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Abstract. Endometrial cancer is the most prevalent 
gynecological cancer in developed countries. Although the 
prognosis of endometrial cancer is better than that of other 
gynecological cancers, the prognosis of advanced endome‑
trial cancer is still poor and thus new therapeutic modalities, 
such as immune therapies, are urgently required. For the 
further development of new modalities, exploration of new 
biomarkers is important. The present study investigated 
the circulating cell‑free DNA (cfDNA) integrity as a ratio 
of the necrotic tumor cell‑derived long cfDNA fragments 
to the total dead cell‑derived short cfDNA fragments from 
genomic Alu elements in patients with advanced endometrial 
cancer during peptide vaccination treatment. The results 
demonstrated that: i)  The plasma cfDNA integrity was 
decreased during the first cycle of vaccination in patients 
with endometrial cancer treated with the personalized 
peptide vaccination, and ii)  the post‑vaccination cfDNA 
integrity levels were correlated with good prognosis. Some 
of these findings have been confirmed in other cancers, and 
thus cfDNA integrity might be an important marker for 
future cancer vaccine therapies in general, and might also be 
applicable for other immune therapies.

Introduction

Endometrial cancer is a malignancy of the corpus uteri and its 
morbidity is increasing in Japan (1). Currently it is the most 
prevalent gynecological cancer in Japan as well as in other 
developed countries. Globally, nearly 382,000  individuals 

are newly diagnosed with endometrial cancer each year, and 
~90,000 die from it (2). Most patients with endometrial cancer 
are cured by surgery alone or with adjuvant chemotherapy, 
and thus the prognosis of endometrial cancer is better than 
the prognosis of other gynecological cancers (3). However, 
because the prognosis of advanced endometrial cancer is still 
poor (3), new therapeutic modalities are urgently needed.

We have developed a peptide vaccine that is personalized 
according to each patient's HLA‑A locus type and 
pre‑vaccination immunity to a vaccine peptide panel (4‑6). 
The peptide panel consists of 31  different cytotoxic 
T‑lymphocyte (CTL)‑epitope peptides, and a maximum of 4 
peptides are selected and used as vaccines with Montanide 
ISA51VG adjuvant. Clinical trials of the vaccines, named the 
personalized peptide vaccines, were conducted in patients 
with various cancers, including gynecological cancers, and 
the results showed that the vaccines were both feasible and 
safe  (4‑8). For further development of the personalized 
peptide vaccines, the identification of new biomarkers will 
be important. A recent trend in the identification of new 
biomarkers is ‘liquid biopsy’ using cell‑free plasma/serum 
specimens and circulating tumor cells. Therefore, we focused 
on circulating cell‑free DNA (cfDNA) in the plasma and 
investigated the cfDNA integrity of patients with advanced 
endometrial cancer during treatment with the personalized 
peptide vaccination.

Patients and methods

Patients and plasma samples. Frozen plasma samples from 
32  patients with advanced endometrial cancer who were 
enrolled in clinical trials of the personalized peptide vaccina‑
tion during the period from December 2008 to March 2018 
were used in this study. Clinical stages of the patients were 
as follows: Stage  III (n=2), stage  IV  (n=3) and recurrent 
(n=27). Histology of the patients was as follows: 19 endo‑
metrioid carcinoma (7 G1, 7 G2, 5 G3), 8 serous carcinoma, 
1 clear cell carcinoma, 1 adenosquamous cell carcinoma, and 
1 neuroendocrine carcinoma. Histology of the remaining two 
patients was unknown. The clinical protocols of the personal‑
ized peptide vaccination have been reported previously (7,8). 
The clinical study was approved by the Kurume University 
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Ethics Committee and registered with the UMIN Clinical 
Trial Registry under trial numbers UMIN1482, 10068, 11230, 
and 14855. Written informed consent was obtained from all 
participants included in the study. The plasma samples used 
were obtained before and after the first vaccination cycle, 
which consisted of weekly injection for 6 or 8 weeks.

