SpO2_window;;1 — SpO2_window;|, (3)
1

i=

Alx =

Nwindow

where SpO2_window; is the average of the level of oxygen saturation for the
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window i of length x s, and Niyindow is the number of windows. In their original
work, Pepin et al?® used x=12s. In our implementation, signals are re-
sampled to 1 Hz by default, so, by default, a window will contain 12 samples.

Complexity measures

Regularity quantifies how often similar patterns are observed in the
oximetry signal'®. In the context of physiological time series analysis,
approximate entropy (ApEn)?® and sample entropy (SampEn)?° have
commonly been used as measures of the unpredictability (opposite of
regularity). OSA individuals typically have less regular oximetry patterns,
leading to higher ApEn and SampEn values as compared to non-OSA
individuals. Loss of physiological complexity may be better captured by
using other measures that can detect and quantify the presence of long-
range correlations in non-stationary time series®® with measures such as
the Lempel-Ziv complexity (LZ)*". Fractal objects, generated by stochastic
or nonlinear deterministic mechanisms>°, may also be used to capture
complexity, as they show self-similarity, i.e., the smaller-scale structure
resembles the larger-scale form*2. Detrended fluctuation analysis (DFA) has
commonly been used for fractal analysis in the field of physiological time
series analysis.

Approximate entropy. ApEn is a biomarker introduced in Pincus et al.%,
which aims to capture the irregularity in the signal, with higher values
indicating higher irregularity. This biomarker is very useful in the detection
of OSA, as high randomness is associated with high values of the
biomarker. Thus apneas and hypopneas are associated with high ApEn
values. ApEn(m, r, N) can be defined as:

ApEn = @™ (r) — "' (r), @
. B 1 N—m+1 Nm(i)
0= ; '”((meﬂ))‘ ©)

where N (i) is the number of windows of length m for which the distance
from the window beginning at the index i is lower than or equal to r. The

npj Digital Medicine (2021) 1



npj

J. Levy et al.

Q
—
o
oS

95

90

85

80

Oxygen Saturation (%)

751 —— raw data
delta filter

70
0 500 1000 1500

o
=
© o
S IS

©
o

85 |

80

Oxygen Saturation (%)

75

70

2000 2500 3000 3500 4000

—— raw data
block of data filter

0 500 1000 1500

2000 2500 3000 3500 4000

Time (s)

Fig. 4 Example of preprocessing approaches. a shows the time series preprocessed with the delta filter technique, and b shows the same
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distance between two windows can be defined as:
dX(0), X () = max x(i+ k1) = x(+ k= 1)]. ©)

This biomarker was first used in the context of OSA diagnosis from
oximetry data, in a study by Hornero et al.33, with m = 1, r = 0.25-0, where
o is the standard deviation of the data. The database was composed of
SpO, time series from subjects showing symptoms of sleep disordered
breathing categorized into OSA-positive and OSA-negative groups
according to the gold standard PSG. ApEn was used to diagnose OSA
and reached 82.09% sensitivity and 86.96% specificity on a test set
composed of n =113 individuals.

Sample entropy. This is a non-linear biomarker that quantifies the
irregularity in the data and has less bias compared to ApEn. It was used
in the original work of Richman and Moorman?®, who proved the
robustness of sample entropy within the context of physiological time-
series analysis (on neonatal HRV). This biomarker has also been used by
Behar et al.° for HRV analysis across different mammals. A pseudo-code for
the implementation of SampEn is provided in Supplementary Methods.

LZ complexity. This biomarker was introduced by Lempel and Ziv®' in
1976. Within the context of SpO, analysis, LZ evaluates the degree of
complexity of spatiotemporal patterns in the SpO, signal. It has been
largely used in the domain of medicine, especially in the domain of
biomedical signal analysis, such as in the work of Amigé et al.>*, who used
it on electroencephalogram time series, or by Alvarez et al>® to
discriminate between OSA and non-OSA individuals. For the later work,
it resulted in a sensitivity of 86.5%, a specificity of 77.6%, and an accuracy
of 82.9%, when tested on a population of n =187 patients, including 147
males and 40 females. A pseudo-code for the LZ measure is available in
Supplementary Methods.

Detrended fluctuation analysis. DFA is a scaling analysis method that aims
to represent the autocorrelation properties of the signal. A major
advantage of this method is its robustness against non-stationarity of
the signal. This biomarker was introduced by Peng et al*® to identify
crossover behavior in signals. Larger fluctuations typical of repetitive
desaturations lead to a higher DFA profile, while near-constant or slow,
longer desaturations result in lower profiles. A pseudo-code for the
implementation of DFA is provided in Supplementary Methods.

