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Transkingdom interactions between Lactobacilli
and hepatic mitochondria attenuate western
diet-induced diabetes

Richard R. Rodrigues® "/, Manoj Gurung® 2/, Zhipeng Li%’, Manuel Garcia-Jaramillo® 3, Renee Greer?,

Christopher Gaulke?, Franziska Bauchinger®, Hyekyoung You?, Jacob W. Pederson® 2,

Stephany Vasquez-Perez?, Kimberly D. White® 2, Briana Frink?, Benjamin Philmus® !, Donald B. Jump3,
Giorgio Trinchieri® ©, David Berry®, Thomas J. Sharpton®, Amiran Dzutsev®, Andrey Morgun'8® &
Natalia Shulzhenko@® 28

Western diet (WD) is one of the major culprits of metabolic disease including type 2 diabetes
(T2D) with gut microbiota playing an important role in modulating effects of the diet. Herein,
we use a data-driven approach (Transkingdom Network analysis) to model host-microbiome
interactions under WD to infer which members of microbiota contribute to the altered host
metabolism. Interrogation of this network pointed to taxa with potential beneficial or harmful
effects on host's metabolism. We then validate the functional role of the predicted bacteria in
regulating metabolism and show that they act via different host pathways. Our gene
expression and electron microscopy studies show that two species from Lactobacillus genus
act upon mitochondria in the liver leading to the improvement of lipid metabolism. Meta-
bolomics analyses revealed that reduced glutathione may mediate these effects. Our study
identifies potential probiotic strains for T2D and provides important insights into mechanisms
of their action.
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ncreasing evidence underscores the importance of the micro-

biome in human metabolic health and disease!. One of the

most prevalent metabolic diseases, type 2 diabetes (T2D), is
now a global pandemic and the number of patients that will be
diagnosed with this disease is expected to further increase over
the next decade?. The so-called “western diet” (WD, a diet high in
saturated fats and refined sugars) has been recognized as one of
the major culprits of T2D with gut microbiota playing an
important role in modulating effects of diet>. Thus, there is an
urgent need to elucidate the contributions of gut microbiota to
metabolic damages caused by WD and to identify preventive
approaches for T2D.

On the one hand, it is believed that complex changes in the
structure of gut microbial communities, resulting from interac-
tions of hundreds of different microbes, also called dysbiosis,
underlies metabolic harm to the host>. On the other hand, some
reports claim that individual members of the microbial com-
munity changed by the diet might have a significant impact on
the host®. Although these two points of view are not necessary
mutually exclusive, it is still unclear which hypothesis is more
credible’.

Herein, we used a data-driven systems biology approach
(Transkingdom Network analysis) to model host-microbe inter-
actions under WD and to investigate whether individual mem-
bers of microbiota and/or their interactions contribute to altered
host metabolism induced by the WD. The interrogation of the
Transkingdom Network pointed to individual microbes with
potential causal effects on the host’s lipid and glucose metabo-
lism. Furthermore, the analysis also enabled inference of whether
microbes might elicit beneficial or harmful effects on the host. In
addition, we detected associations between the frequencies of
these microbes and obesity in humans. We then validated the
functional role of the predicted bacteria in regulating metabolism
by supplementing mice with these microbes. Next, gene expres-
sion, electron microscopy, and multi-omics network pointed to a
novel finding that these two Lactobacilli may act by boosting
mitochondrial health in the liver leading to the improvement in
hepatic lipid and systemic glucose metabolism. Finally, the
metabolomics analysis revealed few metabolites (e.g., reduced
glutathione; GSH) that may mediate the beneficial effects of
probiotics.

Results

Transkingdom Network predicts beneficial and harmful
microbes. We started by inducing T2D-like metabolic disease in
C57BL/6 mice by feeding them a WD, which prior work has
found to yield murine phenotypes that mimic human T2D8-10.
As expected, when compared with mice receiving a control
(normal) diet, the mice fed the WD exhibited glucose intolerance
and insulin resistance (Fig. 1a, Fig. S1). The observed phenotypic
changes were consistent at 4 and 8 weeks, as well as between
replicate experiments. These results align with previous studies
showing metabolic changes in male C57BL/6 ] mice-fed WD 10,
Concurrently, the gut (ileum and stool) microbial communities
were altered because of diet (Fig. 1b). Although gut location
explained the majority of the variation in the microbial com-
munities as expected! 12 we observed robust changes in micro-
biota associated with feeding WD%13. Interestingly, the overall
composition of the gut microbiota was similar at 4 and 8 weeks of
WD (Supplementary Data 1a).

Previous studies showed associations between ecological
properties of microbial community (e.g., Shannon diversity)
and host metabolism!41°. Therefore, we analyzed the association
between several community parameters (Supplementary Data 1b)

and host phenotypes altered by WD. However, analysis of data
from two separate time points (4 and 8 weeks of WD) and
microbiome results from intestinal and fecal samples did not find
any correlations that showed significant associations in both
independent experiments (Supplementary Data 1c). Thus, it does
not seem that general dysbiosis explains metabolic alterations in
this experimental system.

Next, we sought to identify specific microbes regulating
metabolic parameters using a Transkingdom (TK) network
approach; this approach has been successfully used to identify
key microbiota associated with various disease states, including
human disease!®!17. Towards this end, we created a TK network
by integrating microbial abundances with systemic measurements
of host metabolic parameters changed by the WD (Fig. 1c,
Supplementary Data 2). The TK-network contained 1009 edges
between 226 nodes (6 metabolic parameters and 220 microbial
operational taxonomic units (OTUs)). The node degree distribu-
tion of the TK-network followed the power law function (Fig. 1c),
supporting that the TK-network captures a cross-regulatory
nature of the gut microbiota and host phenotypic ecosystem as
power law had been shown as a critical property of biological
networks!819, Thus, the TK-network provided an opportunity to
infer microbes responsible for controlling the overall composition
of the microbial community (i.e., keystone species) as well as
those that may control host phenotypes.

To identify microbes that likely contribute to T2D-related
systemic changes in metabolism, we calculated a network
property, called bipartite betweenness centrality (BiBC) that
measures the frequency with which a node connects other
microbe and host nodes in the graph20. We then integrated BiBC
scores of each OTU with the WD-induced changes in abundance
of ileal microbiota. A microbe was considered to be potentially
beneficial (T2D improver) if it had a high-BiBC score and a lower
abundance in the ileum of WD-fed mice (Supplementary Data 3).
Conversely, a microbe was considered to be potentially harmful
(i.e, a T2D worsener) if it had a high-BiBC score and a higher
abundance in the ileum of mice fed WD (Supplementary Data 4).

As a result of these analyses, we identified four OTUs predicted
to regulate glucose metabolism, which corresponded with high
similarity to four bacterial species Lactobacillus johnsonii,
Lactobacillus  gasseri, Romboutsia ilealis, and Ruminococcus
gnavus (Figs. 1d, e; Supplementary Data 16). The first two
microbes were considered potentially beneficial (ie., T2D
phenotype improvers). The other two (R. ilealis and R. gnavus)
were predicted to be worseners. Notably, R. gnavus has been
previously shown to be associated with obesity?!22. Overall, these
results indicate that individual microbes and/or their interactions
and not community level dysbiosis (Fig. 1, Supplementary Data 1)
could be key players in T2D.

