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CDX2 inhibits epithelial–mesenchymal transition in colorectal
cancer by modulation of Snail expression and β-catenin
stabilisation via transactivation of PTEN expression
Junhui Yu1, Shan Li2, Zhengshui Xu1, Jing Guo1, Xiaopeng Li1, Yunhua Wu1, Jianbao Zheng1 and Xuejun Sun 1

BACKGROUND: Emerging evidence suggests the involvement of caudal-related homoeobox transcription factor 2 (CDX2) in
tumorigenesis of various cancers. Although CDX2 functions in cancer invasion and metastasis, fewer studies focus on the role of
CDX2 during the induction of epithelial–mesenchymal transition (EMT) in colorectal cancer (CRC).
METHODS: Immunohistochemical analysis of CDX2 was performed. A series of in vitro and in vivo experiments were conducted to
reveal the role of CDX2 in the invasion and metastasis of CRC.
RESULTS: CDX2 was downregulated in CRC tissues and reduced CDX2 correlated with poor prognosis. Knockdown of CDX2
promoted colon cancer cell invasion in vitro and facilitated liver metastasis in vivo with inducing EMT phenotypes. Further
investigation indicated that CDX2 retarded Akt and GSK-3β phosphorylation, and thereby diminished Snail expression, β-catenin
stabilisation and nuclear translocation. The depletion of β-catenin neutralised the regulation of Slug and ZEB1 by CDX2 knockdown.
Mechanistically, CDX2 antagonised PI3K/Akt activity in CRC by modulating PTEN expression. CDX2 directly bound to the promoter
of PTEN and transactivated its expression.
CONCLUSIONS: Our study first uncovered that CDX2 inhibits EMT and metastasis of CRC by regulation of Snail expression and β-
catenin stabilisation via transactivation of PTEN expression.

British Journal of Cancer (2021) 124:270–280; https://doi.org/10.1038/s41416-020-01148-1

BACKGROUND
Colorectal cancer (CRC) is the second most common cause of cancer-
related death.1 Globally, ~1,800,000 new cases are diagnosed as CRC
every year. Although great progress has been achieved in early
detection and multimodality treatment of CRC,2,3 most advanced
CRC patients have a poor prognosis. Distant metastasis and relapse
are the main cause of death for CRC patients.4,5 Emerging evidence
confirmed that multiple genes and cellular pathways participate in
the tumorigenesis and metastasis of CRC.6 Elucidating the underlying
molecular pathways might highlight better therapeutic strategies for
improving the prognosis of patients with CRC.
Epithelial–mesenchymal transition (EMT) is a transdifferentia-

tion process, with the cells losing their polarity and contacts with
neighbouring cells and subsequently acquiring mesenchymal-like
and motile phenotypes.7 EMT plays pivotal and intricate roles in
malignancy-related phenomena, including the cancer stem cell
phenotype, drug resistance, circulating tumour cells and tumour-
budding production.8,9 The loss of functional E-cadherin is
considered as the hallmark of EMT.10 E-cadherin is negatively
regulated by several transcriptional factors, including Snail, Slug,
Twist and ZEB1/2.11,12

In recent years, several signalling pathways have been
implicated in EMT, including the Wnt, Hedgehog, transforming

growth factor-β (TGF-β), phosphoinositide 3-kinase (PI3K) and
Notch pathways.13–15 Aberrant activation of Wnt signalling is
associated with colorectal carcinogenesis.16 Mutations or dysre-
gulation of the β-catenin destruction complex (APC, Axin2, CK1
and GSK-3β) results in activation of Wnt signalling.17–19 Phospho
Akt (active Akt) inhibits GSK-3β activity by phosphorylation and
subsequently decreases GSK-3β-mediated β-catenin degradation
and stabilises β-catenin.20 An elevated nuclear β-catenin level
leads to the activation of Wnt-related targets, including c-Myc,
Slug, ZEB1 and MMP-7, thereby promoting cell proliferative,
invasive and migratory potential.21–23

