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ABSTRACT Heterotrophic microbes play a key role in remineralizing organic mate-
rial in the coastal ocean. While there is a significant body of literature examining
heterotrophic bacterioplankton and phytoplankton communities, much less is known
about the diversity, dynamics, and ecology of eukaryotic heterotrophs. Here, we fo-
cus on the Labyrinthulomycetes, a fungus-like protistan group whose biomass can
exceed that of the bacterioplankton in coastal waters. We examined their diversity
and community structure in a weekly temperate coastal ocean time series. Their sea-
sonal community patterns were related to temperature, insolation, dissolved inor-
ganic carbon, fungal abundance, ammonia, chlorophyll a, pH, and other environ-
mental variables. Similar to the bacterioplankton, annual community patterns of the
Labyrinthulomycetes were dominated by a few persistent taxa with summer or win-
ter preferences. However, like the patterns of fungi at this site, the majority of the
Labyrinthulomycetes phylotypes occurred mostly as short, reoccurring, season-
specific blooms. Furthermore, some specific phylotypes of Labyrinthulomycetes dis-
played time-lagged correlations or cooccurrences with bacterial, algal, or fungal phy-
lotypes, suggesting their potentially multifaceted involvement in the marine food
webs. Overall, this study reports niche partitioning between closely related Labyrin-
thulomycetes and identifies distinct ecotypes and temporal patterns compared to
bacterioplankton and fungi.

IMPORTANCE Increasing evidence has shown that heterotrophic microeukaryotes
are an important component in global marine ecosystems, while their diversity and
ecological functions remain largely unknown. Without appropriately incorporating
these organisms into the food web models, our current understanding of marine mi-
crobial community ecology is incomplete, which may further hamper broader stud-
ies of biogeochemistry and climate change. This study focuses on a major group of
unicellular fungus-like protists (Labyrinthulomycetes) and reveals their distinct an-
nual community patterns relative to fungi and bacteria. Results of our observations
provide new information on the community structure and ecology of this protistan
group and shed light on the intricate ecological roles of unicellular heterotrophic
eukaryotes in the coastal oceans.

KEYWORDS fungus-like protist, coastal ocean, time series, community structure,
niche partitioning, microbial interaction

Planktonic heterotrophic microbes dominate secondary production and biogeo-
chemical processes in the world’s oceans (1, 2). Until recently, most efforts to

understand microbial ecology and biogeochemical cycling of organic material have
focused on bacterioplankton, archaea, and algae (3–7). Although a high biomass of
heterotrophic microbial eukaryotes (e.g., heterotrophic protists and fungi) has long
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been known to exist in the oceans, our understanding of their ecological and biogeo-
chemical functions remains limited in coastal ecosystems, especially in comparison with
eukaryotic photoautotrophs (8–14).

One important group of heterotrophic eukaryotes, the fungus-like protists, also
known as Labyrinthulomycetes, are ubiquitous unicellular protists found in the global
ocean (9, 15), where their biomass has been reported to approach and occasionally
surpass that of bacterioplankton (16–20). Beyond their significant contribution to
secondary production, they play important ecological roles in the degradation of
organic matter and in provisioning higher trophic levels with �-3 polyunsaturated fatty
acids (21, 22). Although some members have been observed to live as symbionts,
parasites, bacterivores, or diatom predators, most of the Labyrinthulomycetes are
presumed to be saprophytes, feeding on both terrigenous and autochthonous dis-
solved and particulate organic matter (23–27). This protistan group has been proposed
to serve as a “leftover scavenger,” metabolizing the organic material remaining follow-
ing bacterial metabolism (16, 28, 29). Nevertheless, limited previous investigations
mean that the diversity and ecological role of the Labyrinthulomycetes protists remain
poorly understood (15).

However, recent studies in the coastal waters of Japan and China have demon-
strated that the Labyrinthulomycetes communities can change dramatically across
seasons and habitats (16, 17, 21, 30). Due to the limitations of these studies’ culture-
based methods or the observational scales (e.g., limited sampling period or temporal
resolution), we have not fully captured their diversity or identified their ecological
drivers. Nevertheless, previous studies have revealed that patterns of Labyrinthulomy-
cetes protists are associated with a number of physical, chemical, and biological
variables in the coastal ocean, including temperature, salinity, pH, dissolved and
particulate organic matter, inorganic nutrients, phytoplankton, bacterioplankton, and
viruses (16–18, 20, 21, 30–38). Inconsistencies in reported key drivers for this clade
suggest that, like other microbial groups, closely related taxa within this heterotrophic
protistan group may exhibit ecological partitioning (14, 39–41).