It was proposed that keystone species have significant influence
on the rest of gut microbiota, also characterized by a high number
of connections within a network?>»2%. Therefore, we asked
whether microbes with characteristics of keystone species in our
network are among microbes that are predicted to influence host
metabolic parameters. Using an approach developed by Berry and
Widder?4, we investigated the microbial network and found one
microbe with the closest match to Bacteroides pectinophilus, with
a prominent keystoneness score, followed by few other microbes
that also might qualify as keystone species (Figs. 1d, e,
Supplementary Data 5, Supplementary Data 16). Notably, the
candidate microbes predicted to affect the host had a low
keystoneness score, suggesting that microbes with potentially
high effect on the host do not necessarily play a central role in
regulating the microbial community (Fig. 1d, Supplementary
Data 5).
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Inferences from mice are validated by associations in humans.
To check the relevance of the candidate microbes in humans we
identified a human study of a clinical population that consumes a
WD-like diet and used the data to computationally evaluate our
predictions?°. In agreement with inferences from mouse data, we
found correlations between body mass index (BMI) and the

NATURE COMMUNICATIONS | (2021)12:101] https://doi.org/10.1038/s41467-020-20313-.

abundance of these microbial candidates (Fig. 2) in obese
humans?®. Specifically, the abundance of improvers was nega-
tively correlated with BMI, whereas the abundance of the wors-
ener was positively correlated. Furthermore, we found R. ilealis to
be present in over 80% of obese patients, suggesting that this
microbe could be a prevalent pathobiont in obese humans.
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Fig. 1 Inference of gut microbes affecting glucose metabolism in the host. a The red and blue colors indicate higher and lower levels of metabolic
parameters measured in mice fed normal diet (ND) or western diet (WD) at 4 and 8 weeks. Source data are provided as a Source Data file. b Principal
Component Analysis of stool (triangle) and ileal (circle) microbial communities of mice on ND (blue) or WD (red). Source data are available at https://
www.ncbi.nlm.nih.gov/sra/?term=PRJNA558801. ¢ The microbe and host parameter nodes are represented by circles and squares, respectively, in the
transkingdom (TK) network. Red and blue colors of nodes indicate increased and decreased (WD/ND) fold change, respectively, whereas the size of circle
represents frequency of microbe in stool of WD mice. The black and green node borders indicate the microbes were significantly increased or decreased,
respectively, in ileum of WD mice compared with ND (Fisher's p value across experiments <0.05). The orange and black edges indicate positive and
negative correlations, respectively. The degree distribution of the TK-network follows a power law. The blue line indicates the fitted line. Source data are
available at https://tinyurl.com/TK-NW-Fig-1C. d The left two figures allow inference of microbial candidates that are potentially improvers (left figure) or
worseners (middle figure) using high values of TK-network property (bipartite betweenness centrality (BiBC) on the x axis) and significance of change in
ileal (WD vs ND) abundance of microbes (log transformed Fisher's p value across experiments on y axis). The horizontal green line indicates a log
transformed value for Fisher's p value of 0.05. The right figure shows the keystoneness score (x axis) of the microbial nodes (y axis). Source data are
provided as a Source Data file. e lleal abundance of potential candidate and keystone microbes in ND and WD-fed mice at 8 weeks. Asterisk indicate the
change in abundance passed statistical significance threshold (two-tail Mann-Whitney p value <0.2 in each experiment, Fisher's p value across
experiments <0.05, and FDR <10%. Each dot represents a mouse, bars present median of the group. Source data same as for b.
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Fig. 2 Computational verification of predicted microbes in human data from the literature25. Each scatterplot shows the abundance of the microbes (X
axis) in stool versus the BMI of obese humans (Y axis). The dotted line indicates the fitted line. The Spearman rho correlation coefficient and one-tail p
value is shown. Data retrieved from www.ebi.ac.uk/metagenomics/studies/ERP015317.

Although the result for R. ilealis seemed to be more robust we
observed only trend of positive association for R. gnavus that
concurs with much smaller BiBC score for this bacterium (Figs. 1
and S2). Altogether, these observations provide further support
for the predictions resulting from our analyses in the WD-fed
mouse model.

Lactobacilli improve and Romboutsia worsen glucose metabo-
lism. Encouraged by the support of our inferences in human data,
we proceeded to test the role of L. gasseri, L. johnsonii, and R.
ilealis in in vivo experiments designed according to predicted
functional effects on the host. We anticipated that potential
metabolic improvers (L. gasseri, L. johnsonii) would ameliorate
metabolism damaged by WD, whereas the potential pathobiont
(R. ilealis) would worsen metabolism in mice fed with normal
diet. As predicted, WD-fed mice administered L. gasseri or L.
johnsonii showed improved glucose tolerance (AUC and 120 min
glucose levels) compared with mice on WD (Figs. 3a and S3). In

addition, supplementation with L. gasseri ameliorated the estab-
lished glucose intolerance in mice (Figure S4). Conversely, mice
supplemented with R. ilealis showed impaired glucose tolerance
(15 mins. glucose levels in glucose tolerance test (GTT)) and
reduced fasting insulin compared with mice fed with normal diet
(Figs. 3a and S3). Accordingly, homeostatic model assessment
(HOMA)-B, the index that reflects pancreatic beta-cell function,
was also reduced by supplementation with R. ilealis (Fig. S3).
These results suggest that the worsener/pathobiont and improver/
probiotic microbes modulate the host systemic phenotypes likely
via different mechanisms. Indeed, although higher levels of glu-
cose early after glucose injection are most probably explained by
decreased production of insulin in R. ilealis supplemented mice,
L. gasseri and L. johnsonii improve glucose tolerance without
altering insulin levels. Furthermore, whereas adiposity was not
altered by R. ilealis, it was reduced in mice supplemented with
improvers (L. gasseri or L. johnsonii) (Fig. 3a).

Although many human studies did not detect significant
changes in fecal microbiota after probiotic administration20-28,
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Fig. 3 Experimental validation of microbial candidates. a Metabolic parameters in mice given control diets and supplemented with or without the
indicated microbe. Glucose tolerance test (GTT) curves show the mean and SD of blood glucose over time. Open and closed circles indicate two
independent experiments; * indicates statistically significant differences in levels of the parameter between control group (WD for Lactobacilli, ND for R.
ilealis) versus those supplemented with bacteria (one-tail t test p value <0.05 with FDR <15%). Blue, ND; red, WD; light green WD with L. gasseri (WD +
LG); dark green, WD with L. johnsonii (WD + LJ); orange, R. ilealis (ND + RI), respectively. Source data are provided as a Source Data file. b Principal
Component Analysis of stool (triangle) and ileal (circle) microbial communities and Venn diagram of microbes changed in mice on ND, WD, WD + LG or
WD + LJ and with >0.1% median abundance in at least one group across experiments (Fisher's p value <0.05 calculated using two-tail Mann-Whitney per
experiment). For Lactobacilli supplementation experiments, n =11 mice for ND, WD and WD + Lg groups, n =10 mice for WD + Lj group. For R. ilealis (ND

and ND + RI), n=5 mice per group.

there were recent reports concerning the possible damaging
effects of probiotics on the upper intestinal microbiota2”-30,
Therefore, we sequenced 16 S rRNA gene in ileum and fecal
samples from mice supplemented with three candidate bacteria.

Very few changes were observed in the ileal and stool microbiota
composition due to supplementation by these microbes (Fig. 3b,
Fig. S5a, Supplementary Data 6). In hindsight, these results agree
with the low keystoneness score of all three tested microbes that
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have indicated their little influence on the rest of bacterial
community (Fig. 1d). Furthermore, we did not find differences for
individual taxa in stool samples in mice supplemented with
bacteria. In the ileum, only one bacterium, Anaerotruncus
colihominis (Supplementary Data 16), was reduced owing to
western diet and increased by both L. gasseri and L. johnsonii
(Fig. S5b). In agreement with our result, a study of gut microbiota
from the Old Order Amish sect found this microbe to be
negatively correlated with BMI and serum  triglycerides3!.
Altogether, however, minimal alterations in microbiota induced
by L. gasseri and L. johnsonii supplementation did not explain
restoration of glucose metabolism promoted by these bacteria.