Caudal-related homoeobox transcription factor 2 (CDX2), an
intestine-specific transcriptional factor, has been strongly impli-
cated in the development and maintenance of intestinal
mucosa.24 Emerging evidence supports a crucial role for CDX2
as a tumour suppressor during colorectal carcinogenesis. CDX2
expression is absent in ~30% of human CRC and is inversely
associated with tumour grade.25,26 Mice with a CDX2+/− genotype
are susceptible to developing colon cancer.27 Our previous study
indicated that CDX2 inhibited proliferation, colony formation and
cell motility in CRC.28 Reduction of CDX2 by EGF/bFGF induces
sLex/a expression by transcriptionally downregulating FUT3
during EMT induction.29 However, CDX2 can cooperate with
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β-catenin to regulate tight junctions by increasing claudin-1
expression, which promotes invasion and EMT in CRC.30 Therefore,
the exact role of CDX2 during the induction of EMT in CRC remains
controversial. In the present study, we aim to investigate the
function of CDX2 in EMT and metastasis of CRC.

METHODS
Specimens and cell culture
One-hundred-and-sixty-one CRC and paired normal colorectal
(NC) tissue samples were randomly selected from CRC patients
who had not received radiotherapy or chemotherapy before
excision between February 2010 and September 2013. All the
patients underwent surgery at the First Affiliated Hospital of Xi’an
Jiaotong University. A tissue microarray of 90 pairs of primary CRC
tissues was purchased from Shaanxi Kexin Biotechnology Co., Ltd.
Informed consent forms were signed by all patients. Our study
protocol was approved by the Ethics Committee of the First
Affiliated Hospital of Xi’an Jiaotong University.
All colon cancer cells (Shanghai Institute of Cell Biology, Chinese

Academy of Sciences) were maintained in RPMI-1640 medium
(Gibco BRL, Carlsbad, CA, USA) supplemented with 10% foetal
bovine serum (FBS) (Gibco BRL) in a humidified 5% CO2 atmosphere.

Transfection
Lentiviral vectors with CDX2 shRNA or CDX2 overexpression were
purchased from GeneChem Co., Ltd. (Shanghai, China). The target
short-hairpin RNA (shRNA) sequences were 5′-ACAAATATCG
AGTGGTGTA-3′ and 5′-GACAAATATCGAGTGGTGTAC-3′. Lentiviral
infection referred to the manufacturer’s protocol.

Liver metastasis models with colon cancer cells
The female BALB/c-nude mice (4-week-old) were purchased from
a corporation of Shanghai (SLAC Laboratory Animal Co., Ltd). The
mice were divided into four groups (HT-29-shCDX2/HT-29-shCtrl
and SW480-shCDX2/SW480-shCtrl). The detailed protocol referred
to the previous studies.31,32 Briefly, after anaesthesia, abdominal
surgeries were conducted to expose the spleen and slowly inject it
with 1 × 107 cells. The spleen was then returned to the abdominal
cavity, and the abdomen was closed. After 50 days of intrasplenic
injection, the nude mice were anaesthetised with diethyl ether
and sacrificed by cervical dislocation. All animal procedures were
in accordance with the Helsinki Declaration, and approved by the
Ethics Committee of The First Affiliated Hospital of Xi’an Jiaotong
University.

Wound-healing assays
The would-healing assays were carried out as described pre-
viously.33 Cells were cultured in six-well plates until 90%
confluence. Pipette tips (10 µL) were then utilised to scratch
artificial vertical lines. The cells were maintained in FBS-free
medium for an additional 48 h. The images of wound closure were
captured under a microscope at 0, 24 and 48 h.

Transwell assays
The transwell assays were carried out as described previously.33

Briefly, cells, suspended in FBS-free medium, were seeded into
Transwell (Corning, New York, NY, USA) inserts coated with
Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) or not. The lower
chamber contained 600 μl of RPMI-1640 medium with 20% FBS.
Twenty-four hours later, the migratory or invading cells were
imaged and counted under an inverted microscope after crystal
violet staining.

Quantitative real-time PCR (qRT-PCR)
Total RNA extraction, complementary DNA (ctDNA) synthesis and
qRT-PCR were carried out as described previously.34 The primers
for qRT-PCR were listed in Supplementary Table 1.

Microarray analysis
Microarray analysis was carried out to compare gene expression
profile in SW480-shCDX2 and the control cells. Total RNA was
extracted with TRIzol reagent and prepared for subsequent
analysis by Affymetrix GeneChip system (Genechem Co., Ltd).

