Table 1.
Womenb | Menb | ||||||
---|---|---|---|---|---|---|---|
Age Group | Distribution | n | Parameter | Transition Probabilityc | n | Parameter | Transition Probabilityc |
N - OW | |||||||
2–12 y | Log-normal | 17,312 | (3.16, 1.22) | 2.72% | 18,508 | (3.27, 1.19) | 2.32% |
13–19 y | Weibull | 1495 | (−5.75, 1.85) | 1.85% | 1222 | (−6.95, 2.42) | 1.80% |
20 + y | Log-logistic | 19,599 | (0.45, 0.04) | 3.25% | 14,499 | (0.50, 0.06) | 3.86% |
OW – OB1 | |||||||
2–12 y | Log-normal | 3562 | (3.32, 1.51) | 2.85% | 3279 | (3.28, 1.31) | 2.56% |
13 – 19 y | Weibull | 560 | (−5.22, 1.77) | 2.67% | 483 | (−4.53, 1.54) | 3.28% |
20 + y | Log-logistic | 18,062 | (0.61, 0.04) | 2.38% | 18,966 | (0.73, 0.03) | 1.63% |
OB1– OB2 | |||||||
2–12 y | Log-normal | 689 | (3.35, 1.62) | 2.95% | 610 | (3.44, 1.62) | 2.73% |
13–19 y | Gompertz | 164 | (0.12, 0.02) | 3.40% | 139 | (0.02, 0.05) | 4.98% |
20 + y | Gompertz | 7469 | (−0.02, 0.05) | 2.35% | 5501 | (0.01, 0.02) | 1.38% |
OW – N | |||||||
2–12 y | Log-normal | 3562 | (1.64, 0.95) | 13.17% | 3279 | (1.44, 0.91) | 15.97% |
13–19 y | Gompertz | 560 | (−0.30, 0.22) | 7.83% | 483 | (−0.36, 0.22) | 6.88% |
20 + y | Gompertz | 18,062 | (0.04, 0.00d) | 1.00% | 18,966 | (0.05, 0.00e) | 1.10% |
OB1– OW | |||||||
2–12 y | Log-normal | 689 | (1.28, 0.92) | 18.11% | 610 | (1.26, 0.89) | 18.88% |
13–19 y | Gompertz | 164 | (−0.43, 0.31) | 8.10% | 139 | (−0.32, 0.16) | 5.59% |
20 + y | Gompertz | 7469 | (0.03, 0.00f) | 0.96% | 5501 | (0.05, 0.00g) | 1.95% |
OB2– OB1 | |||||||
2–12 y | Log-normal | 222 | (1.27, 0.77) | 20.93% | 194 | (1.37, 0.84) | 18.22% |
13–19 y | Gompertz | 41 | (−0.35, 0.48) | 14.43% | 23 | (−0.16, 0.16) | 8.46% |
20 + y | Gompertz | 2191 | (0.02, 0.00h) | 2.17% | 846 | (0.04, 0.00i) | 2.79% |
For yearly transition probabilities, see Supplementary Appendix 5.
For the probabilistic sensitivity analysis, we sampled using Cholesky decomposition.31 Covariance matrixes (necessary to perform probabilistic sensitivity analyses) are available upon request from the author.
Transition probabilities given as the average yearly values for the relevant age group. For example, the average yearly transition probability between NW and OW was 2.72% for females between the ages of 2 and 12 y, based on the yearly probabilities 0.49% +1.70% +2.46% +2.88% +3.11% +3.24% +3.31% +3.33% +3.33% +3.31%)/10 ≈ 2.72%. In the model, we used yearly transition probabilities, which varied with age.
Value = 0.00141.
Value = 0.00086.
Value = 0.00227.
Value = 0.00160.
Value = 0.00782.
Value = 0.00414.