Lactobacilli improve hepatic mitochondria and lipid metabo-
lism. Besides identifying effective probiotics for obesity/diabetes,
it is critical to establish the host pathways through which these
microbes exert their effect. Therefore, we next investigated two
major target organs (intestine and liver) upon which both Lac-
tobacilli might be acting to improve systemic metabolism. For a
comprehensive evaluation of these organs we first analyzed global
gene expression altered by L. gasseri and L. johnsonii supple-
mentation. To identify common mechanisms by which L. gasseri
and L. johnsonii improve metabolism, we focused on the genes
that responded similarly to both microbes by identifying genes
differentially expressed between both L. gasseri and L. johnsonii
comparing with WD. The transcriptome of the ileum and liver
showed distinct changes in response to supplementation by these
bacteria (Fig. 4a). In striking contrast to the number of genes
differentially expressed in the ileum (152, false discovery rate;
FDR < 10%), there were much higher numbers of genes differ-
entially expressed in the liver (654, FDR < 10%) (Supplementary
Data 7-8). Furthermore, the great majority (638/654) of these
genes were upregulated by Lactobacilli supplementation.

Functional enrichment analysis showed that genes that were
changed in the ileum were enriched for only a few categories with
the circadian rhythm function as the main one (Supplementary
Data 9). Notably, one of the genes was Nfil3, which was
downregulated in the ileum of L. gasseri or L. johnsonii
supplemented mice as compared with the WD mice (Supple-
mentary Data 7). In agreement with our results, the knockout of
this gene in the intestinal epithelium had been shown to prevent
mice from obesity, insulin resistance, and glucose intolerance3?.

Pathway enrichment analysis in liver, however, showed that
multiple categories, and processes related to mitochondrial
functions were over-represented among genes upregulated by L.
gasseri and L. johnsonii (Figs. 4b and S6, Supplementary Data 10).
In addition, further analysis demonstrated that genes belonging to
all five mitochondrial complexes of the oxidative phosphorylation
pathway (Fig. 4c) were upregulated in the liver of L. gasseri and L.
johnsonii supplemented mice (Supplementary Data 8). There was
also a group of genes coding for large and small subunits of
mitochondrial ribosomal proteins with increased levels of
expression in the L. gasseri and L. johnsonii group. Furthermore,
genes involved in mitochondrial fusion were upregulated by the
Lactobacilli including mitofusin 1 and 2 (Mfnl, Mfn2),
mitoguardin 2 (Miga2), and optic atrophy 1 (Opal) (Supple-
mentary Data 8).

Hepatic mitochondrial functions are well known to be
dysregulated in T2D33-3%. Overall, our results suggest that in
addition to mitochondrial functions, these probiotic bacteria
induced structural/morphological changes in liver mitochondria.
Thus, we performed electron microscopy of the livers from mice
fed with WD and supplemented or not with each Lactobacilli (i.e.,
WD, WD + LG, WD +1J) (Fig. 4d). Although there was no
difference in the number of mitochondria, overall area occupied

by mitochondria was larger in WD group mice than in L. gasseri
or L. johnsonii (Fig. 4e) suggesting increased size of mitochondria
in livers of WD as compared with mice supplemented by
Lactobacilli. This result indicates that mitochondrial swelling
caused by WD, a phenomenon that can perturb proper
functioning of mitochondria30-38, was ameliorated by probiotic
supplementation.

Next, we undertook quantitative evaluation of mitochondrial
ultrastructural changes. Current agreement in the field is that
healthy and damaged mitochondria correspond to dark, electron-
dense and lucent, fragmented cristae images, respectively3/-°.
According to those criteria, we first identified a set of healthy and
damaged mitochondria within individual images (Fig. 4f). Next,
we estimated, in an unbiased manner (i.e., comparing healthy and
good mitochondria within a given sample), which image
parameters discriminated between the two types of mitochondria.
We found lower values of standard deviation, integrated density,
and the density mode in healthy compared with damaged
mitochondria (note, in grayscale, white is 255 and black is 0)
(Supplementary Data 11). Comparison between the three groups
of mice showed significantly lower levels of these parameters in L.
gasseri and L. johnsonii groups than in WD (Fig. 4f), pointing to
healthier mitochondria in the former two groups of mice. Overall,
these results support the prediction derived from gene expression
data and indicate that L. gasseri and L. johnsonii supplementation
prevented hepatic mitochondrial damage induced by western diet.

One of the important consequences of improved mitochondrial
health is a restoration of fatty acid beta-oxidation. This process
decreases build-up of detrimental fatty acids in the liver leading to
improved systemic glucose metabolism#%4!. In our data, among
19 regulated genes from the beta-oxidation gene subset, 18 genes
were upregulated by supplementation of probiotic strains
(Supplementary Data 12). Among upregulated genes were those
involved in fatty acid transport (Slc25al7, Slc27a2), oxidation
(Acads, Acadl) and hydration (Echsl) of fatty acyl representing
major steps of beta-oxidation. These results pointed to possible
increase in catabolism of fatty acids by Lactobacilli supplementa-
tion. Indeed, we found overall reduction of total hepatic lipids
including several most abundant fatty acids known to have
damaging effects on metabolism associated with T2D*? such as
monounsaturated fatty acids, oleic, and palmitic acids (Figs. 4g
and S5¢, Supplementary Data 13). Overall, these results are in
accordance with the idea that changes in liver fat are central to
development as well as reversion of T2D*3.

Besides fatty acids metabolism, two genes with well-established
functions in cholesterol metabolism were also upregulated by
both Lactobacilli: Abcg8, (hepatic cholesterol efflux*4) and
Cyp7al, (conversion of cholesterol into bile acids*®) (Fig. 4h).
Therefore, we measured cholesterol in liver and serum samples.
Although there was no change in serum cholesterol, there were
reduced levels of liver total cholesterol in mice supplemented with
L. gasseri or L. johnsonii (Fig. 4h). These results agree with an idea
that alterations in the liver might precede lipid alterations
detectable in serum*3.

Multi-omic network infers key liver genes for effects of Lac-
tobacilli. To identify potential mechanisms by which Lactobacilli
alter lipid and glucose metabolism, we created a multi-omic
network by integrating the gene expression changed by Lacto-
bacilli and lipid profile from the liver with systemic measure-
ments of metabolic parameters changed by the WD (Fig. 5a). The
multi-omic network contained 1776 edges connecting 380 nodes.
The node degree distribution of this network followed the power
law function (Figure S7), a critical property of biological
networks!819, Furthermore, although over half of differentially
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expressed genes made into the multi-omic network, the enrich-
ment analysis showed similar results with mitochondrial trans-
lation, fusion, organization, and autophagy formations being top
enriched functions in this network (Fig. 5b). Next, we inter-
rogated this network to infer genes regulated by Lactobacilli and
potentially responsible for changing the systemic phenotypes.
Specifically, we used the degree (local network property counting

a) b)

the immediate neighbors) and BiBC20, which is a global network
property that measures the overall frequency with which a node
connects to the nodes of other omics-type in the graph. Note-
worthy, we found that gene expression nodes were predominantly
connected to GTT, fasting glucose and 120 min glucose, two of
which were significantly decreased by Lactobacilli supplementa-
tion (Fig. 5a-c). Furthermore, Ifitm3, Usp50, Rail2 (Elp5), and
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Fig. 4 Transcriptome analysis, liver mitochondria, and lipids after supplementation with L. gasseri or L. johnsonii. a Number of differently expressed
genes (#DEGs, two-sided t test p value <5% in each Lactobacilli, Fisher's p value <5% calculated over both Lactobacilli, and FDR <10%) regulated by
L. gasseri and L. johnsonii in the same direction comparing to western diet. b Over-represented processes in the genes of the network shown in a of
mice supplemented with Lactobacilli. ¢ A heatmap showing the median expression of genes from the respiratory chain process in the livers of mice.