Immunohistochemistry (IHC)
The IHC staining was carried out as described previously.34 Briefly,
the extent of stained cells (0, 0–5%; 1, 6–25%; 2, 26–50%; 3, 51–75%;
4, 76–100%) and the staining intensity (0, negative; 1, light brown; 2,
brown; 3, dark brown) were recorded. The immunoreactivity scores
(IRSs) were defined as the product of extent and intensity scores. An
IRS of >3 was considered as positive expression.

Nuclear extract preparation and western blotting analysis
Nuclear protein was extracted using a Nuclear Extraction Kit (Abcam,
Cambridge, MA, USA) as described previously.35 Nuclear extracts
were prepared for subsequent analysis. The western blotting analysis
was performed as described previously.34 Detailed information
regarding these antibodies is shown in Supplementary Table 2.

Luciferase reporter assay
For promoter analyses, a fragment of the PTEN 5′-flanking sequence
(from –912 bp to +207 bp) and other truncated fragments were
cloned into the pGL3.0 Basic Vector (Promega, Madison, WI, USA) to
generate a PTEN full promoter reporter construct and the truncated
ones (Supplementary Table 1). The plasmids containing firefly
luciferase reporters of PTEN promoter and the truncated ones and
the pTK-RL plasmids were co-transfected into cells. The detailed
protocol was carried out as described previously.34

Quantitative chromatin immunoprecipitation (qChIP)
The qChIP assay was conducted using the EZ-ChIP Kit (Millipore,
Bedford, MA, USA) according to the method of the manufacturer’s
instructions.34 In total, 5 μg of anti-CDX2 antibody and 1 μg of IgG-
negative control antibody were used to precipitate the
chromatin–protein mixture. Finally, the target fragment or
endogenous non-coding region fragment were amplified with
specific primers (Supplementary Table 1) by using real-time PCR.

Immunofluorescence (IF) and immunocytochemistry (ICC)
The IF assay was carried out as described previously.33 The sample
was observed using a fluorescence microscope to measure
E-cadherin and vimentin expression and β-catenin subcellular
localisation.
For ICC assay, the cells were fixed with 4% paraformaldehyde

for 20min, punched with 0.2% Triton X-100 for 10 min and then
incubated with the primary antibodies. The following protocol is
the same as the IHC analysis.

Statistical analysis
The differences between the experimental and control groups
were compared by the Student’s t test or one-way ANOVA.
Correlations in the protein levels were conducted using Pearson
linear-regression analysis. Survival rate was calculated using
Kaplan–Meier method, and the difference in survival was analysed
by log-rank test. Univariate and multivariate analyses were
conducted using a Cox proportional hazard model. P < 0.05 was
defined as statistically significant. All data were analysed using
SPSS 18.0 software (SPSS Inc., Chicago, IL, USA). All in vitro
experiments were carried out in triplicate.

RESULTS
Low levels of CDX2 correlate with progression and poor prognosis
in human CRC
To determine the role of CDX2 in colorectal tumorigenesis, an IHC
assay was first performed using 161 pairs of CRC versus adjacent NC
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tissues. CDX2 staining was observed in the nuclei of positive cells
(Fig. 1a). The positive CDX2 expression rates were 95.7% (154/161) in
NC tissue samples and 78.9% (127/161) in CRC tissue samples
(Fig. 1b). The immunoreactivity score (IRS) of CDX2 staining was
reduced in the CRC tissue samples relative to that in the NC tissue
samples (Fig. 1c). The expression level of CDX2 was further
examined in tissue microarrays, including 90 pairs of CRC samples
(Fig. 1d). The average expression of CDX2 was significantly lower in
CRC tissues than that in adjacent NC tissues (Fig. 1e). Upregulation of
CDX2 was confirmed in 8 paired CRC samples using western blotting
(Fig. 1g, h). Intriguingly, the CRC samples with lymphatic or distant
metastasis exhibited lower CDX2 expression than those without
metastasis (Fig. 1f). Furthermore, the association between CDX2
expression and clinicopathological characteristics in CRC tissue
samples was analysed (Supplementary Table 3). CDX2 expression
was negatively associated with lymphatic and distant metastasis and
TNM staging. Kaplan–Meier analysis showed that patients with low
levels of CDX2 expression in tumour had shorter overall survival (OS)
and recurrence-free survival (RFS) than those with high levels (Fig. 1i,
j). Multivariate analyses validated CDX2 as an independent predictor
of OS but not RFS (Supplementary Tables 4 and 5). Analyses from
TCGA databases also supported an inverse correlation between
CDX2 and OS in the patients with colon cancer (Fig. 1k). In summary,
these results indicate that a low level of CDX2 correlates with
progression and poor prognosis in human CRC.