Central tendency measure (CTM,). CTM, is a non-linear method first
proposed by Cohen et al®’, with the goal of assessing the degree of

npj Digital Medicine (2021) 1

variability in cardiac physiological data. The higher the variability in the SpO,
signal (i.e,, more desaturations/apneas), the lower the CTM,,. Indeed, as CTM,,
measures the number of points within a circular region of radius p, the higher
the variability/dispersion the lower the number of points within the circle so
the lower the CTM,,. This biomarker was used in the study of Alvarez et al.*®
on a dataset composed of n = 187 patients, with p = 0.25 for the purpose of
OSA diagnosis. Their analysis resulted in a sensitivity of 90.01% and a
specificity of 82.9%. CTM, is calculated as:

Nspoy 2 5/
it p(i)

i, = =0 %
p(i) =
{ 1 if/(SpO, i +2) — SO, (i + 1)) +(Sp0, (i +1) — 5pO ()2 <p - ®)
0 else

Periodicity measures

Consecutive apneic events create some periodicity in the oxygen
saturation time series. This periodicity can be quantified through
techniques, such as frequency analysis, phase-rectified signal averaging
(PRSA), and autocorrelation.

Phase-rectified signal averaging. PRSA is a signal processing technique
introduced by Bauer et al®® to detect and quantify quasi-periodic
oscillations in a noisy non-stationary signal. The method also identifies
patterns in increasing and decreasing regions of the signal. A PRSA
window can be defined as:

M
x(k) :A‘—A;X,v[k], for—L < k<L, 9

where X; is the window of length 2L around the anchor point x(i) and M is
the number of anchor points. An anchor point is a decreasing point in the
signal: x(i) < x(i—1), such that the decreasing part (negative slope) of the
desaturation is always within the window. It can also be defined as
increasing points in order to investigate patterns in the resaturation part of
the event. Figure 5 shows an example of PRSA computation on an
oximetry time series for L =10 and M = 10 anchor points.

Within the context of OSA diagnosis, PRSA biomarkers were used in the
study of Deviaene et al.>> and evaluated on three datasets: the Sleep Heart
Health Study (SHHS) dataset®>~*?, the Apnea—ECG43 dataset, and a third set
recorded at the sleep laboratory of the University Hospital Leuven. Five
PRSA biomarkers were found significant and these are the ones that we
implemented *%
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® PRSAd,, the capacity of the window, defined as
X(0) +x(1) —x(—1) —x(—2
prsag, — X0 X X1 A (2) (10
® PRSAd,q, the amplitude differences; this is the difference between max
and min values.
® PRSAd,, the overall slope of the window; the window is linearly
approximated, and the slope is retained.
® PRSAd,, the slope before the anchor point.
® PRSAdq, the slope after the anchor point.
Autocorrelation. AC(k) measures the degree of correlation between values

of the same variable. This is achieved by computing the correlation

between the original SpO, time series and a shifted version of it. The

analysis of AC can be used to find repeating patterns, such as a periodic

signal. Mathematically, AC can be defined as:
N—k

= 5p0, (i) * SpO, (i + k).

i=1

AC(K) (1)

Power spectral analysis (power spectral density (PSDiota, PSDpands PSDratior
PSDpea)-  In Zamarron et al.**, the authors analyzed the PSD curve of the
oximetry time series. They defined a spectral band of interest for oximetry
analysis within the context of OSA as 0.014-0.033 Hz. Zamarrén et al.*®
assessed PSD biomarkers on a total of 250 subjects between the ages of 21
and 82 years and obtained a sensitivity of 78.2% and a specificity of 89.0%.
Figure 6 shows the differences in the spectral signal between a non-OSA
and an OSA patient.

®  PSDy, corresponds to the area defined by the power spectrum:

NFFT

PSDiotal = »_ X (),
i=1

(12)

Seoul National University Bundang Hospital

where X is the amplitude of the PSD function, estimated by the
Welch's method*® using a hamming window, and NFFT is the
number of points in the PSD signal.

®  PSDpang corresponds to the energy within the band 0.014-0.033 Hz:

Ny
PSDhana = » _ X (i),
i=Ny

(13)

where N; and N, are the limits of the summation between 0.014
and 0.033 Hz.