d Representative electron microscope images of liver cells. The blue and red arrows indicate healthy and damaged mitochondria, respectively. e, f Various
metrics of mitochondria in the liver of mice; *statistically significant differences between control and groups supplemented with bacteria (one-sided t test
p value <5%). Data are presented as mean = s.d. (n =40 images for WD, n =35 images for WD + LG and n =37 images for WD + LJ groups; h =60
mitochondria for healthy and n = 61 for damaged mitochondria). Source data are provided as a Source Data file. g Levels of long-chain fatty acids,

h expression of cholesterol metabolism genes in livers, cholesterol levels in serum and liver of mice fed WD and supplemented with or without Lactobacilli.
Each symbol represents one mouse, bars are median values. Source data are provided as a Source Data file; n =3-5 mice per group (except serum
cholesterol where n=10-11 mice per group); * indicates statistically significant differences in WD vs WD + LG or LJ (one-sided t test p value <5%); #

indicates p = 0.065.

Snap47, which are known to be involved in the maintenance of
functional mitochondria*6-48, were found as key genes connect-
ing expression alterations with systemic glucose metabolism
(Fig. 5¢). Interestingly, epididymal fat (also decreased in mice by
Lactobacilli) was highly connected to liver fatty acids and to only
one gene (Mfsd3), which codes for a solute carrier previously
found in association with palmitic acid levels in a genome-wide
association study*°.

Thus, the network analysis further suggested that the
expression of genes responsible for mitochondrial organization
and maintenance in the liver is the primary driver of improved
systemic glucose metabolism.

L. gasseri and L. johnsonii increase serum GSH and bilirubin.
Next, we applied a metabolomics approach to identify potential
mechanisms responsible for improved hepatic mitochondrial
health evoked by Lactobacilli. First, we established that metabo-
lites were specifically increased by these bacteria in the serum of
mice that did not contain other microbes. For this, germ-free
mice fed WD were monocolonized or not with L. gasseri for
2 weeks and mouse serum was subject to metabolite profiling.
Out of 133 metabolites that were identified (Supplementary
Data 14a), 12 were increased after monocolonization, ranging
from twofold for 8-iso-15-keto-PGF2a to 48 for bilirubin (Fig. 5d,
Supplementary Data 14b). After this pre-selection in mono-
colonized mice, we compared abundance of the 12 metabolites
between pools of sera of SPF mice supplemented with L. gasseri or
L. johnsonii in three independent experiments (see details in
Methods). We found that reduced (but not oxidized) GSH
increased about four times, and bilirubin showed a trend to
increased levels (FDR = 0.12), whereas two tauro-conjugated bile
acids and 3-hydroxytetradecanedioic fatty acid showed various
levels of decrease in Lactobacilli supplemented SPF mice (Fig. 5e,
Supplementary Data 14c).

Although the mechanisms of GSH surge by Lactobacilli is not
clear yet, this metabolite seemed to be a plausible candidate to
cause hepatic mitochondrial improvement in mice as its
antioxidant functions are well-established®’. To test this hypoth-
esis, we used AML-12 cell culture mimicking diabetic alterations
in liver by adding high concentrations of fructose and glucose.
Treatment of cells with different concentrations of GSH (in high
sugar) enhanced expression of several genes with well-known
mitochondrial functions such as mt-Atp6, Ndufvl, Mfnl, Opal,
Foxo3, Gabpa whose expression was also upregulated by
Lactobacilli in the livers of mice (Fig. 5f, Supplementary Data 15a).
We further tested three genes (Usp50, Ifitm3, Rail2) predicted by
the network analysis (Fig. 5¢) to play a key role in the control of
mitochondrial health in liver and systemic glucose metabolism
and have been previously shown to support mitochondrial
homeostasis?’48, While we could not detect Usp50 in cell
culture, the two other genes (Ifitm3, Rail2) showed increased
expression in 6 and 9 mM GSH similar to other mitochondrial

genes (Fig. 5f). Thus, altogether these results indicate that an
increase in GSH in the serum of mice is likely to be one of the
important mechanisms used by Lactobacilli for boosting liver
mitochondrial and antioxidant function, consequently improving
systemic glucose metabolism.

Discussion

Our work provides further support for the hypothesis that var-
iations in abundance of a few key (but not keystone) microbes
rather than overall changes of the microbial community might
explain microbiota-related damage caused by western diet in
T2D. Indeed, administration of two bacteria (L. gasseri and L.
johnsonii), decreased by western diet, improved systemic glucose
metabolism. The fact that this improvement could be achieved by
supplementation of single bacteria, however, does not eliminate a
possibility of microbe-microbe interaction playing a role in
this process. Furthermore, both Lactobacilli had very low key-
stoneness, and accordingly we did not detect strong alterations
in the gut microbiota (fecal or ileal) of mice supplemented by
these two microbes. This is in agreement with several human
studies that used other strains of probiotic bacteria and largely
did not observe changes in taxonomic composition of fecal
microbiota?6-28, In contrast, two recent reports showed altera-
tions in human mucosal microbiota communities by probiotics
and potential adverse side effects of probiotics, especially when
used after antibiotics?%-30.

The two species of Lactobacilli we predicted and tested in mice
fed WD, enhanced systemic glucose tolerance, decreased adip-
osity, reduced several “bad lipids” in the liver, which could be all a
consequence of improved hepatic mitochondrial health. This
thought is supported, on the one hand, by clinical studies that
have shown that reduction in hepatic fat in animals and humans
results in recovery from T2D37°1°2, On the other hand,
impairment of liver mitochondrial function has been long known
as an important contributor to metabolic disease33-3%°3, Fur-
thermore, it has been shown that both palmitic and oleic acids
(decreased by Lactobacilli) can damage liver mitochondria®4-26,
Conversely, enhancement of mitochondrial functioning stimu-
lates beta-oxidation resulting in the reduction of damaging fatty
acids®7%8.

The multi-omic network analysis in our study further sup-
ported the central role of hepatic mitochondrial health. Specifi-
cally, it pointed to several genes (Fig. 5a—c) involved in proper
mitochondrial organization and mitochondrial autophagy
(mitophagy) as the key players in relation to systemic glucose
metabolism.

Investigations performed over the last decade have reported
several mechanisms whereby microbiota can affect T2D including
modulation of inflammation and immune mediators, gut hor-
mones, mucosal permeability, insulin production among others>.
Our present findings bring to the picture of host-microbiota
interactions an intriguing link between mitochondria (regarded as
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mammalian endosymbionts) and the symbiotic microorganisms
in the gut. Interactions between mitochondria and microbiota is
an emerging direction in microbiome research and have been
implicated in Parkinson’s disease®, intestinal cell death by
antibiotic-resistant microbiota®! and longevity of Caenorhabditis
elegans®2. Metabolic health is synonymous with mitochondrial
health where the ancestral mitochondrion-microbiome axis may
play an important role®3.