CDX2 inhibits the invasion and metastasis of CRC in vitro and
in vivo
Next, western blotting assay was performed to investigate
differences in the expression levels of CDX2 in five colon cancer
cell lines: RKO, Caco-2, HT-29, SW480 and Lovo (Supplementary
Fig. 1a, b). To explore the impact of CDX2 in colorectal
tumorigenesis, a series of in vitro and in vivo experiments were
conducted in colon cancer cells with gain- and loss of function of
CDX2. Depletion of CDX2 in HT-29 and SW480 cells or enhancing
CDX2 expression in Lovo and Caco-2 cells were confirmed by
western blotting analysis (Supplementary Fig. 1c–f).
The wound-healing assay indicated that depletion of CDX2 in

HT-29 and SW480 cells increased the migratory rate (Fig. 2a, b);
however, enhancing CDX2 expression in Lovo and Caco-2 had the
opposite effect (Fig. 2c, d). Likewise, transwell assays revealed that
HT-29-shCDX2 and SW480-shCDX2 group displayed more invasive
and migrating cells than the control group (Fig. 2e), whereas Lovo-
CDX2 and Caco-2-CDX2 group had the opposite alteration (Fig. 2f).
These findings demonstrated that CDX2 inhibits colon cancer cell
invasion and migration in vitro.
Liver metastasis occurs synchronously or metachronously in

approximately 50% of patients with CRC, which directly leads to a
poor prognosis.36 In this study, colon cancer liver metastasis
models were conducted to evaluate the impact of CDX2 depletion
in tumour metastasis. Depletion of CDX2 markedly elevated the
number of metastatic nodules in the liver (Supplementary
Fig. 2a–c). In addition, the weight and survival time of the nude
mice in CDX2-depletion group were lower and shorter than those
in the control group, respectively (Supplementary Fig. 2d, e).
These results indicated that knockdown of CDX2 enhances the
metastatic potential of colon cancer cells.

CDX2 suppresses EMT in CRC
To explore the molecular mechanism of CDX2 in CRC metastasis,
microarray analysis of SW480-shCDX2 and the control cells was
applied (Fig. 3a). Gene Ontology Enrichment analysis identified 39
EMT-related genes (Fig. 3b), which were involved in the cellular
conjunctions, focal adhesion, cytoskeleton and the extracellular
matrix.37

Of the above 39 genes, six classic EMT-related genes, including
E-cadherin, vimentin, fibronectin, ZO-1 and MMP-2/9, were further
chosen for validation by using real-time PCR and western blotting.

The results showed an increased fibronectin, vimentin and MMP-9
levels, and a decreased ZO-1 and E-cadherin levels in CDX2-
knockdown cells (Fig. 3c, e and Supplementary Fig. 3a). Con-
versely, CDX2-overexpressing cells had the reverse change (Fig. 3d,
f and Supplementary Fig. 3b). IF (Supplementary Fig. 4a–d) and
ICC (Supplementary Fig. 4e, f) assays observed a decline in
E-cadherin staining and an increase in vimentin staining in HT-29
and SW480 with CDX2 depletion. Likewise, IHC assay revealed that
liver metastatic nodules from HT-29-shCDX2 and SW480-shCDX
groups had a much stronger vimentin staining and a weaker
E-cadherin staining than those from the control groups (Supple-
mentary Fig. 4g, h).
Furthermore, the levels of several EMT-related transcription

factors, including Snail, Slug, Twist and ZEB1/2, were detected.
Depletion of CDX2 resulted in a high elevation of Snail level and a
moderate elevation of Slug and ZEB1 levels (Supplementary
Figs. 3c and 5a). Conversely, enhancing CDX2 expression in Lovo
and Caco-2 cells had the opposite effects (Supplementary Figs. 3d
and 5b). There was no marked alteration in ZEB2 and Twist
expression. We next investigated whether Snail participates in
CDX2-inhibited EMT and invasion in CRC. The depletion of Snail
neutralised the promoting effect of CDX2 knockdown on invasion
and migration of CRC (Supplementary Fig. 5c). Moreover, the
depletion of Snail promoted E-cadherin and ZO-1 expression, as
well as reduced vimentin and MMP-9 expression (Supplementary
Figs. 3e, f and 5d). Snail has been proved to induce MMP-9
expression in tumour invasion.38 Taken together, these findings
demonstrated that CDX2 antagonises EMT in CRC by regulating
Snail, Slug or ZEB1 expression.

