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Abstract: There is a discrepancy in the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-
TKI) treatment for advanced lung adenocarcinoma (LUAD) patients with EGFR sensitizing mutations (mEGFR). 
Molecular markers other than mEGFR remain to be investigated to better predict EGFR-TKI efficacy. Here, 49 LUAD 
patients with mEGFR (19 deletions or 21 L858R mutations) who received the first-generation EGFR-TKI icotinib 
therapy were included and stratified into 25 good-responders with a progression-free survival (PFS) longer than 11 
months and 24 poor-responders with a PFS shorter than 11 months. We conducted targeted metabolomic detec-
tion and next-generation sequencing on serum and tissue samples, respectively. Subsequently, two metabolomic 
profiling-based discriminant models were constructed for icotinib efficacy prediction, 10 metabolites overlapped in 
both models ensured high credibility for distinguishing good- and poor-responders. Seven of the 10 metabolites dis-
played significant differences between the two groups, which belong to lipids including ceramides (Cers), lysophos-
phatidylcholines (LPCs), lysophosphatidylethanolamines (LPEs), sphingomyelins (SMs), and free fatty acids (FAs). 
Briefly, LPC 16:1, LPC 22:5-1, and LPE 18:2 decreased in poor-responders, while Cer 36:1-3, Cer 38:1-3, SM 36:1-2 
and SM 42:2 increased in poor-responders. In parallel, we identified 6 co-mutated genes (ARID1A, ARID1B, BCR, 
FANCD2, PTCH1, and RBM10) which were significantly correlated with a shorter PFS. Additionally, 4 efficacy-related 
metabolites (Cer 36:1-3, Cer 38:1-3, SM 36:1-2, and LPC 16:1) showed significant differences between the mutant 
and wild-type of 4 efficacy-related genes (ARID1A, ARID1B, BCR, and RBM10). SM 36:1-2 elevated while LPC 16:1 
decreased in ARID1A, BCR, and RBM10 mutant groups compared to the wild-type groups. Cer 36:1-3 increased 
in the ARID1A and BCR mutant groups, and Cer 38:1-3 only rose in the ARID1A mutant group. Furthermore, we 
observed a causal-mediator-network-based interrelation between the 4 concurrently mutated genes and the 4 me-
tabolites related metabolic genes in glycerophospholipid metabolism and sphingolipid metabolism pathways. This 
study demonstrated that lipids metabolism and concurrently mutated genes with mEGFR were associated with the 
icotinib efficacy, which provides novel perspectives in classifying clinical responses of mEGFR LUAD patients and 
reveals the potential of non-invasive pretreatment serum metabolites in predicting EGFR-TKI efficacy.

Keywords: Epidermal growth factor receptor-tyrosine kinase inhibitor, icotinib, lung adenocarcinoma, targeted me-
tabolites, concurrently mutated genes, efficacy prediction biomarkers
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Introduction

Lung cancer remains the leading cause of can-
cer-related death worldwide and non-small cell 
lung cancer (NSCLC) is the most common histo-
logical subtype which accounts for about 85% 
of lung cancer cases [1]. For advanced NSCLC 
patients with EGFR sensitizing mutations 
(mEGFR), epidermal growth factor receptor 
tyrosine kinase inhibitor (EGFR-TKI) is the para-
digm of target treatment and significantly pro-
longs patients survival [2, 3]. However, the effi-
cacy of EGFR-TKI demonstrates diversity in 
mEGFR NSCLC patients with the progression-
free survival (PFS) ranging from 1 month to 2.5 
years [4-6]. Thus, factors beyond genetic aber-
rance that influence the therapeutic effect of 
EGFR-TKI is warranted to be further investigat-
ed [7-9]. 

Metabolic reprogramming has recently been 
recognized as a significant feature of tumor 
cells resistance to therapy. Therefore, metabo-
lomics profiling, complementary to genomics 
and proteomics, can directly delineate cellular 
biochemical changes and provide useful infor-
mation on disease status and therapeutic effi-
cacy [10-12]. Nevertheless, only a few studies 
characterized metabolites signatures relevant 
to EGFR-TKI treatment response, either demon-
strating single metabolites like 25-hydroxyvita-
min D3 with prognostic value or revealing pre-
clinical metabolic markers on mice models. 
More efforts on serum metabolites profiling 
and metabolites modeling predictive of EGFR-
TKI efficacy are needed.  

Additionally, contemporary studies have de- 
picted concurrent genetic alterations with EGFR 
mutations that may affect patients’ survival 
[13-15]. The commonly reported coexistent 
gene alterations include TP53, PIK3CA, BRAF, 
and de-novo c-MET mutations, ALK fusion, 
PTEN deletion, and BIM deletion polymorphism 
[16-21], among which TP53 and PIK3CA muta-
tions were the most detected ones [18, 22]. 
Patients with these concurrent genetic altera-
tions generally have poor clinical outcomes 
including shorter PFS and overall survival (OS). 