Our investigation of serum metabolome pointed to several
changes caused by Lactobacilli. Although the fact that Lactobacilli
supplementation can alter certain bile acids levels might not be

a)

HOMA-IR

surprising, a biological role of these alterations is uncertain.
Furthermore, we were not able to follow-up the detected changes
by targeted metabolomics in this work, which can be a subject of
future studies. However, two metabolites, GSH and bilirubin, are
known to play complementary antioxidant roles, which would
improve mitochondrial respiration and other metabolic
functions®4%, More recent reports demonstrated that deletion of
biliverdin reductase A, which transforms biliverdin into bilirubin
induced oxidative stress and lipid accumulation® and that
bilirubin itself protects mitochondria via scavenging O,~%7. GSH,
however, uses somewhat different mechanisms of beneficial
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Fig. 5 Multi-omic network analysis, metabolomics in mice supplemented with Lactobacilli and validation of glutathione in vitro. a Multi-omic network
integrating gene expression of genes significantly regulated in liver by Lactobacilli (circles), liver lipid profile (diamonds), and systemic metabolic
parameters (squares) with red symbols indicating upregulated and blue are down in Lactobacilli supplemented mice. Green outline of nodes indicates
significantly decreased lipid or phenotype; size of circle corresponds to the combined score of degree and bipartite betweenness centrality (BiBC) in the
network. The orange and black edges indicate positive and negative correlations, respectively. Genes with top degree and BiBC are indicated. Source data
are available at https://tinyurl.com/multi-omic-NW-Fig-5A. b Gene ontology biological functions over-represented in the genes of multi-omic network.
¢ Scatterplot showing the degree and BiBC of all nodes in the multi-omic network with genes (gray), lipids (blue), phenotypes (green). d Fold-changes of
133 serum metabolites in germ-free (GF) mice fed western diet (WD) and colonized with L. gasseri for 2 weeks in comparison with GF mice on WD (n =2
per group). TG, Triacylglycerol (16:0/18:2(92,122)/20:4(5Z,8Z,11Z,14Z)); MG, Monoacylglycerol; 8-iso-15-keto PGF2a, 8-iso-15-keto Prostaglandin F2a.
Source data are provided in Supplementary Supplementary Data S14. e Changes in 12 metabolites identified in Fig. 5d in specific-pathogen mice (SPF) fed
WD (data of serum pools of 4-6 mice in each pool per group), in five experiments of Lactobacilli-supplemented mice, mean fold change across five
experiments and FDR (false discovery rate) is plotted. Source data are provided in Supplementary Supplementary Data S14c. f Left heatmap shows the
geometric mean of normalized gene expression in AML-12 cells treated with either low sugar medium (glucose 17 mM), high sugar medium (glucose and
fructose at 50 mM each) or high sugar medium supplemented with 4 mM, 6 mM, or 9 mM of reduced glutathione (GSH) ethyl ester (5-6 independent
experiments). The right heatmap shows geometric mean of normalized gene expression from RNA-Seq in liver of western diet (WD) fed mice or WD-fed
mice supplemented with either L. gasseri or L. johnsonii (red, high; blue, low relative gene expression). Source data are provided as a Source Data file.

effects on mitochondria. For example, it was shown to improve
mitochondrial fusion®®. Indeed, we found that both Lactobacilli
in vivo and GSH in vitro increased expression of three main
GTPases (Mfnl, Mfn2, Opal) required for this process.

Unlike bilirubin, which is produced by hepatocytes, GSH origin
is not limited to mammalian cells but it can also be produced by
many bacteria. For example, some species of Lactobacilli are
known to produce GSH, which they utilize to protect themselves
from bile salts, reactive oxygen species and other types of cellular
damages®70. Therefore, it is plausible that our observation of
increased levels of GSH is a result of simultaneous induction of its
production by host cells’! and by Lactobacilli itself. Although,
further studies are warranted to identify the main source of GSH,
it is highly plausible that this metabolite is one of the main
mediators of Lactobacilli effect on liver mitochondria.

In agreement with our result, it was reported that another
strain of L. johnsonii may improve hepatic mitochondria’2.
Interestingly, these mitochondrial effects may not be limited to
the liver, as another species of Lactobacilli L. paracasei attenuated
cardiac mitochondrial dysfunction in obese rats’3, and a different
strain of L. gasseri increased resistance to mitochondrial dys-
function in aging C. elegans’*. Notable, the two strains (L. gasseri
and L. johnsonii) identified and tested in our study are also
promising candidates for future testing in clinical settings of T2D
as they would have minimal adverse effects on gut microbiota
while improving glucose metabolism. Other strains of these two
species of Lactobacilli have been tested in clinical trials for other
diseases and in mouse models of diabetes”®”> and thus might
share critical mechanisms of effects on the mammalian host.

In conclusion, our study demonstrates that damaging effects of
western diet on metabolism can be at least partially explained by
decrease of beneficial microbes (e.g., Lactobacilli) and increase of
pathobionts (e.g., R. ilealis) in gut microbiota, each of them acting
via different host pathways. Furthermore, it revealed potential
probiotic strains for treatment of T2D as well as critical insights
into mechanisms of their action, offering an opportunity to
develop targeted therapies of diabetes rather than attempting to
restore “healthy” microbiota as a whole.

Methods

Mice and diets. Seven weeks old, C57BL/6 male mice were purchased from
Jackson Laboratories (Bar Harbor, Maine) and housed at Laboratory Animal
Research Center (LARC) at the Oregon State University. After 1 week of accli-
matization, mice were either switched to western diet (WD) D12451 containing
45% lard and 20% sucrose or to a matched normal diet D12450K (ND) produced
by Research Diets (New Brunswick, NJ). Mice were on these diets for 8 weeks. Two
independent experiments were performed with five mice per group in each
experiment. Ethical approval for this work was obtained from the Oregon State

University Institutional Animal Care and Use Committee. The study complied
with all relevant ethical regulations regarding the use research animals.

Bacteria. L. gasseri ATCC 33323 were purchased from American Type Culture
Collection (ATCC, Manassas, VA). L. johnsonii NCC 533 were donated by Nestlé
Culture Collection (Nestec Ltd., Nestlé Research Center Lausanne, P.O. Box 44,
CH-1000 Lausanne 26). Both bacteria were grown anaerobically in MRS broth for
24 h at 37°C, colony-forming unit (CFU) was determined by serial dilutions, ali-
quoted in 15% glycerol stocks in cryovials and stored at —80°C. Before the gavage,
the bacterial glycerol stocks were thawed, spun down, and resuspended in sterile
phosphate-buffered saline (PBS). For Romboutsia experiment, active culture of R.
ilealis DSM 25109 were purchased from the German Collection of
Microorganisms DMSZ.

Bacterial supplementation experiments. For the microbial supplementation
experiments, 8-week-old C57BL/6 mice were given either ND or WD or WD + L.
gasseri (gavaged 1 x 10° CFU/mouse every other day) or WD + L. johnsonii
(gavaged 1 x 10° CFU/mouse every other day) for 8 weeks. For the control, both
ND and WD groups were gavaged with equal volume of PBS (0.2 ml per mouse).
Two independent experiments were performed with 5-6 mice per group per
experiment. For the treatment experiment, mice were fed ND or WD for 8 weeks
when one group of WD mice was supplemented with L. gasseri (gavaged 1 x 10°
CFU/mouse every other day). GTT was performed at 8 weeks on WD and 4, 9, and
12 weeks on WD + L. gasseri (n =5 per group). For R. ilealis supplementation
experiment, after 1 week of acclimatization, all mice were switched to ND and were
either given PBS or 1 x 10° CFU of R. ilealis every other day for 4 weeks (n=5).
Metabolic measurements were done as described below except for R. ilealis
experiment 1 mg/kg glucose was injected for IPGTT.

For gnotobiotic mouse experiment, germ-free mice on western diet were
colonized with 1 x 10° CFU L. gasseri on Day 0, Day 2, Day 4, and Day 12 and
killed on D14 (n=2).