CDX2 inhibits Snail expression through suppressing PI3K/Akt/GSK-
3β activity
PI3K/Akt and MAPK/Erk pathways play a crucial role in colorectal
carcinogenesis.39,40 Previous study indicated that CDX2 level
negatively correlated with the activity of PI3K/Akt pathway.41,42

Moreover, microarray analysis via KEGG software indicated that
PI3K/Akt/MTOR had the marked change in all relevant signalling
pathways (Fig. 4a). We first examined the effect of CDX2 on the
activity of PI3K/Akt and MAPK/Erk pathways. The results showed
that modulation of CDX2 expression had little effect on Erk
phosphorylation (Fig. 4b and Supplementary Fig. 6a, b). However,
depletion of CDX2 induced phosphorylation of Akt (Thr308/
Ser473) and GSK-3β (Ser9), whereas enhancing CDX2 expression
had the opposite alteration (Fig. 4b and Supplementary Fig. 6a, b).
Intriguingly, we found that knockdown or ectopic expression of
CDX2 reduced or elevated the expression of GSK-3β, respectively.
Our previous study indicated that CDX2 can regulate GSK-3β
transcription by directly binding to the GSK-3β promoter.34

GSK-3β was previously reported to mediate Snail stabilisation.43

We thus attempt to evaluate whether the activity of PI3K/Akt
pathway affected CDX2-regulated Snail expression and invasion in
CRC. Blockade of PI3K/Akt activity by MK-2206 diminished the
effect of CDX2 knockdown on invasion (Fig. 4c) and Snail
expression (Fig. 4d and Supplementary Fig. 6c, d). Moreover,
treatment with MK-2206 promoted E-cadherin and ZO-1, as well
as downregulated vimentin and MMP-9. Altogether, these results
indicate that CDX2 antagonises EMT in CRC by suppressing PI3K/
Akt/GSK-3β activity and Snail expression.

CDX2 destabilises β-catenin in CRC through the PI3K/Akt/GSK-3β
pathway
An elevated nuclear β-catenin can induce the expression of its
target genes, including Slug, ZEB1 and MMP-7, thereby promoting
EMT and tumour cell metastasis.22,44 Our study observed that
knockdown of CDX2 elevated total β-catenin and its nuclear
translocation (Fig. 5a and Supplementary Fig. 7a), which was
further confirmed by IF and ICC assays (Fig. 5c, d), while ectopic
expression of CDX2 had the reserved change (Fig. 5b, e, f and
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Fig. 1 The expression of CDX2 in colorectal cancer (CRC) and normal tissue samples. a CDX2 expression in 161 CRC tissue samples and
paired NC tissue samples by immunohistochemistry (IHC) staining. b The positivity of CDX2 staining in 161 CRC tissue samples and paired NC
tissue. c The immunoreactivity score (IRS) of CDX2 staining in 161 CRC tissue samples and paired NC tissue. d CDX2 expression in tissue
microarrays, including 90 pairs of CRC samples and adjacent NC tissues. e The IRS of CDX2 staining in tissue microarrays. f The IRS of
CDX2 staining in CRC tissues with lymphatic or distant metastasis versus CRC tissues without metastasis. LM lymphatic metastasis, DM distant
metastasis. g Western blot bands for CDX2 in normal and CRC tissue samples. h Quantitative analysis of CDX2 expression in normal and CRC
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Supplementary Fig. 7a). GSK-3β-induced β-catenin phosphoryla-
tion and degradation is the primary mechanism of regulating β-
catenin levels.45 Active Akt can phosphorylate GSK-3β at Ser9 and
impede its activity.20 Thus, we hypothesised that CDX2 regulates
EMT through its effects on GSK-3β phosphorylation and down-
stream effects on β-catenin. First, we detected the effect of
modulating CDX2 expression on stabilisation of β-catenin. Knock-
down of CDX2 diminished the phosphorylation of β-catenin
(Ser33/37/Thr41), while ectopic expression of CDX2 enhanced
phosphorylated β-catenin (Fig. 5a, b and Supplementary Fig. 7a).
Moreover, the amount of β-catenin accumulated sharply in HT-29
and SW480 cells with the proteasome inhibitor MG132 treatment
(Supplementary Fig. 8a). The cycloheximide (CHX) pulse-chase