High-resolution time series can provide insight into microbial responses to potential
environmental drivers (11, 12, 14, 39, 42, 43). Moreover, comparisons among taxa can
identify differences in their ecologies as well as potential associations between taxa.
Previous studies have revealed strong summer and winter associations in the bacte-
rioplankton (14), while some eukaryotes, including fungi, occur as episodic, ephemeral
blooms (42, 43). Labyrinthulomycetes and fungi have been considered ecologically
similar and often cooccur in particulate habitats containing ample organic resources
(e.g., marine snow, mangrove detritus), but few community-level observations have
been made for either group in coastal waters, leaving open a number of questions
about their ecological similarities and differences (9, 44). Further, Labyrinthulomycetes’
relationship with heterotrophic bacterioplankton and phytoplankton remains elusive.
Given the foregone diversity within marine microbiomes, we hypothesize that these
groups have complex associations and interactions.

To better characterize Labyrinthulomycetes diversity and dynamics and understand
their ecology, we employed time-series observations to identify potential environmen-
tal drivers and compare their distribution patterns with those of other microbes. In this
study, we examined 3 years of weekly observations at the temperate, mesotrophic
Piver’s Island Coastal Observatory (PICO) near the Beaufort Inlet of North Carolina, USA,
to identify patterns in the diversity and dynamics of Labyrinthulomycetes.

RESULTS AND DISCUSSION
Temporal dynamics of Labyrinthulomycetes abundance and �-diversity mea-

sures. The total abundance of the Labyrinthulomycetes 18S rRNA gene for represen-
tative winter (mid-January and mid-February, the coldest weeks of the year) and
summer (mid-July and mid-August, the warmest weeks of the year) was estimated to
be 3.74 � 105 to 1.39 � 106 copies/liter (see Fig. S1 in the supplemental material),
which is comparable to the abundance in the Pearl River Delta in southern China (30),
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where their biomass has been repeatedly reported to constitute a significant fraction of
the heterotrophic microbial community (17, 45). Unlike for bacterioplankton, their gene
abundances in winter and summer were not significantly different (analysis of variance
[ANOVA], P � 0.05, n � 12).

Across the time series, the 18S rRNA gene amplicon sequence variant (ASV) richness
of the Labyrinthulomycetes protists was lower than the operational taxonomic unit
(OTU) richness of either the bacterioplankton or the fungi and exhibited a reoccurring
peak in early winter (Fig. 1, Fig. S2). The community diversity of Labyrinthulomycetes is
correlated with a number of seasonally associated environmental factors (e.g., insola-
tion and temperature; Table S1). While the fungi also exhibited a winter peak in
diversity (richness, evenness, and Shannon’s diversity) (12), the Labyrinthulomycetes
showed weaker seasonality and a peak preceding that of the fungi (Fig. S2). These
patterns also sharply contrast with the bacterioplankton diversity, which peaks in
spring and fall (14). Compared to the bacterioplankton and fungi, the Labyrinthulomy-
cetes showed significantly lower (ANOVA, P � 0.001) and less-seasonal evenness (Fig.
S2). These results suggest that the fungus-like Labyrinthulomycetes exhibit distinct
responses to environmental factors compared to either “true fungi” or bacteria.

Seasonal community-level patterns of Labyrinthulomycetes. Nonmetric multi-
dimensional scaling (NMDS) analyses revealed a seasonal pattern for the Labyrinthu-
lomycetes that is related to a number of environmental factors, including temperature,
insolation, dissolved inorganic carbon, fungal abundance, ammonia, chlorophyll a, and
pH (Fig. 2) (permutation tests, P � 0.01). As with the coastal waters of northern China
and Japan (16, 21), temperature was identified here as a major factor associated with
community structure (Fig. 2), which also aligns with the importance of temperature for
both bacterioplankton and fungal communities at this site (12, 14). While the �20°C
annual temperature cycle in this temperate coastal ocean environment is important
across diverse microbial lineages (46–50), it is difficult to disentangle highly correlated
seasonal factors (e.g., light and temperature) or indirect effects of temperature medi-
ated by interactions with other temperature-sensitive organisms. Therefore, we can
interpret statistically significant relationships between their community composition
and fungal abundance, chlorophyll a, insolation, dissolved inorganic carbon, and
ammonia (Fig. 2) as either potential drivers or as proxies for unmeasured factors.
Previously, Labyrinthulomycetes were observed to increase with high phytoplankton
biomass (16, 18, 35, 37), potentially due to the ability to either degrade phytoplankton
detritus (51–54) or associate with phytoplankton as parasites or symbionts (23, 55).
However, coastal and estuarine Labyrinthulomycetes abundance has also been linked