Intraperitoneal glucose tolerance test (IPGTT). Mice were fasted for 6 h during
the light phase with free access to water. A concentration of 2 mg/kg glucose
(Sigma-Aldrich) was injected intraperitoneally. Blood glucose was measured at 0
min (immediately before glucose injection), 15, 30, 60, and 120 mins with a
Freestyle Lite glucometer (Abbot Diabetes Care).

Fasting insulin and fasting glucose. Mice were fasted for 6 h with free access to
water. Fasting blood was collected either via submandibular bleed or from the tail
vein. Insulin and glucose levels in fasting plasma or serum was measured with
Mouse Insulin ELISA Kit (Crystal Chem) and Glucose Colorometric Assay Kit
(Cayman Chemical), respectively, according to manufacturer’s protocol. HOMA-
IR and HOMA-B were calculated according to Egs. (1) and (2), respectively:

__ Glucose (mg/dL) x Insulin(¢U/mL)
- 405

HOMA - 1R

(1)

360 x Insulin (y ) % (2)

HOMA - B=—— ——/—" %2
Glucose (3f) — 63

The heatmap of results of systemic measurements was created using Morpheus
(https://software.broadinstitute.org/morpheus/).

Hepatic fatty acids and cholesterol. Hepatic fatty acids were quantified using
established protocols’®. In brief, total lipid was extracted from liver in
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chloroform-methanol (2:1) containing 1 mM butylated hydroxytoluene. 7-
Nonadecenoic acid (C19:1) was added as a recovery standard. Total protein was
measured after the initial homogenization step by bicinchoninic acid assay (Bio-
Rad, Hercules, CA). Fatty acids in the extracts were saponified in 80% methanol
containing 0.4 M KOH. Afterward, saponified fatty acids were converted to fatty
acid methyl esters in methanol containing 1% of 24 M H,SO, and then quantified
by gas chromatography.

Hepatic total cholesterol in liver lipid extracts and in serum was measured using
Amplex™ Red Cholesterol Assay Kit (Thermo Fisher Scientific) according to
manufacturer’s protocol.

RNA preparation and gene expression analysis. RNA was extracted using an
OMNI Bead Ruptor and 2.8 mm ceramic beads (OMNI International) in RLT
buffer followed by Qiashredder and RNeasy kit using Qiacube (Qiagen) automated
extraction according to manufacturer’s specifications. Total RNA was quantified
using Quant-iT RNA Assay Kit (Thermo Fisher Scientific). Complementary DNA
was prepared using qScript reverse transcription kit (Quantabio) and qPCR was
performed using Perfecta SYBR mix (Quantabio) and StepOne Plus Real Time PCR
system and software (Applied Biosystems). RNA libraries were prepared with
QuantSeq 3’mRNA-Seq Library Prep Kit (Lexogen) and sequenced using Illumina
NextSeq. Sequences were processed to remove adapter, polyA and low-quality
bases by BBTools (https://jgi.doe.gov/data-and-tools/bbtools/) using bbduk para-
meters of k = 13, ktrim = r, forcetrimleft = 12, useshortkmers = t, mink = 5, qtrim
=r, trimq = 15, minlength = 20.

Reads were aligned to mouse genome and transcriptome (ENSEMBL
NCBIM37) using Tophat (v2.1.1) 77with default parameters. Number of reads per
million for mouse genes were counted using HTSeq (v 0.6.0)78 and quantile
normalized. BRB-ArrayTools was used to identify genes differentially expressed in
the liver and ileum when supplemented with or without the Lactobacillus
candidates. Pathway enrichment was performed using Metascape’?.

DNA extraction and 16 S rRNA gene libraries preparation. For microbial
measurements, stool pellets were collected at T1 (4 weeks of diet) and stool pellets
and terminal ileum contents were collected at T2 (8 weeks). To get microbial DNA,
frozen fecal pellets, and ileum with content were resuspended in 1.4 ml ASL buffer
(Qiagen) and homogenized with 2.8 mm ceramic beads followed by 0.5 mm glass
beads using an OMNI Bead Ruptor (OMNI International). DNA was extracted
from the entire resulting suspension using QiaAmp mini stool kit (Qiagen)
according to manufacturer’s protocol. DNA was quantified using Qubit broad range
DNA assay (Life Technologies). The V4 region of 16 s rRNA gene was amplified
using universal primers (515 f and 806t) as in ref. '°. Individual samples were
barcoded, pooled to construct the sequencing library, and then sequenced using an
Illumina Miseq (Illumina, San Diego, CA) to generate pair-ended 250 bp reads.

16 S rRNA gene sequencing data analysis. The samples were demultiplexed and
forward-end fastq files were analyzed using QIIME v. 1.9.130. The default quality
filter parameters from QIIME’s split_libraries_fastq.py were applied to retain high-
quality reads (Phred quality score =20 and minimum read length = 75% of 250
nucleotides). A closed reference OTU picking with 97% sequence similarity was
performed using UCLUST®! and Greengenes reference database v13.88283 to
cluster 16 S rRNA gene sequence reads into OTUs and assign taxonomy. The
reference sequence of candidate OTUs from the Greengenes database was used to
obtain species level taxonomic assignment using Megablast®* (top hit using default
parameters). A threshold of 99% cumulative abundance across all samples in an
experiment was used to retain abundant microbes, thus removing OTUs with
~<0.01% abundance across all samples in that experiment. The read counts were
normalized using cuamulative sum scaling®’, accounted for DNA quantity, followed
by quantile normalization. The principal component analysis for the 16 S
sequencing data was created using Clustvis®¢, GraphPad Prism software (version
7), R packages seqtime version 0.1.1, igraph version 1.2.5.

Network analyses

TK Network reconstruction and prediction of causal microbes. Spearman rank
correlations were calculated between all pairs of microbes (OTUs) and metabolic
parameters (phenotypes) in each group of both experiments. A combined Fisher’s
p value was calculated for each pair from the correlation p values from each
experiment. A FDR was calculated on the combined p values separately for the
following correlations: (i) within metabolic parameters, (ii) within OTUs, and (iii)
between OTUs and metabolic parameters. We retained edges that satisfied the
following criteria: the sign of correlation coefficients in the two experiments con-
sistent in stool of WD-fed mice at 4 weeks (n = 35 per expt.), individual p value of
correlation within each experiment is <30%, combined Fisher’s p value of all
experiments <5% and FDR cutoff of 10% for within edges (i and ii). Finally, the TK
network was generated?0:61:87-89 by adding microbe-phenotype edges where the
microbe showed significant change in (WD vs ND) abundance in ileum at 8 weeks,
edges showed consistent sign of per group Spearman correlation coefficient
between the two experiments of three WD-fed groups (WD-stool 4 weeks,
WD-stool 8 weeks, and WD-ileum 8 weeks), and satisfied principles of causality®®
(i.e., had concordance between fold change in WD vs. ND comparison and

correlation sign between the two partners) in all three WD-fed groups. The net-
work was visualized in Cytoscape.

Identification of keystone microbes. Generation of training data were accom-
plished as follows: 100 instances of 542 generalized Lotka-Volterra models were
run to steady state and steady state species abundances were considered individual
samples. Those individual samples consisted of 10-100 species drawn from a
model-specific species pool. The size of the species pool was determined by
defining similarity in species composition between samples (between 0.4 and 0.95).
The individual models further varied in the following parameters: connectivity of
the species interaction matrix (between 0.005 and 0.7), negative edge percentage of
the species interaction matrix (0-100%), species-specific growth rates (between 0
and 1) and carrying capacities (between 0 and 100), as well as the topography of the
species interaction matrix (interactions sampled from a uniform distribution or
assigned according to the Klemm-Eguiluz model®!. The R-package seqtime was
used to generate the species interaction matrices®2.