assay showed that depletion of CDX2 lengthened the half-life of
β-catenin protein, and enhanced CDX2 expression-accelerated
β-catenin degradation (Supplementary Fig. 8b–e). To further
demonstrate that CDX2 exerts its function through GSK-3β, a
GSK-3β inhibitor CHIR-98014 was used. CHIR-98014 rescued the
effect of CDX2 overexpression on β-catenin (Supplementary
Figs. 7b and 9a). Moreover, inhibition of the PI3K/Akt pathway
by MK-2206 confirmed that the PI3K/AKT/GSK-3β pathway is
involved in CDX2-regulated β-catenin levels (Supplementary
Figs. 7c and 9b).
In addition, the depletion of β-catenin diminished the effect of

CDX2 knockdown on invasion and migration of CRC (Supplemen-
tary Fig. 9c). As previously reported, Slug and ZEB1 might be two
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of the target genes of β-catenin in CRC.22 The depletion of
β-catenin reduced Slug, ZEB1 and vimentin, as well as elevated
E-cadherin and ZO-1 (Supplementary Fig. 7d and 9d). There was
no significant alteration in Snail expression. Altogether, our study
indicated that CDX2 destabilises β-catenin through the PI3K/Akt/
GSK-3β pathway.

CDX2 attenuates PI3K/Akt activity in CRC by regulating PTEN
expression
Previous study has identified the co-expression levels of PTEN and
CDX2 in gastric cancer.41 PTEN has attracted our attention because

of its role in the dephosphorylation of Akt. Thus, we speculate that
CDX2 inhibits Akt phosphorylation via regulating PTEN expression.
The results showed that depletion of CDX2 inhibited the expression
of PTEN at both mRNA and protein levels, whereas enhancing CDX2
expression had the reverse change (Supplementary Figs. 10a, b and
11a, b). To further determine the role of PTEN in CDX2-inhibited Akt
phosphorylation and invasion of colon cancer cells, we ectopically
expressed or knocked down PTEN in colon cancer cells with stable
CDX2 knockdown or overexpression. Ectopic expression of PTEN
significantly diminished tumour cell invasion as well as Akt
phosphorylation and EMT marker proteins induced by CDX2
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knockdown (Supplementary Figs. 10c, e and 11c, d); conversely,
knockdown of PTEN recovered the tumour-suppressive effect of
CDX2 overexpression (Supplementary Figs. 10d, f and 11e, f). Taken
together, these data indicated that CDX2 suppresses PI3K/Akt
activity in CRC by regulating PTEN expression.

PTEN was identified as a downstream target of CDX2
We further assessed whether CDX2 suppresses the PI3K/Akt
pathway via transcriptional activation of PTEN. First of all, the full-
length PTEN promoter (from –912 bp to +207 bp) reporter
construct and the other three truncated ones were constructed
and transfected into Lovo-CDX2 and Caco-2-CDX2 and the control
cells, respectively. The luciferase activity of the PTEN promoter was
detected by dual-luciferase reporter assay. Ectopic expression of
CDX2 resulted in an elevated luciferase activity of the full-length
fragments, but did not affect the luciferase activity of the other
truncated fragments (Fig. 6a, b), suggesting that CDX2 could
transactivate PTEN expression by binding to the −912 bp to −651
bp of the PTEN promoter. Next, we attempted to confirm whether

CDX2 protein binds to the special site of the PTEN promoter
in vivo by using qChIP assay. Four pairs of primers were designed
to amplify the four P1–P4 fragments of the −912-bp to +207-bp
PTEN promoter region (Fig. 6c). The results showed that ectopic
expression of CDX2 enhanced the binding of CDX2 to P1
promoter fragment but not the P2–4 promoter fragments (Fig. 6d,
e). All these results indicated that CDX2 could bind to the P1
fragment of the PTEN promoter and transcriptionally activate
PTEN in colon cancer cells.