FIG 1 (A and B) The richness (A) and Shannon’s diversity index (B) of the Labyrinthulomycetes 18S rRNA
gene amplicon sequence variants (ASVs) across the weekly time series at the Piver’s Island Coastal
Observatory (PICO) from 2011 to 2013, with 5-week moving average curves indicated by bold lines.
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to terrigenous particulate organic matter (21, 33), suggesting the potential for diverse
substrate utilization within this class. Additionally, the significant relationship between
Labyrinthulomycetes composition and fungal abundance suggests that some Labyrin-
thulomycetes cooccur with fungi, as previously observed in particulate-associated
habitats (9, 44). In order to better understand different ecological roles within closely
related members of Labyrinthulomycetes, we examined the temporal patterns of
individual ASVs.

Of the 1,629 ASVs, the 100 most abundant ASVs accounted for 93.11% of the total
sequences (Fig. S3); thus, the ASV patterns in Fig. 3 are representative of the commu-
nity. Soft clustering of 3 years of weekly samples revealed that the ASVs group into
summer-blooming, winter-blooming, and persistent (which also exhibit seasonality)
patterns, which consist of 54, 38, and 8 ASVs, respectively (Fig. 3). The summer- and
winter-blooming ASVs reoccurred annually as transient blooms within a preferred
season (Fig. S4). For example, ASV11 (unclassified Labyrinthulomycetes) and ASV7
(aplanochytrid) were generally not abundant (below 0.01% of the library during most
weeks) but exhibited blooms where they comprised up to 60% of the Labyrinthulo-
mycetes community for a single week (Fig. 4A). Although many of these seasonal-
blooming ASVs have short-duration blooms, they generally reoccurred annually over
the 3-year time series (Fig. 3), suggesting a response to seasonal environmental
conditions rather than episodic disturbances (e.g., storms). In contrast, the persistent
cluster contains the 6 most abundant as well as the 14th and 15th most abundant ASVs
and together amounts to an average of 65.02% of the Labyrinthulomycetes community.
In contrast to taxa that exhibited short-term blooms, these 8 ASVs persisted over
several months but also exhibited seasonal preferences and interannual differences
(Fig. S5), demonstrating that the Labyrinthulomycetes are not transient members of the
coastal microbial community. Further, the two most abundant ASVs, representing
21.74% and 17.52% of the total sequences, respectively, dominated the seasonal shift
between aplanochytrids and thraustochytrids (Fig. 4B), which are the two most abun-
dant groups of Labyrinthulomycetes at this site (Fig. S6) as well as in the coastal waters
of southern and northern China (16, 17). This observation is generally consistent with
the seasonal patterns of culturable thraustochytrids and aplanochytrids observed
previously (21). However, these data also reveal distinct dynamics within the same
genus of Labyrinthulomycetes protists (e.g., ASV1 and ASV7) (Fig. 4A and B).

In comparing this clade with other microbial groups, we observed similar seasonal
preferences in both the bacterioplankton and the fungi (Fig. 4A to D). While some
bacterial OTUs were abundant across all time points, most bacterial OTUs were present
across either the summer or winter as observed for the persistent Labyrinthulomycetes
cluster (Fig. 4B and C, Fig. S7 and S8). In contrast, the short, seasonally associated bloom
pattern observed for most Labyrinthulomycetes ASVs is more similar to that of fungal