Subsequently, each species included in a model was in turn removed from the
community and a Canberra distance between original and sub-sampled
community was calculated. In all, 1000 iterations of this procedure were performed
per species and the average Canberra distance induced by a species’ absence was
considered its keystoneness score.

For Model training, the data were split into training set and test set. The
training set was used to train a linear model to predict keystoneness based on mean
relative abundance and the following node parameters computed from a spearman
correlation network: sum of absolute correlation strength, node degree, relative
closeness centrality, betweenness centrality, and eccentricity. With the exception of
absolute correlation strength, the network parameters were calculated within the R-
package igraph (http://igraph.org). This model was then used to predict
keystoneness on the test set. A linear model between real and predicted
keystoneness in the test set gave an adjusted R* of 0.4219, with a p value <2.2e-16.

The trained linear model was subsequently applied to the OTU abundance data
and the previously computed correlation network to predict keystoneness scores
for each OTU. At last, keystoneness scores were scaled between 0 and 1 to remove
negative values occurring as an artifact of the linear model.

Multi-omic network analysis. Spearman rank correlations were calculated
between all pairs of genes, lipids, and phenotypes. The phenotypic subnetwork was
obtained from the TK network. For gene subnetwork, correlation was calculated by
pooling samples supplemented with the same Lactobacilli from both experiments.
Edges were retained if they satisfy the following criteria: the sign of correlation
coefficients in the two Lactobacilli groups should be consistent, individual p value
of correlation is <30%, combined Fisher’s p value over two Lactobacilli groups <5%,
FDR cutoff of 5%, and satisfying principles of causality (i.e., satisfied fold change
relationship between the two partners in the Lactobacilli vs. WD comparison). For
the lipid subnetwork, correlations were calculated per experiment in the WD
groups of the three datasets (two WD vs ND experiments, and a Lactobacilli
supplementation experiment). Edges were retained if the sign of correlation coef-
ficients was consistent, Fisher’s p value <5%, FDR cutoff of 10%, and satisfied
principles of causality.

For between-omics edges, correlations were calculated per experiment in the WD
groups of three data sets and a voting strategy was used for meta-analysis. Pairs were
shortlisted if they had the same sign of correlation and p values <10% in at least two
data sets. If the p value in the third data set was over the threshold, the pair was
retained but the third data set was removed during calculation of Fisher p value. The
pair was kept if the p-value in the third data set was under the threshold and the sign
of correlation was same in all three data sets, else the pair was entirely removed. Edges
with FDR < 10% and satisfying principles of causality were added to the network.

Computational analysis using human datasets. Sequence read files of 1046
humans?® were downloaded from European Bioinformatics Institute (https://www.
ebi.ac.uk/), quality filtered, and trimmed with ea-utils using default settings except
the base removal quality threshold was set at <20. Cleaned sequence reads were
binned into Greengenes (v13_8) 97% identity OTUs using the QIIME 1.9 closed
reference OTU picking workflow (pick_closed_reference_otus.py). Spearman cor-
relations between BMI and microbial abundance of exact candidate OTU (or the
sum of OTUs assigned to the bacterial species) were calculated in obese humans.
To avoid bias from outlier samples, a sample was considered only if had > 10 reads
per million for Lactobacillus OTUs and >100 reads per million for

Romboutsia OTUs.

Transmission electron microscopy (TEM). Frozen liver samples were prepared
and fixed in 1.5% paraformaldehyde and incubated at 4 °C overnight??, after which
fixed tissues were processed usinf a protocol based on ref. . Specifically, the
vibratome sectioned fixed tissues (~1 mm?3) were postfixed in solution containing
2% osmium tetroxide and 1.5% potassium ferrocyanide for 30 min at room tem-
perature in dark. It was followed by staining with 0.2% tannic acid in water for
10 min, fixing in 1% osmium tetroxide for 30 min and staining in 1% thiocarbo-
hydrazide in water for 20 min at room temperature. The samples were then
incubated with 1% osmium tetroxide for 30 min at room temperature. Then the
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samples were incubated with 0.5% uranylacetate in 25% methanol overnight at
40C, which was followed by incubation in Walton’s lead aspartate for 30 min at
60 C. Then samples were dehydrated with graded series of ethanol, infiltrated with
ethanol/epon mixture (1:1) for 1h at room temperature and 1:2 for 1 h at room
temperature. Ultramicrotome was done using a RMC PowerTome PC. Microscopy
was done with a Helios 650 NanoLab (ThermoFisher). Scanning transmission
electron microscopy mode was used for imaging. In all, 10-12 images were taken
per sample. The images were imported into FIJI (i.e. Image]) software (version
2.0.0-rc-69/1.52i). Each mitochondrion in the images was outlined and different
attributes were measured using default “measure” option in the software.

In order to identify image parameters that discriminate between healthy and
damaged mitochondria, we used images representative of all analyzed groups. In
each image, a pair of damaged (bright, lucent) and healthy mitochondria (dark,
dense) were identified according to images in EM atlas (http://www.drjastrow.de/
WAI/EM/EMAtlas.html). Next, we extracted quantitative data for 17 different
image parameters (See Supplementary Data 11) and analyzed which of those
differed between the two types of mitochondria. The selection has been performed
“blindly” (i.e., the image analyst was unaware of treatment identity of samples.
Among parameters that significantly differed between two types of mitochondria
we chose less interdependent ones to compare different treatment groups. To
establish whether the structure of mitochondria differs between groups
supplemented or not with probiotic bacteria we analyzed the above selected image
parameters in 119 TEM images from liver samples of nine mice totalizing 4709
mitochondria.

Un-targeted metabolomics. Serum samples used for metabolomics included the
following: germ-free mice fed WD for 2 weeks (n = 2), monocolonized for 2 weeks
with L. gasseri fed WD (n = 2); SPF mice supplemented or not with either L. gasseri
or L. johnsonii (n=4-6 per group) and fed WD for 8 weeks in two experiments
shown in Fig. 3; SPF mice first fed WD for 8 weeks, then supplemented (or not)
with L. gasseri for additional 12 weeks along with WD (n =5 per group). For
technical reasons, metabolomics was performed in pooled sera of each group of
mice, which were run in a randomized manner as one batch.

An aliquot of 30 pl of pooled serum was processed following a protocol adapted
from a published study®”. In brief, metabolites were extracted with four volumes of
cold methanol/acetonitrile (1:1, v/v). To precipitate proteins, the samples were
incubated for 1 h at —20 °C. After the samples were centrifuged at 4 °C for 15 min
at 15,871 x g (13,000 rpm), the supernatant was collected and evaporated to
dryness in a vacuum concentrator. The dry extracts were then reconstituted in
90 uL of acetonitrile/H20 (1:1, v/v) containing 10 ng/mL CUDA (12-
(((cyclohexylamino)carbonyl) amino)-dodecanoic acid). This standard was used as
a control to monitor platform stability along the fully randomized batch analysis,
and to account for possible injection variabilities. A quality control (QC) pooled
sample was prepared by combining, in a single vial, 10 uL of each sample. Pooled
QC sample provided a ‘mean’ profile representing all analytes encountered during
the analysis. To the QC sample a methanol solution containing verapamil and
verapamil-D3 (Cayman Chemical, Ann Arbor, MI) was added at a final
concentration of 0.1 ppm each. The ratio of their monoisotopic peaks was used to
monitor quantification stability along the fully randomized batch analysis. The
supernatant was then analyzed via LC-MS/MS (liquid chromatography with
tandem mass spectrometry).