cfDNA integrity. The analytical method of the cfDNA 
integrity was described elsewhere (9,10). After thawing the 
plasma samples, insoluble materials were removed by centrif‑
ugation at 16,000 x g for 5 min at 4˚C. The supernatants were 
diluted 1:40 with distilled water, and 1.5 µl of each sample was 
subjected to subsequent polymerase chain reaction (PCR) in 
a total volume of 15 µl. Short (115‑bp) and long (247‑bp) Alu 
fragments were amplified and quantitatively analyzed using 
real‑time PCR (StepOne plus; Thermo Fisher Scientific, Inc.) 
with THUNDERBIRD SYBR qPCR mix (Toyobo). The PCR 
primer pairs were as follows: 5'‑CCT​GAG​GTC​AGG​AGT​TCG​
AG‑3' (forward) and 5'‑CCT​GAG​GTC​AGG​AGT​TCG​AG‑3' 
(reverse) for Alu‑115; 5'‑GTG​GCT​CAC​GCC​TGT​AAT​C‑3' 
(forward) and 5'‑CAG​GCT​GGA​GTG​CAG​TGG​‑3' (reverse) 
for Alu‑247. The PCR protocol consisted of an initial denatur‑
ation at 95˚C for 10 min, followed by 40 cycles of amplification 
at 95˚C for 30 sec, 64˚C for 30 sec, and 72˚C for 30 sec. An 
arbitrary cutoff value of delta Rn=0.65 was used to obtain 
cycle threshold (Ct) values (11). Short 115‑bp and long 247‑bp 
PCR fragments of Alu reflect total cfDNA and necrotic cell 
(mainly tumor cell)‑derived cfDNA, respectively. The cfDNA 
integrity was calculated according to the formula: cfDNA 
integrity = 2(Ct value of Alu‑115‑Ct value of Alu‑247).

Measurement of peptide‑reactive IgG and CTLs. Quantitation 
of vaccinated peptide‑reactive IgG in the plasma and 
CTLs was described previously  (7). The IgG responses 
were measured by the LUMINEX beads method and the 
CTL responses were measured by an ELISPOT assay of 
interferon‑gamma‑secreting cells. If the IgG levels or spot 
number were increased to ≥2‑fold the pre‑vaccination level, 
the response was considered augmented.

Statistical analysis. The cfDNA and cfDNA‑integrity levels 
of the pre‑ and post‑vaccination were compared by Wilcoxon's 
signed rank test. The relationship between the cfDNA integrity 

and pathogenetic types were analyzed by Wilcoxon's rank sum 
test. The survival curves were plotted by the Kaplan‑Meier 
method. We compared the high and low cfDNA‑integrity 
groups at before and after the first vaccination cycle by using 
a Cox's proportional hazard model. The contribution of other 
factors, including cfDNA integrity as a continuous variable, 
to the overall survival  (OS) was also analyzed by using a 
Cox's proportional hazard model. The statistical analyses were 
performed using JMP Pro version 14 software (SAS, Inc.).

Results

Alteration of the circulating cfDNA integrity during the 
peptide vaccination. To analyze the cfDNA integrity, genomic 
DNA fragments of the Alu element, which is the most abun‑
dant repetitive element in the human genome, in the plasma 
were quantified by real‑time PCR. Fig. 1 shows the Ct values 
of short 115‑bp (Alu‑115) and long 247‑bp (Alu‑247) PCR 
fragments of the Alu element and cfDNA integrity of plasma 
samples obtained at before and after the first vaccination 
cycle. The cfDNA‑integrity values after one cycle of vacci‑
nation were significantly decreased (P=0.0036). In contrast, 
such alteration was not observed in the Ct values of Alu‑115 
and 247. We therefore analyzed the relative contributions 
of Alu‑115 and 247 to the alteration of cfDNA integrity. As 
shown in Fig. 2, the change in Alu‑247, but not Alu‑115, was 
significantly corelated with the change in cfDNA integrity 
(r=-0.741, P<0.0001).

Relationship between the circulating cfDNA integrity and 
pathogenetic types. Next, we analyzed the relationship between 
the cfDNA integrity and pathogenetic types. Pathogenetic clas‑
sification of the patients were as follows: Type I (n=14) consisted 
of 14 endometrioid carcinoma (7 grade 1 and 7 grade 2); 
type II (n=14) consisted of 5 endometrioid carcinoma grade 3, 
8 serous carcinoma, and 1 clear cell carcinoma. As shown in 
Fig. 3, there were no significant correlation between the patho‑
genetic types and either the pre‑vaccination values, post‑one 
cycle vaccination values, or changes in cfDNA integrity.