FIG 2 The nonmetric multidimensional scaling (NMDS) biplot of Labyrinthulomycetes 18S rRNA gene
amplicon sequence variants (ASVs) across the weekly time series at the Piver’s Island Coastal Observatory
(PICO) from 2011 to 2013. Each circle represents the Labyrinthulomycetes composition at a specific time
point, colored by year-day. Vectors indicate environmental factors that were related (permutation tests,
P � 0.01) to the community composition. DIC, dissolved inorganic carbon; Fungi, fungal ITS abundance;
Chl-a, chlorophyll a; Temp, water temperature.
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phylotypes (Fig. 4D, Fig. S7). Some eukaryotic chloroplast sequences also exhibited
large weekly changes in their relative abundance, but with a weaker seasonal reoccur-
rence compared to the Labyrinthulomycetes (Fig. 4E, Fig. S7). This strong seasonal
signal across microbial groups could be explained through direct control by environ-
mental factors (e.g., temperature) or by interactions with seasonally responsive organ-
isms. For example, ASV1, the most abundant Labyrinthulomycetes phylotype, belongs
to a genus (Aplanochytrium) commonly observed with phytoplankton (21, 32, 55–57),
suggesting that this ASV may utilize phytoplankton-derived organic carbon, which
should be more available during the summer. The second most abundant ASV2
(Thraustochytriaceae) is more abundant in winter and may serve as a complementary
decomposer to bacteria, potentially degrading recalcitrant organic material when more
labile phytoplankton-derived organic material is scarce. However, the majority of the
100 most abundant phylotypes exhibit season-specific ephemeral blooms more similar
to patterns observed in the fungi (Fig. 3A, Fig. S8), including the most abundant fungal
phylotypes (Fig. 4D). Unlike for the bacterioplankton, patterns in these eukaryotic
heterotrophs are possibly driven by distinct resources or specific habitat/host condi-
tions. Our observations provide new hypotheses regarding the ecologies of Labyrin-
thulomycetes, which can guide new research into drivers and functions using metag-
enomics, targeted culture work, or other approaches.

Phylogeny and niche partitioning of Labyrinthulomycetes. In order to further
understand ecological partitioning within Labyrinthulomycetes, we constructed a phylo-

FIG 3 Relative abundances of the 100 most abundant Labyrinthulomycetes 18S rRNA gene amplicon sequence
variants (ASVs) across the weekly time series at Piver’s Island Coastal Observatory (PICO) from 2011 to 2013. (A) The
heatmap for the log2-transformed relative abundances of the 100 most abundant ASVs (y axis), which were
clustered by Ward’s minimum variance method (dendrogram). Columns to the left of the heatmap annotate each
ASV with its Mfuzz soft-cluster and taxonomic grouping (at the genus or most specific classified level). The
temperature heatmap across the top indicates the water temperature. (B) The centroid of the log2-transformed
abundance for each Mfuzz soft cluster across the time series.
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genetic tree containing the 100 most abundant ASVs, reference sequences, and 8 rare ASVs
that were identified at the genus level (or at the family level for the poorly resolved
Amphitraemidae). The resulting phylogenetic tree contains 6 major clades of known
taxa, including Amphitremida, Aplanochytrium, Labyrinthula-like, Oblongichytrium-like,
Stellarchytrium-like, and thraustochytrids sensu stricto (comprising closely related genera
within the family Thraustochytriaceae following the latest taxonomic classification) (21, 58,
59), as well as a number of potentially novel lineages (Fig. 5). Notably, the Aplanochytrium
clade is the dominant genus (26.10% of total sequences) across the time series, consistent
with previous reports of this clade’s prevalence in both coastal and pelagic waters (16–18,
21, 30, 60, 61). The thraustochytrids sensu stricto clade, another major subgroup of the
Labyrinthulomycetes protists, however, contains mostly unclassified thraustochytrids and a
very low abundance of identified genera, Aurantiochytrium, Labyrinthulochytrium, Pari-
etichytrium, Schizochytrium, Thraustochytrium, and Ulkenia, which account for �1% of the
total sequences. These thraustochytrid genera, as well as Botryochytrium and Sicyoidochy-
trium, which were not found here, are commonly observed in the coastal waters of China
and Japan (16, 17, 21, 30). Overall, high phylogenetic diversity of Labyrinthulomycetes has
been identified at our sampling site, but the majority of the phylotypes do not belong to
described genera, and many of these phylotypes, including some dominant ones (e.g.,
ASV5 and ASV6), are not closely related to previously described clades and thus likely
represent new lineages.