®  PSD,.ii0 cOrresponds to the ratio between the power (area) within the
spectral band 0.017-0.033 Hz and PSDyqtq).
Ny :
2y X(i
PSDratio = % (14)
2ice X(7)
[ ]

PSDpeak corresponds to the peak amplitude of the PSD within the
band 0.014-0.033 Hz.

PSDpeak = max {X(i)},

<i<Ny

(15)

where i is the index of the power spectrum signal.

Desaturation measures

Desaturations can occur as a consequence of conditions such as sleep
disordered breathing, and can be characterized by descriptors such as
their lengths and depths. For example, a study by Kulkas et al.*’ studied
the gender difference in the distribution of the desaturation lengths,
depths, and areas caused by hypopnea and apnea events. Desaturations
are not only caused by apnea or hypopnea events®® and thus
desaturation events and their statistical descriptors may capture the
expression of other conditions during sleep.
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Oxygen desaturation index (ODl,). The ODI, corresponds to the average
number of desaturation events per hour. A desaturation is defined as a
SpO, drop of x% below the baseline. The ODI, is a widely used measure
in the field of sleep medicine, where desaturations are characteristic of
apnea and hypopnea events*’. Indeed, obstruction of the airway leads to
reduced entrance of oxygenated air to the lungs, which leads to a drop in
oxygenated hemoglobin until airway patency is restored. These manifest
as transient hypoxemic events or desaturations. Traditionally x = 3 or 4%.
There exist many implementations of the ODI with variable definitions. In
the present work, the implementation of the ODI, detection algorithm
was developed and validated by Behar et al.*°, building on the parent
model and desaturation definition of Jung et al.>". Specifically, the model
of Jung et al.>" defines three fiducial points A, B, and C, to determine the
occurrence of a desaturation. Fiducial point A is defined as the point
where the SpO, value decreases by >1 and <3%, fiducial point B as the

npj Digital Medicine (2021) 1

value that reaches a minimum of at least 3% below A, and fiducial point C
as the point where the SpO, value returns to a level either 1% below A or
3% above B. Some additional constraints are imposed, including that
fluctuations in consecutive SpO, values should be <1% between A and B
and >—1% between B and C. Finally, the time interval between A and C
must be 210 and <60 5°". In the original paper, 90 s was used as the time
limit, but to ensure capture of resaturation, 60s is used here. An
additional fiducial point D was defined as a point posterior to C at which
the SpO, time series reaches a level of at least 1% below A and where the
time interval between A and D is <60s. From the detected desaturation
events, several oximetry biomarkers can be computed (Fig. 7). Within our
context of single-channel SpO, analysis, i.e, when no reference EEG
channel is available to quantify sleep time, the ODlI, is defined as:

_ Ndesat

DI
ODl TRT ’

(16)
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where Ngesat is the number of desaturations in the signal and TRT is the
total recording time in hours.

Desaturation length (DL,, DL;). DL, is the mean and DL, is the standard
deviation across the entire length of the desaturation. These biomarkers
contain information about the duration of the desaturation events in the
SpO, signal. Indeed, ODI, only considers the number of desaturations but
does not consider their length. The length of a desaturation is particularly
important because it reflects how long an individual is under hypoxic
stress. Furthermore, desaturations of various lengths will lead to a higher
DL,. DL, and DL, are defined as:

Nesat
DLH = Tj, (1 7)
desat 4
N, lesat
DL, — M, (18)
Ndesat

where T; corresponds to the duration of the ith oxygen desaturation event.

Desaturation depth (DDmax,, DDmax, DD100,, DD100s). For a single
desaturation, the desaturation depth is computed as the maximal minus
the minimal SpO, value within the desaturation event, from point A to B.
DDmax, is the mean and DDmax, is the standard deviation across all
individual desaturation depths. A similar pair of biomarkers can be
engineered by computing the depth with respect to the 100% SpO, level,
i.e., 100% minus the minimal SpO, value of a desaturation event. These are,
respectively, denoted DD100, and DD100, for the mean and the standard
deviation computed across all desaturation depths. The idea of quantifying
the desaturation depth has also been used by Terrill'®. The desaturation
depth may be an important factor for determination of the severity of OSA
because it will reflect, for a given desaturation, the level of the hypoxic
stress imposed. Desaturation depth also varies with sleep stages, and so
there is value in capturing its variation across desaturations>2. Furthermore,
alternation of soft and deep desaturations will lead to high values of
DDmax, and DD100,. The two pairs of biomarkers are defined as:

Ndesat
DDmax, = max; — min;, (19)
desat 7
Ngesat
DD100, = 100 — min;, (20)
desat
Ndesal f 2
max- — min; — DDmax,
DDmax, = \/Z d ! “) , @n
Ndesat
Ndesal f 2
100 — min; — DD100
DD100, = \/Z ' b) . (22)
Ndesat

where max; is the maximum value of desaturation i and min; is the minimum
value of desaturation i. The variables max; and min; are illustrated in Fig. 7. The
desaturation depth can also be described by extending the ODI to any
threshold x and studying the cumulative frequency of the desaturations as a
function of x>,

Desaturation slope (DS,, DSi). The downslope of the signal is calculated for
each desaturation. The decreasing phase of the desaturation is linearly
approximated. DS, is the mean and DS, is the standard deviation of the
slopes over all desaturation events. These biomarkers consider the slope of
the desaturation, which is a different factor than the number, duration, or
depth of the desaturations. Indeed, OSA and other pathologies may lead to
sharp drops in SpO,, which would lead to high DS, value. The slope of a
specific desaturation can be written as:

B —
Slope; = : (23)
B

—t ’
where (A, ti) is the point of inflexion (amplitude and timestamp) of the
desaturation, and (B, tg) is the minimum point of the desaturation.
Accordingly, the mean and standard deviation of slopes are computed as:

Nesat

Slope;, (24)

1
DS, =

desat 7
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DS, = \/Z i (Sove D) (25)

Ndesat
Slope; can be seen in Fig. 7.

Desaturation area (DAmax,, DAmax,, DA100,, DA100,). The area of the
desaturation is computed for each desaturation. DA100,, is the mean and
DA100, is the standard deviation of the area across all individual
desaturations, taking 100% SpO, as baseline. The area can also be
computed by taking the maximum SpO, value of individual desaturations
as baseline. DAmax,, is the mean and DAmax, is the standard deviation of
the area across all individual desaturations. Whereas the Desaturation
length biomarker considers the duration of the events (reflecting the time
under hypoxic stress) and the desaturation depth biomarkers consider the
depth of events (reflecting the strength of hypoxia), the desaturation area
factorizes both the depth and the length of the desaturations. The two
pairs of biomarkers can be mathematically written as:

Nesat
DA100, = —— $100;, (26)
desat [
Neest (5100; — DA100,,)°
DA100, = ¢Z (5100, k) , (27)
Ndesat
Neesat
DAmax, = —— Smax;, (28)
desat 7
Nesat 2
DAmax, = \/z"d‘ (Smax; — DAmax,) : 29
Ndesat '

where Smay; is the area of the specific desaturation event integrated from
the maximal (max) value of the desaturation event and S100; is the area of
the specific desaturation event integrated from 100%. Smax; and S100; can
be seen in Fig. 7.

Time between desaturation (TD,, TD,). The average and standard
deviation of time elapsed between two consecutive desaturation events
can be used to capture some aspect of the temporal distribution of
desaturation events. The two biomarkers can be computed as:

Naesat

TD At;, (30)
" Ndesat IZ "
Ndesat _

1D, _ |2 (86~ TD,)’ €

)
Ndesat =1

where At; is the time elapsed between desaturation i and desaturation i —
1. At; can be seen in Fig. 7.

Measures of the hypoxic burden

The percentage of oxygen desaturation events (POD,). The POD, is the
overall duration of all desaturations, normalized by the total recording
time. It was introduced by Kulkas et al.'”® in order to estimate the
severity of OSA from the SpO, time series. It was used in the work of
Watanabe et al.>* to study the prognostic importance of novel oxygen
desaturation measures in heart failure and central sleep apnea
population samples. Non-survivors had a higher POD, compared with
survivors (19+13 versus 11+6.4%; p=0.001). By contrast, non-
survivors did not differ significantly from survivors with respect to the
AHI and CT90%. An adjusted logistic regression analysis revealed that
the POD, was the best independent predictor of mortality. In the work
by Kulkas et al.’®, the biomarker was computed on a dataset collected
from 160 male patients with different levels of AHI severity. The
correlation between AHI and POD, was high: r> = 0.87'%. The PODx can

be mathematically defined as:

ZNdesat T,

POD, = 100 - =21 (32)
X TRT

where T; (Fig. 7) corresponds to the duration of each oxygen

desaturation event and x to the level of the desaturation. In their

original publication, Watanabe et al.>* set x = 4%.
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The area under the oxygen desaturation curve (AODmax, AOD100). The
AOD, was introduced by Kulkas et al.’®in the same context as the POD,, for
the estimation of the sleep apnea-hypopnea syndrome. It was used in the
work of Watanabe et al.>*, along with the POD biomarker. Survivors in this
study appeared to have lower AOD, than non-survivors (0.16 £ 0.2 versus
0.26 £ 0.2; p = 0.08). It represents the sum of the area of each desaturation
event divided by TRT. This index was demonstrated to be an independent
modulator of increased epicardial fat volume (EFV) in an acute myocardial
infarction population sample'* (n =105). EFV is associated with adverse
cardiovascular events after myocardial infarction. In the work of Kulkas
et al.'8, this biomarker appeared to have moderate correlation with AHI:
r» €[0.581—-0.689], p < 0.001. It can be mathematically defined as:

Naesat .
AODmax = 100 - % (33)
ZNdesa( S] OO,
AOD100 = 100":1TT' (34)

Smax; and S100; are illustrated in Fig. 7.

Cumulative time (CT,). Percentage of the time spent below the x% oxygen
saturation level. Typically, CT90 is used™ but other thresholds such as 80 or 84%
have also been assessed”. This biomarker is evaluated on the overall signal, i.e,
not only on the desaturation events, and it might consequently capture hypoxic
behaviors that are different from the desaturation events found in OSA. The
biomarker is illustrated in Fig. 8. It is mathematically defined as:

Z?ﬁ *t(x);
—100. &=\ (35)
X 00 TRT xfs '

1 ifSp0O2;<x
t(x),= , 36
(0 { 0 else ' (36)

where fs is the sampling frequency of the signal.

Cumulative area (CA,). Total area under the x% oxygen saturation level.
This biomarker was introduced by Watanabe et al.>*, with x = 90%. Indeed,
OSA patients tend to have a greater area under the baseline x than non-
OSA patients and then get a higher value for this biomarker. The biomarker
is illustrated in Fig. 8. It can be defined as:

o S (x = SpO2(x),) 37)
CAc =100 TRT * fs ’
Sp02; if P02 <x
SpOZ(X)i:{ Pea els: . (38)

Evaluation database

In order to demonstrate the usability of the implemented oximetry
biomarkers and to define some normality ranges, we used the SHHS* %2
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lllustration of CA90 and CT90 biomarkers. The sum of all the blue areas corresponds to CA90, whereas the sum of all the length

database. SHHS was a multi-center cohort study conducted by the National
Heart Lung & Blood Institute (ClinicalTrials.gov Identifier: NCT0000527) to
determine the cardiovascular and other consequences of sleep-disordered
breathing. In all, 6441 men and women, aged =40 years, were enrolled
between November 1, 1995 and January 31, 1998. Institutional review
board from the Technion-IIT Rappaport Faculty of Medicine was obtained
under number 62-2019 in order to use this database for research. The
variable “ahi_a0h3a” was used for the AHI in order to define the classes. To
elaborate this variable, the AHI was computed as the average number of all
apneas and hypopneas (with oxygen desaturation >3% or an arousal) per
hour of sleep and following the American Academy of Sleep Medicine
(AASM) 2012 rules®®. OSA severity was defined with respect to the AHl, i.e,,
mild (5 <AHI< 15), moderate (15<AHI<30) or severe (AHI>30). The
Nonin XPOD 3011 pulse oximeter (Nonin, USA) was used for recording. The
signal was sampled at 1 Hz and with a resolution of £0.01%. The OBM were
computed for patients with available recordings and at least 4h of
continuous SpO, tracing. This resulted in a total of 3806 individual patient
recordings out of 5793 patients who participated in the first study visit
(SHHS1). Among them, there were 1195 non-OSA, 1303 with mild OSA, 833
with moderate OSA, and 475 with severe OSA. OBMs were evaluated on
these recordings in order to report reference ranges for each OBM.

Statistical and regression analysis

The median and interquartile range of the SpO, biomarkers were
computed for the following classes: non-OSA, mild, moderate, and severe
OSA. Kruskal-Wallis test with post hoc analysis was performed. Statistical
significance or non-significance was indicated as “p < 0.05”, “p < 0.001", or
“p > 0.05". Dunn post hoc analysis was performed between each pair of the
classes. Multivariable linear regression was performed to assess the added
value in combining OBM for the purpose of estimating the AHI. To this end,
linear regression was performed between individual and combined sets of
biomarkers and the AHI. For each model, the adjusted R? (ﬁz) score was
reported. R is defined as:
g (1 —R?)(size — 1)

—1-

39
size — pred — 1 39)

)

where pred is the number of predictors, and size is the total sample size.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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