Relationship between the circulating cfDNA integrity and 
prognosis. To examine the relationship between the circulating 
cfDNA integrity and prognosis, the patients were divided 

Figure 1. Cycle threshold (Ct) values of PCR fragments of Alu element and cfDNA integrity of plasma samples obtained before (Pre) and after (Post) 
the first cycle of vaccination. (A) Ct values of total cfDNA (Alu‑115), (B) tumor cell‑derived cfDNA (Alu‑247), (C) the cfDNA integrity (Alu‑247/115). 
ns, not significant; cfDNA, circulating cell‑free DNA. 
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into high and low cfDNA‑integrity groups and their OS was 
analyzed by Kaplan‑Meier plot. ‘High’ and ‘low’ were respec‑
tively defined as the upper and lower median values of cfDNA. 
As shown in Fig. 4, there were no significant correlations 
between OS and either the pre‑vaccination values, post‑one 
cycle vaccination values, or changes in cfDNA integrity. 
The median survival time  (MST) of the post‑vaccination 
high cfDNA‑integrity group was longer than that of the low 
cfDNA‑integrity group (40 and 14.3 months, respectively), 
although the difference was not statistically significant. 
Thus, we further analyzed the contribution of various factors, 
including cfDNA integrity as continuous variables, to the OS 
by Cox's proportional hazard analysis (Table I). Among the 
various factors, only post‑vaccination cfDNA integrity was 
significantly correlated with OS (P=0.038). Vaccine‑induced 
IgG or CTL responses were not significantly correlated with 
OS.

Discussion

In previous studies, we reported several biomarkers for 
peptide vaccine therapy against the advanced stage of various 
cancers  (12‑18). The vaccines consisted of CTL‑epitope 
peptides, and therefore vaccine‑induced CTL responses 
were the primary mechanism underlying the therapeutic 
effect of the vaccination, and early induction of the CTL 
responses to the vaccine peptides was correlated with good 
prognosis (12‑17). Some CTL epitope peptides can induce an 

IgG response in the presence of helper T cells. Our peptide 
vaccines are personalized by each patient's HLA‑A locus type 
and pre‑vaccination immunity to the peptide panel detected 
by IgG (4‑6). Therefore, early induction or augmentation 
of IgG responses to the vaccine peptides is also correlated 
with good prognosis in patients treated with the personalized 
peptide vaccination (12‑17). In contrast, inflammation‑related 
factors such as C‑reactive protein (CRP), interleukin (IL)‑6, 
and serum amyloid A (SAA) were correlated with poor prog‑
nosis of the vaccine‑treated patients (12‑17). High mobility 
group box‑1 (HMGB1), a damage‑associated molecular 
pattern, is released from both the dead tumor cells and acti‑
vated macrophages. Correlation between the plasma levels of 
HMGB1 and tumor progression has been reported in various 
cancers (18). The plasma levels of HMGB1 have also been 
correlated with poor prognosis in patients treated with the 
vaccines (19).

Dead tumor cells also released DNA fragments into the 
plasma, similarly to the case of HMGB1. However, plasma 
cfDNA contains not only tumor‑derived DNA fragments due 
to pathogenic cell death but also normal cell‑derived DNA 
fragments due to physiologic death  (20). The physiologic 
death of normal cells is mainly caused by apoptosis and it 
generates DNA fragments of <200 bp in length. In contrast, 
pathogenic death of tumor cells is mainly due to necrosis and 
generates DNA fragments of more random size, including 
some of longer length (21). To quantify the plasma cfDNA 
fragments derived from dead cells caused by pathogenic and 

Figure 2. Contribution of the changes in Alu‑115 and 247 to the change of cfDNA integrity during vaccination. (A) Relationship between Alu‑115 and cfDNA 
integrity. (B) Relationship between Alu‑247 and cfDNA integrity. cfDNA, circulating cell‑free DNA. 