Additionally, in the phylogenetic tree, closely related ASVs display distinct seasonal
partitioning (Fig. 5). For example, within the thraustochytrid sensu stricto clade, 14 ASVs

FIG 4 (A to E) Relative abundance patterns of the most abundant winter/summer-blooming (A) and persistent
summer-preferred/winter-preferred/nonseasonal (B) Labyrinthulomycetes 18S rRNA gene amplicon sequence vari-
ants (ASVs) across the weekly time series at Piver’s Island Coastal Observatory (PICO) from 2011 to 2013 in
comparison with those of the two most abundant bacterial (C), fungal (D), and algal (E) OTUs. “Winter/summer-
blooming” and “persistent” refer to the Mfuzz clusters (see Fig. 3). ASV1 and ASV2 are the two most abundant
Labyrinthulomycetes ASVs. Each ASV/OTU is labeled with the most specific available taxonomic assignment and its
identification number.
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(accounting for 13.95% of total sequences) are summer associated and 9 ASVs (ac-
counting for 26.32% of total sequences) are winter associated, while ASV15 (accounting
for 0.96% of total sequences) is generally more abundant in spring and autumn. In
contrast, the Stellarchytrium-like clade only contains summer-associated ASVs. Overall,
this study emphasizes that closely related strains exhibit distinct environmental pref-
erences, highlighting the importance of evaluating Labyrinthulomycetes phylotypes at
fine phylogenetic scales.

Correlations between Labyrinthulomycetes phylotypes and other organisms.
Recent evidence from cooccurrence patterns of coastal microbial communities includ-
ing bacteria, algae, fungi, and protists have identified correlations between taxon pairs
across microbial groups (12, 43, 62). Here, we identified a number of correlations
between Labyrinthulomycetes ASVs and other microbial taxa (Fig. 6, Tables S2 to S4).
Correlations between Labyrinthulomycetes and heterotrophic bacteria were largely
driven by seasonal preferences, with the strongest correlations mostly involving the

FIG 5 Maximum likelihood tree constructed using the representative sequences of the 100 most abundant Labyrinthulomycetes 18S rRNA gene amplicon
sequence variants (ASVs) and 8 rare but classified ASVs identified from the weekly time series at Piver’s Island Coastal Observatory (PICO) from 2011 to 2013.
Reference sequences from NCBI GenBank are included to identify the major clades. The labels of the classified ASVs and reference sequences are indicated by
white and black text, respectively. Bootstrap values higher than 80% are indicated by circles. (A to D) The 100 most abundant ASVs are annotated with a number
of features, including (A) soft-clustering assignment consistent with Fig. 3, but the persistent ASVs with obvious summer or winter preferences marked with
small pink and blue squares, respectively, (B) bloom potential as defined by its maximum relative abundance divided by the average relative abundance across
the time series, (C) average relative abundance, and (D) phylogenetic affiliation.
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two most abundant ASVs (Table S1). Some ASVs exhibit time-lagged correlations with
heterotrophic bacterial OTUs (R � 0.7, P � 5 � 10�23), which were still significant
(P � 0.01) even when seasonal trends were removed (Fig. 6A and B). Based on obser-
vational data, it is not possible to determine whether these taxa respond to similar
environmental conditions or potentially interact; however, these results might generate
new hypotheses about the functional partitioning of Labyrinthulomycetes protists
based on their potential relationships with heterotrophic bacteria and inferred nutri-
tional modes. The ASVs that increased following the heterotrophic bacterial OTUs are
potentially amoebic bacterivores or subsist upon resources not consumed by these
bacteria (16, 28). In contrast, the ASVs which peak prior to heterotrophic bacteria might
be initial decomposers, consistent with previous reports that Labyrinthulomycetes can
secrete hydrolytic enzymes to metabolize protein, lipid, cellulose, starch, xylan, gelatin,
urea, organophosphate, chitin, and glucoside (53, 54, 57, 61, 63–66). In addition to
correlations with heterotrophic bacteria, our analysis identified cooccurrences of Laby-
rinthulomycetes with phytoplankton and fungi (Fig. 6C to H, Tables S3 and S4). For
example, a summer-associated Synechococcus OTU (Cyanobacteria) showed a signifi-