High-resolution mass spectrometry was performed using an Agilent 6545 Q-
ToF downstream of an Agilent 1260 Infinity high-performance liquid
chromatography system consisting of a degasser, quaternary pump, autosampler
(maintained at 4 °C) and column heater (maintained at 30 °C). The Q-ToF
machine was operated using MassHunter software and an analysis in positive and
negative ionization mode was performed for each sample. Separation was achieved
using an InfinityLab Poroshell EC-C18 column (100 x 3.0 mm, 2.7 um, Agilent) at
a flow rate of 0.4 mL/min. Line A was water with 0.1% (v/v) formic acid and line B
was methanol with 0.1% (v/v) formic acid, adapted from a previously described
protocol®®. The column was pre-equilibrated with 1% B. After injection (3 pL of the
sample) this composition was held for 1 min and then changed to 30% B over the
next 10 min using a linear gradient. The composition was then changed to 100% B
over the next 14 min and then held at 100% B for 5 min. The mobile phase was
then adjusted back to 1% B over two minutes and the column was re-equilibrated
for 6 min prior to the next injection. The Agilent Q-ToF mass spectrometer was
equipped with an Agilent JetSpray source operated with the following parameters:
Auto MS/MS mode, Gas Temp, 325 °C; Drying gas, 10 L/min; Nebulizer, 20 psi;
Sheath gas temp, 375 °C; Sheath gas flow, 12 L/min; Capillary Voltage (VCap),
4000 V; Nozzle voltage (Expt), 600 V; Fragmentor, 175 V; Skimmer, 65 V; Oct 1 RF
Vpp, 750 V; Mass range, 100-3000 m/z; Acquisition rate, 10 spectra/s; Time,

100 ms/spectrum. The MS/MS spectra (mass range, 50-3000 m/z; acquisition rate,
10 spectra/s; time, 100 ms/spectrum) were obtained by isolating the precursor ion
with a medium isolation width (~4 m/z) summing spectra generated with collision
energies of 15, 30, and 40 V. Blanks and QC samples were run before and after
every four serum samples to ensure system equilibration. Based on the
reproducibility of our QC and on the intensity of the CUDA, we can assume that
the instrument was stable during the full randomized batch, and that intensity
differences are due to biological differences and not to technical variation.

LC-MS/MS data processing. Raw data were imported into Progenesis QI soft-
ware (Version 2.3, Nonlinear Dynamics, Waters) in order to perform data nor-
malization, feature detection, peak alignment, and peak integration®7-%.
Metabolites were confirmed by MS, MS/MS fragmentation, and isotopic distribu-
tion using Metlin (Version 1.0.6499.51447, https://metlin.scripps.edu) and the
Human Metabolome (Version March 2020, https://hmdb.ca) databases as the
reference!%0. The data acquired in both, electrospray ionization (ESI) negative and
positive modes, which resulted in ESI+ in 7100 features with just MS information,
2461 features with both MS and MS/MS information; serum ESI— gave 2141
features with just MS information and 1204 features with both MS and MS/MS
information. Thus, a total of 3665 features with both MS and MS/MS information
was obtained. Next, a metabolite was sieved out when a match with a difference
between observed and theoretical mass was <10 ppm and the molecular formula of
matched metabolites further identified by the isotopic distribution measurement.
By doing so, the number of annotated compounds with a known identification was
reduced to 133 metabolites, which had match score >35 (range 36.1-57.8), and
isotope similarity between 67.8 and 99.1%). We chose to increase the confidence of
our annotations, rather than increase the number of annotated compounds with a
lower level of confidence. Zero values were assigned minimal values calculated as
three STDEV of technical variation subtracted from the minimal measured level of
a given metabolite in this study. Technical variation was defined by using CUDA
and corresponded to STDEV of 0.135 and mean of 1.02. The level of metabolite
identification was 2 for all compounds based on Sumner et al. 101: level two refers
to putatively annotated compounds (e.g., without chemical reference standards,
based upon physicochemical properties and/or spectral similarity with public/
commercial spectral libraries).

Cell culture. AML-12(ATCC CRL-2254) cells were grown in complete growth
medium (DMEM:12 Medium (ATCC 30-2006) supplemented with 10% fetal
bovine serum (FBS), 10 ug/ml insulin, 5.5 pug/ml transferrin, 5 ng/ml selenium,

40 ng/ml dexamethasone, and 1% penicillin/streptomycin) at 37 °C in 5%CO2.
After obtaining 80-85% confluency, 20,000 cells per well were seeded in complete
growth medium in 96 well plate for 24 h. After 24 h of incubation, the medium was
replaced either with low glucose medium (5.5 mM Glucose, 10% FBS, low sugar
group) or mixture of 100 mM Glucose and Fructose (1:1 ratio, with 10% FBS, high
sugar group) alone or mixed with 4, 6, or 9 mM reduced GSH ethyl ester (GSH,
Sigma-Aldrich). After 6 h of treatment, culture medium was removed, cells were
lysed in RLT buffer (Qiagen) and RNA was extracted using RNeasy Mini kit
(Qiagen). Total RNA was quantified using Quant-iT RNA Assay Kit (Thermo
Fisher Scientific). Complementary DNA was prepared using qScript reverse tran-
scription kit (Quantabio) and qPCR was performed using Perfecta SYBR mix
(Quantabio) and StepOne Plus Real Time PCR system and software (Applied
Biosystems). Polymerase (Polr2c) gene was used as the control gene. Primers used
for qPCR are listed in the supplementary Supplementary Data 15b. Total six
experiments were performed. The gene expression was normalized using the
control group per experiment and per gene across the experiments, followed by
log2 transformation. Control and treatment groups were compared using paired,
one-sided parametric ¢ test.

Statistics and reproducibility. Overall, the data were log transformed, checked for
normality and an appropriate test was performed accordingly (i.e., parametric tests
as default and non-parametric tests when distribution did not fulfill normality
criteria), followed by Benjamini-Hochberg false discovery rate correction. A two-
sided test was used when there was no prior hypothesis of the expected direction of
change; otherwise, one-sided test was used. For initial experiments, to capture the
strongest and consistent signals across independent experiments (e.g., WD vs ND),
non-parametric tests were used, and the meta-analysis was performed over
experiments using Fisher’s meta-analysis test. To achieve statistical power in the
Lactobacilli supplementation experiments, the samples were normalized within
each experiment to the mean of control group and analyzed together using para-
metric tests for host-derived variables. Meta-analysis was performed over the
microbiome data. Gene enrichment analysis using Metascape software’? that
implements hypergeometric test. For metabolomics analysis, results of five lacto-
bacilli supplementation from three experiments were normalized over corre-
sponding controls with no probiotic supplementation. Log2 transformed ratios
(lacto/control) for each metabolite were compared for deviation from 0 using
parametric test. In experiments with interrelated data from two groups (e.g., AML-
12 in vitro experiment) we used paired test. Outliers (1%) were identified using
ROUT method of GraphPad Prism 8.4.1 and removed (used only once in the whole
study, one value was removed for one concentration of GSH treatment). Actual
tests, cutoffs applied are mentioned in each figure caption, exact p values are
available in supplementary data and source data files.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data were submitted to NCBI SRA under submission PRJINA558801 for 16 S rRNA, to
GEO under GSE136033, and to Metabolomics Workbench under ST001436. TK network
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access: https:/tinyurl.com/TK-NW-Fig-1C. Multi-omic network access: https://tinyurl.
com/multi-omic-NW-Fig-5A. Source data are provided with this paper.

Code availability
Custom codes available at https:/github.com/richrr/TransNetDemo and https:/github.
com/fbauchinger/keystone_species_model.
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