Figure 3. Relationship between the cfDNA integrity and pathogenetic types. Plasma samples were obtained before (Pre) and after (Post) the first cycle of 
vaccination and cfDNA integrity was measured. (A) Pre‑vaccination cfDNA integrity. (B) Post‑vaccination cfDNA integrity. (C) The difference in cfDNA 
integrity between pre‑ and post‑vaccination (D cfDNA integrity). cfDNA, circulating cell‑free DNA. 
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physiologic cell death, real‑time PCR of short (115‑bp) and 
long (247‑bp) fragments of Alu, which is the most abundant 
repetitive element in the human genome, has frequently been 
used  (10,22,23). The cfDNA integrity, a ratio of the long 
(Alu‑247) versus short (Alu‑115) DNA fragments, is also used 
to standardize the results (10,22,23). In this study, we found 
that: i) the plasma cfDNA integrity was decreased during the 
first cycle of vaccination of patients with endometrial cancer 
treated with the personalized peptide vaccines, and ii) the 
post‑vaccination cfDNA‑integrity levels were correlated with 
good prognosis. A decrease of the plasma cfDNA integrity 

during peptide vaccination has also been observed in patients 
with ovarian cancer  (9) and non‑small cell lung cancer 
(NSCLC) (Waki et al, unpublished data). The relationship 
between the plasma cfDNA integrity and OS found in this 
study was also observed in patients with NSCLC (Waki et al, 
unpublished data). Collectively, the decrease of plasma 
cfDNA integrity during vaccination and the correlation 
between cfDNA integrity and prognosis indicate that cfDNA 
integrity will be a critical marker in future cancer vaccines. 
It is unclear why the cfDNA integrity was decreased during 
vaccination. One of the possibilities is that CTLs induced 

Figure 4. Relationship between the cfDNA integrity and overall survival. Plasma samples were obtained before (Pre) and after (Post) the first cycle of vaccina‑
tion and cfDNA integrity was measured. The patients were divided into high and low cfDNA‑integrity groups at (A) pre‑vaccination and (B) post‑vaccination, 
and the difference in cfDNA integrity between pre‑ and post‑vaccination (D cfDNA integrity) (C) and the overall survival were analyzed by the Kaplan‑Meier 
plot. P‑values show the results of the Cox hazard model. cfDNA, circulating cell‑free DNA; HR, hazard ratio; CI, confidence interval; MST, median survival 
time. 

Table I. Cox's proportional hazard analysis of various factors with OS.

Factors	 Hazard ratio (95% CI)	 P-value

Age (1-year increase)	 0.98 (0.93-1.05)	 0.661
Lymphocyte (>1,200 or less)	 0.68 (0.26-1.74)	 0.418
Pathogenetic classification
  Type I vs. type II	 0.29 (0.07-1.14)	 0.077
Vaccine induced immune response		
  IgG response	 0.94 (0.31-2.80)	 0.918
  CTL response	 1.44 (0.45-5.50)	 0.539
cfDNA integrity (0.01 increase)		
  Pre-vaccination	 0.69 (0.35-1.05)	 0.097
  Post-vaccination	 0.27 (0.04-0.94)	 0.038
  ∆(Post-Pre)	 1.17 (0.77-2.17)	 0.509

OS, overall survival; cfDNA, circulating cell-free DNA; CI, confidence interval; CTL, cytotoxic T-lymphocyte.
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by the vaccination converted the necrosis of tumor cells to 
apoptosis. This possibility was supported by the negative 
correlation between the cfDNA integrity and vaccine‑induced 
immune responses found in ovarian cancer  (9). However, 
this idea cannot fully explain the correlation between the 
cfDNA integrity and prognosis. Vaccination may induce 
not only CTL‑mediated apoptosis but also necrosis or other 
types of cell death by various effector mechanisms, including 
antibody‑dependent cell lysis. In addition, most patients had 
a history of previous chemotherapy and the carryover of the 
effect was not neglected. The plasma cfDNA integrity may 
reflect the comprehensive effects of these therapies.

In conclusion, we investigated the circulating cfDNA 
integrity of patients with advanced endometrial cancer 
during treatment with a personalized peptide vaccination 
and we found that: i) plasma cfDNA integrity was decreased 
during vaccination, and ii) cfDNA integrity was correlated 
with prognosis. Some of these findings have been confirmed 
in other cancers, and thus the cfDNA integrity might be 
an important marker for future cancer vaccine therapies 
in general, and might also be applicable for other immune 
therapies.
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