FIG 6 (A to H) Examples of associations between Labyrinthulomycetes and other organisms, including hetero-
trophic bacteria (A and B), cyanobacteria (C), algae (D to F), and fungi (G and H), which were identified from the
weekly time series at Piver’s Island Coastal Observatory (PICO) from 2011 to 2013. The relative abundances of all
the illustrated pairs showed significant time-lagged (A and B) or cooccurring (C to H) correlations (P � 5 � 10�23,
R � R0). For the second pair (B), the detrended abundances showed significant time-lagged correlations when their
polynomial trends at the 25% (P � 0.05, R � 0.182) or 30% (P � 0.01, R � 0.234) span were removed. For other pairs,
the detrended correlations were significant (P � 4 � 10�7) when their polynomial trends at the 10% (R � R10), 25%
(R � R25), or 30% (R � R30) span were removed. The P values were not corrected for multiple hypothesis testing.
Each ASV/OTU is labeled with the most specific available taxonomic assignment and its identification number.
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cant correlation (R � 0.794, P � 5 � 10�32) and detrended correlation (R � 0.631 at
10% span, R � 0.591 at 25% span, and R � 0.601 at 30% span; P � 1 � 10�14) with a
thraustochytrid ASV (Fig. 6C). Similarly, one Labyrinthulomycetes ASV cooccurred with
a eukaryotic chloroplast (Fig. 6D to F) and a fungus (Fig. 6G and H) as episodic, transient
spikes, with all the illustrated pairs showing strong correlations (R � 0.746, R � 0.927,
R � 0.724, R� 0.878, and R � 0.849; P � 3 � 10�24) and significant detrended correla-
tions (R � 0.5, P � 7 � 10�11). Prior culture-dependent reports of species-specific asso-
ciations between Labyrinthulomycetes and phototrophs (23), such as the endophyte
Aplanochytrium minuta and the brown alga Sargassum cinereum (55), and between the
wasting disease pathogen Labyrinthula zosterae and the eelgrass Zostera marina (67)
also suggest that Labyrinthulomycetes protists may be closely tied to other organisms.
Preferences of the culturable Labyrinthulomycetes protists for specific substrates and
hosts can even extend to saprophytic species associated with detritus types (e.g.,
Aurantiochytrium mangrovei with fallen mangrove leaves) and parasitic/symbiotic spe-
cies with specific marine animals (e.g., QPX with the hard clam Mercenaria mercenaria)
(26, 68–73). Additionally, our results suggest that some Labyrinthulomycetes ASVs and
fungal OTUs may respond to the same episodic factors. Labyrinthulomycetes and fungi
have both been reported to be enriched on particulate organic matter, which is patchily
distributed in the ocean (9, 18, 19, 33). The short-term blooms in both these Labyrin-
thulomycetes protists and fungi could indicate either a narrow niche for their preferred
substrates, hosts, or other environmental conditions (e.g., bottom-up controls) or,
alternately, strong density-dependent selection (top-down controls) by either grazers
or viruses. In comparison with other microbial groups sampled at the PICO time series,
the patterns in dominant ASVs are more similar to strong summer or winter preferences
observed for heterotrophic bacteria and cyanobacteria, while less abundant ASVs
exhibit annually reoccurring blooms as previously observed for the fungi (Fig. S8).
These observations demonstrate the important but complex patterns of Labyrinthulo-
mycetes in the coastal food webs and highlight the need to consider a broad spectrum
of eukaryotic heterotrophs as well as the potential for different factors to structure their
distributions in the investigation of marine microbial communities.

Conclusions. Research on heterotrophic microbes in marine ecosystems has histor-

ically largely focused on prokaryotes; however, recent work has revealed the potential
importance of understudied, heterotrophic eukaryotes in coastal ecosystems. Here, we
utilized a well-characterized weekly coastal time series with available data on bacte-
rioplankton and fungal communities (12, 14) to gain a greater understanding of the
similarities and differences in the factors structuring microbial groups in the coastal
ocean (Fig. S8). The strong seasonal associations with either summer or winter of the
bacterioplankton at this site are observed for only a few persistent Labyrinthulomycetes
ASVs, with the majority of the Labyrinthulomycetes taxa exhibiting seasonally associ-
ated but brief (weeks to a month) blooms that generally reoccurred in each of the 3
years of the time series. Such obvious and novel partitioning of Labyrinthulomycetes in
dynamic patterns suggests distinct ecotypes and multifaceted functions of this pro-
tistan group (Fig. 7), which may shed new light on the intricate ecological roles of
unicellular heterotrophic eukaryotes in the coastal oceans.

While most studies of heterotrophic communities focus on bottom-up processes,
the constantly changing Labyrinthulomycetes community composition could suggest a
strong role for phylotype-specific, density-dependent selection. Moreover, the seasonal
associations, persistent occupation, and recurring patterns in this coastal site argue
against Labyrinthulomycetes being solely scavengers of detritus “left over” from bac-
terioplankton metabolism and suggest that they occupy important year-round ecolog-
ical niches in the coastal system. Thus, the total rates of carbon and nutrient cycling
in the coastal ocean likely include significant contributions from a range of het-
erotrophic eukaryotes, including Labyrinthulomycetes. However, characterizing the
responses of Labyrinthulomycetes and other heterotrophic protists to both top-
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down and bottom-up controls on their community structure remains a subject for
future research investigation.