Correlations among CDX2, PTEN, Snail, E-cadherin and vimentin
expression levels in CRC tissues
The clinical relevance of CDX2, PTEN and EMT marker proteins in 46
randomly selected CRC tissues was explored (Supplementary
Fig. 12a). We found that CDX2 expression was positively associated
with PTEN and E-cadherin, and was negatively associated with Snail
and vimentin in CRC specimens (Supplementary Fig. 12b–e). These
results further support the notion that CDX2 acts as a negative
regulator of EMT in colon cancer cells.
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DISCUSSION
Emerging evidence supports a crucial role for CDX2 as a tumour
suppressor in colorectal tumorigenesis. However, the exact
function of CDX2 during the induction of EMT in CRC remains to
be elucidated. Our results gain new insight into the role of CDX2 in
EMT. The present study firstly revealed that CDX2 expression was
lower in CRC than NC tissue samples. Moreover, the expression of
CDX2 is inversely correlated with lymphatic and distant metastasis
and TNM staging. In stage IV unresectable CRC, lack of CDX2
expression predicted poor survival.46 Moreover, lack of CDX2
expression was proposed as a poor prognostic and predictive
biomarker for the response to chemotherapy in stages II and III
CRC.47 Consistently, our data indicated that reduced CDX2
correlated with worse OS and RFS of patients with CRC. Moreover,
CDX2 was validated as an independent predictor of OS but not
RFS. In summary, CDX2 is likely to be an important biomarker for
guiding evaluation of tumour progression and prognosis.
Distant metastasis and relapse directly lead to a poor prognosis

of CRC patients.48 In this study, the results obtained in liver
metastasis models showed that knockdown of CDX2 promoted

CRC liver metastasis in vivo. Subsequently, we demonstrated that
CDX2 inhibited colon cancer cell invasion and migration in vitro.
EMT has been linked to the mobility and dissemination of CRC by
conferring increased invasiveness and metastatic potential to
cells.49,50 By microarray analysis, real-time PCR and western
blotting validation, we observed that colon cancer cells with
CDX2 knockdown expressed high levels of fibronectin, vimentin
and MMP-9, and low levels of ZO-1 and E-cadherin. Enhancing
CDX2 expression had the reversed EMT programme. These data
support that deficiency of CDX2 might be involved in metastasis
of CRC through promoting EMT.
Next, the molecular mechanism of EMT phenotypic changes

was explored. There were a variety of signalling pathways
responsible in regulating EMT, including Wnt/β-catenin, tumour
growth factor, Notch and PI3K/Akt pathways.13–15 Our study
revealed that knockdown of CDX2 induced the phosphorylation of
Akt and GSK-3β and promoted the expression of Snail, while
ectopic expression of CDX2 had the opposite effect. It has been
reported that active Akt impedes GSK-3β phosphorylation, which
results in the stabilisation of Snail.43 In our study, blockade of PI3K/
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Akt pathway by MK-2206 in CDX2-depleted cells increased
phosphorylation of GSK-3β, which was accompanied by Snail
suppression. In summary, we concluded that CDX2 antagonises
EMT in CRC by suppressing Snail expression through PI3K/Akt/
GSK-3β pathway. Consistently, depletion of CDX2 in lung cancer
promoted cell invasion and metastasis by increasing Snail
expression.51 Intriguingly, Gross et al. reported that Snail could
repress CDX2 transcription in colon cancer cells.52 Our previous
study also indicated that Snail is involved in the HIF-α-induced
downregulation of CDX2,53 implying that a positive feedback
mechanism might exist between CDX2 and Snail; however, the
exact mechanism remains to be further elucidated.
The PI3K/Akt pathway impedes the activity of GSK-3β, leading

to the stabilisation and nuclear translocation of β-catenin to
promote cell proliferation, differentiation and EMT.20 Here, we
reported that CDX2 knockdown promoted the stabilisation and
nuclear translocation of β-catenin in CRC, while ectopic expression
of CDX2 had the reserved alterations. Nuclear accumulation of
β-catenin interacts with LEF/Tcf transcriptional factors, which
induces the transcription of EMT-related genes.54 Expectedly, the
levels of Slug and ZEB1, two target genes of β-catenin, were
increased in response to CDX2 knockdown, and this effect can be
reversed by the depletion of β-catenin. Previous study indicated
that direct phosphorylation of β-catenin by AKT also promotes its
nuclear translocation and increases the transcriptional activity.55