MATERIALS AND METHODS
Environmental samples and metadata. As previously described, seawater samples were collected

weekly at a fixed site (34.7181°N, 76.6707°W) near the Beaufort Inlet in North Carolina (USA) from January
2011 to December 2013 as part of the Piver’s Island Coastal Observatory (PICO), which concurrently
measures key environmental variables (14, 74). Roughly, 1 liter of near-surface seawater (1 m depth) was
filtered through 0.22-�m Sterivex filter units (Millipore), and the resulting filters were stored at �80°C
until DNA was extracted. Methods for determination of surface water temperature, pH, salinity, nutrient
concentrations, chlorophyll a, dissolved inorganic carbon, tidal height (mean lower low water), insolation
(incoming no-sky solar radiation), and oxygen saturation were described previously (14, 74). The
prokaryotic and fungal abundances were determined by flow cytometry and quantitative PCR, respec-
tively (12, 14).

DNA extraction and sequencing. The DNA was extracted as described previously (14, 75), through
physical lysis by bead beating, phenol-chloroform extraction coupled with RNase treatment, and
isopropanol precipitation followed by PCR inhibitor removal (Zymo). Partial Labyrinthulomycetes 18S
rRNA genes were amplified using primers including Illumina adapters and indexes of LABY-A
(5=�GGGATCGAAGATGATTAG�3=) and LABY-Y (5=�CWCRAACTTCCTTCCGGT�3=) (16–18, 30, 76). The 25-�l
PCR mixture contained 1� Qiagen multiplex mastermix, 0.2 �M each primer, and �20 ng of DNA
template. The PCR program was run as follows: initial denaturation at 95°C for 15 min, followed by 31
cycles of 30 sec at 94°C, 1.5 min at 50°C, and 1.5 min at 72°C, and a final extension at 72°C for 10 min.
Duplicate PCR products for each sample were pooled, gel purified using a Qiagen gel extraction kit, and
quantified using the Qubit 3 fluorometer. In total, 149 amplicon libraries were pooled and sent to the
Duke Center for Genomic and Computational Biology for paired-end (2 � 250 bp) sequencing on the
Illumina MiSeq platform.

Quantitative PCR of the Labyrinthulomycetes 18S rRNA genes. Quantitative PCR was employed
to assess the total abundance of the Labyrinthulomycetes 18S rRNA genes per liter of seawater for
representative winter (mid-January and mid-February) and summer (mid-July and mid-August) samples.
Primers LABY-A and LABY-Y were used with the SYBR premix Ex Taq (TaKaRa, Japan). The 10-�l reaction
mixture contained 1� SYBR premix Ex Taq, 0.25 �M each primer, and ca. 5 to 45 ng DNA template. The
quantitative PCR program was run on an Eppendorf Mastercycler ep realplex instrument with an initial
denaturation at 95°C for 2 min, followed by 40 cycles of 95°C for 5 sec, annealing at 50°C for 30 sec, and
elongation and acquisition of fluorescence data at 72°C for 1 min. The melting curve was used to confirm
the specificity of the amplification. The standard curve was constructed using known amounts of

FIG 7 Conceptual diagram of the bidimensional (persistent versus ephemeral; summer- versus winter-preferred)
partitioning of Labyrinthulomycetes 18S rRNA gene amplicon sequence variants (ASVs), their relative abundance
patterns, and predicted ecological roles in the coastal ocean, based on the weekly observations at the Piver’s Island
Coastal Observatory (PICO) from 2011 to 2013.
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standard linearized plasmid, a combination of the pGEM-T vector (Promega, USA) and the target gene
derived from a cultured thraustochytrid genome. Pearson correlations between the Labyrinthulomycetes
18S rRNA gene abundance and environmental factors were analyzed in SPSS 22.

Processing of the Labyrinthulomycetes 18S rRNA gene sequences. Raw sequences were demul-
tiplexed and assigned to corresponding libraries using CASAVA software (Illumina). Low-quality se-
quence ends were trimmed at a Phred quality (Q) of 25 using a 10-bp running window, and only
sequences of �130 bp after trimming were retained. The paired-end sequences were joined when they
had a �10-bp overlap with �3 mismatches. Then, the Deblur workflow (77) was performed in QIIME 2
(78) to denoise the joined sequences and to resolve amplicon sequence variants (ASVs), using
“silva_132_99_18S.fna” (https://www.arb-silva.de/download/archive/qiime/) as the positive filtering da-
tabase, with the key parameters “sequence trim length,” “mean per nucleotide error,” “indel probability,”
and “maximum indel number” set as 380, 0.005, 0.01, and 3, respectively; only ASVs appearing at least
10 times across all libraries were retained. The resulting ASVs were assigned by the BLAST� consensus
taxonomy classifier (79) against the SILVA database, and those not assigned to the class Labyrinthulo-
mycetes were removed from downstream analyses. Libraries were rarified to 11,800 sequences.