Snail, Slug and ZEB1 acts as a strong inducer of EMT by repressing
E-cadherin transcription.11,56 In our study, an elevation of Snail,
Slug and ZEB1 followed by CDX2 knockdown might retard E-
cadherin/β-catenin complex and induce β-catenin release from
the membrane, which was confirmed by the results of IF assay
showing a decreased β-catenin in the membrane of CDX2-
depleted cells. Deficiency of membrane localisation of β-catenin
causes the disassociation of cell–cell contracts and enhanced the
metastatic potential of CDX2-depleted cells. Collectively, our study
demonstrated that CDX2 inhibits EMT and metastasis of CRC by

regulation of Snail expression and β-catenin stabilisation through
PI3K/Akt/GSK-3β signalling. During gastrin-induced migration, Fas-
induced EMT and endothelin-1-mediated EMT and tumour
invasion, the inactivation of GSK-3β by PI3k/Akt signalling
promotes Snail expression and β-catenin stabilisation.57,58

PTEN acts as negative regulator of PI3K-mediated AKT activation
in cell homoeostasis.59 Inactivation of PTEN has been reported to
participate in EMT acquisition during the process of tumour
metastasis.60 Emerging evidence indicated that PTEN can be
regulated at the transcriptional level as well as by numerous post-
transcriptional modifications.59 We observed that CDX2 regulated
PTEN expression at both mRNA and protein levels. Moreover,
ectopic expression of PTEN attenuated tumour cell invasion as
well as Akt and GSK-3β phosphorylation and EMT marker proteins
enhanced by CDX2 knockdown, while knockdown of PTEN
antagonised the tumour-suppressive effect of CDX2 overexpres-
sion. The dual-luciferase reporter assay confirmed that CDX2 could
promote PTEN transcription by binding to the −912-bp to −651-
bp region of the PTEN promoter. Mechanistically, CDX2 specifically
and directly binds to the P1 fragment of the PTEN promoter
detected by qChIP. This is the first study to identify that CDX2
could directly regulate PTEN transcription.
This study indicated that depletion of PTEN elevated the

expression of both total and nuclear β-catenin in CDX2-
overexpressed cells. The direct target of PTEN by EBV-miR-
BART7-3p exhibits a similar alteration in nasopharyngeal carci-
noma.14 However, Elumalai et al. reported that the level of total
β-catenin was reduced in PTEN-inactivated lung cancer cells,
despite the accumulation of β-catenin in cell nucleus.60 These
studies unanimously concluded that PTEN inactivation in tumour
induces the nuclear accumulation of β-catenin, although the total
β-catenin level might exhibit the inconsistent alteration. This
might be due to loss of β-catenin substrate protein E-cadherin or
proteasomal degradation of β-catenin substrate by AKT-mediated
phosphorylation. Intriguingly, inhibition of PTEN by Hes-1 resulted
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in a decrease in the level of membrane and cytoplasmic β-catenin,
but not nuclear accumulation.61

In this study, by conducting in vitro and in vivo assays and using
a group of CRC patients, we first showed that CDX2 is a major
inhibitor of the invasion-prone phenotype and EMT in colon
cancer cells. Second, we demonstrated that CDX2 could directly
transactivate PTEN expression and thereby suppress PI3K/Akt/
GSK-3β signalling, which results in decreasing Snail expression
and destabilising β-catenin. Decreased nuclear β-catenin sup-
presses Slug and ZEB1 transcription, and the reduction of Snail,
Slug and ZEB1 induces E-cadherin transcription, which conse-
quently enhances cell–cell interaction and retards cell migration
and invasion. Finally, in clinical CRC samples, we observed that
CDX2 was positively correlated with PTEN and E-cadherin
expression, and was negatively correlated with Snail and vimentin
expression. In summary, these findings reveal that CDX2 exerted
an inhibitory impact on EMT and metastasis in CRC. The pivotal
signalling pathway involved in this process was identified, as were
suitable candidates for therapeutic targets in CRC patients.
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