Characterization of the Labyrinthulomycetes diversity. The �-diversity measures, including rich-
ness, Pielous’ evenness, and Shannon’s diversity, for ASVs were calculated in USEARCH 10 (80), and the
Pearson correlations between the �-diversity measures and environmental factors were analyzed in SPSS
22 (16, 81, 82). The nonmetric multidimensional scaling (NMDS) and redundancy analysis (RDA) were
performed using the vegan package in R to visualize patterns and identify potential environmental
drivers for the Labyrinthulomycetes community composition, based on the log-transformed ASV abun-
dances and scaled environmental data. The constrained environmental parameters were determined for
the RDA model by performing a stepwise selection (Akaike information criterion, 999 permutations per
step) using the “step” function and plotted on the NMDS ordination using the “envfit” function. The 100
most abundant ASVs were extracted for soft clustering using the Mfuzz package in R, based on their
log2-transformed abundances (83). A heatmap for the dynamic of the log2-transformed abundances of
these 100 ASVs across the time series was drawn using the pheatmap package in R, with the ASVs
clustered by Ward’s hierarchical agglomerative method (84, 85) and annotated using taxonomic infor-
mation.

Construction of the Labyrinthulomycetes phylogenetic tree. The representative sequences for
the 100 most abundant ASVs, additional less abundant ASVs that were classified by the BLAST�
consensus taxonomy classifier at the genus level (or at the family level for the poorly resolved
Amphitraemidae), and reference sequences downloaded from NCBI GenBank were aligned using MUS-
CLE (86). The phylogenetic tree was inferred by using the maximum likelihood method based on the
general time reversible (GTR) model (87). Initial trees for the heuristic search were obtained automatically
by applying neighbor-joining and BioNJ algorithms to a matrix of pairwise distances estimated using the
maximum composite likelihood (MCL) approach and then selecting the topology with the superior log
likelihood value. A discrete gamma distribution was used to model evolutionary rate differences among
sites (5 categories, �G, parameter � 0.2399). The rate variation model allowed for some sites to be
evolutionarily invariable ([�I], 28.73% sites), and all positions with less than 95% site coverage were
eliminated. The best�fit nucleotide substitution model (GTR � G � I) described above was preselected
from 24 different models based on the lowest Bayesian information criterion (BIC) and other evaluation
scores (Table S5) and then improved by performance of 1,000 bootstrap replicates (87). Evolutionary
analyses were conducted in MEGA7 (88) and annotated in iTOL (89).

Correlation analysis between Labyrinthulomycetes and other organisms. In order to investigate
the relationship between Labyrinthulomycetes and other microbial taxa, we obtained the relative
abundances of prokaryotic 16S rRNA genes and fungal internal transcribed spacer (ITS) amplicon library
data sets from the same time points (12, 14). The synchronous or time-lagged Pearson correlations
between the 100 most abundant Labyrinthulomycetes ASVs and the 100 most abundant heterotrophic
bacterial, phytoplankton (including cyanobacteria and chloroplasts), and fungal OTUs were examined in
SPSS 22. In order to correct for time series autocorrelation, we illustrated typical pairwise examples and
detrended these data by subtracting their local polynomial regression fitting trends, which were
determined by the R function “loess” at 10%, 25%, and 30% spans, and then recalculated the Pearson
correlation of each pair. The P values were not corrected for multiple hypothesis testing, but their precise
numbers are presented to indicate if the correlations meet the corrected or conservative threshold
(P � 0.05/30000).

Data availability. The raw sequence reads and environmental metadata that support the findings of
this study have been deposited in the NCBI under BioProject numbers PRJNA590600 (Labyrinthulomy-
cetes 18S rRNA gene libraries), PRJNA432592 (fungal ITS libraries) (12), and PRJNA309156 (16S rRNA gene
libraries) (14). Other data generated or analyzed during this study are included in this published article
and its supplementary information files.
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