In general, the aforementioned studies mainly 
focused on uncovering driver mutations or sec-
ondary mutations of mEGFR to investigate 
EGFR-TKI efficacy. There are very limited stud-
ies that integrated the serum metabolites and 

somatic concomitant gene mutations to deter-
mine the relevance of these factors to EGFR-
TKI treatment in mEGFR NSCLC patients. In 
this study, utilizing samples obtained from a 
rigorous clinical trial, we revealed the targeted 
metabolites, the concurrently mutated genes 
that may be associated with the efficacy of first-
generation EGFR-TKI icotinib in advanced 
mEGFR lung adenocarcinoma (LUAD) patients. 
We expect to further the understandings of 
molecular signatures predictive of EGFR-TKI 
efficacy and provide additional evidence for 
more precise identification of LUAD patients 
who are most likely to benefit from EGFR-TKI 
therapy.

Materials and methods

Study design and patients 

We retrospectively selected 49 stage IIIB or  
IV LUAD patients with mEGFR of exon 19 dele-
tions or 21 L858R mutations who had received 
icotinib from CONVINCE study (NCT01719536) 
[4]. EGFR mutations were detected by the 
amplification refractory mutation system (AR- 
MS) assay and PFS was defined as the duration 
from recruit time point to disease progression 
identified by response evaluation criteria in 
solid tumor (RECIST V1.1) standard. Demograp- 
hic characters including age, gender, smoking 
history, Eastern Cooperative Oncology Group 
(ECOG) performance status (PS), clinical stage 
and EGFR sensitizing mutation type were col-
lected. Informed consent was obtained from all 
patients for the use of tissue and serum sam-
ples in CONVINCE study which had been 
approved by the Ethics Committee of National 
Cancer Center/Cancer Hospital, Chinese Aca- 
demy of Medical Sciences & Peking Union 
Medical College with Protocol #14-001/791. 

A total of 49 patients were stratified into good-
responders with PFS longer than 11 months 
and poor-responders with PFS shorter than 11 
months. At baseline, the serum samples were 
collected from 44 patients for targeted metab-
olites profiling analysis, and the paraffin-
embedded (FFPE) tissue samples were collect-
ed from 19 patients for target sequencing. 
Fourteen patients of the total 49 provided both 
serum samples and FFPE samples as shown in 
Figure 1.
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Targeted metabolites detection with UPLC-ESI-
Qtrap

Targeted metabolites in this study included 
amino acids (AA), fatty acids (FA), and lipid (LP). 
Serum samples were thawed on ice and pre-
pared as follows: For extraction of AA, 10 µl 
serum sample was mixed with 30 µl acetoni-
trile. After vortex for 1 minute, the mixture was 
centrifuged at 13,200 rpm for 5 minutes at 
4°C. 10 µl of the supernatant was transferred 
into a fresh tube and mixed with 10 µl ddH2O. 
Then, 10 µl of the mixture was added with 70 µl 
Borate buffer (AccQ•Tag kit, Waters, Milford, 
MA, USA). After vortex for 1 minute, 20 µl of 
AccQTag reagent was added. The mixtures were 

heated at 55°C for 10 minutes and transferred 
to autosampler vials (DIKMA, Beijing, China) 
with a 250 µl insert tube for test. For extraction 
of FA and LP, 50 µl serum sample was added 
with 20 µl of the inter-standard solution (Avanti 
Polar Lipids, Alabaster, AL, USA) and 280 µl of 
chloroform/methanol (3:1; Mreda/Fisher Sci- 
entific, Waltham, MA, USA). Then the mixture 
was ultrasonicated at room temperature for 1 
hour, added with 100 µl ddH2O and thoroughly 
mixed. After centrifugation at 120,000 rpm for 
10 minutes, the supernatant was dried using 
Centrifugal vacuum evaporator (Thermo Fisher 
Scientific, Waltham, MA, USA)  for 4 hours at 
4°C, added 100 µl of isopropyl alcohol/acetoni-
trile with 1:1 ratio (Fisher Scientific, Beijing, 

Figure 1. Flowchart of the study. PFS, 
progression-free survival; LUAD, lung 
adenocarcinoma; mEGFR, epider-
mal growth factor receptor sensitiz-
ing mutation; NGS, next-generation 
sequencing.
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China) and dissolved in ultrasound (Kun- 
shanhechuang, Shanghai, China). After centrif-
ugation at 12,000 rpm for 10 minutes, 100 µL 
of supernatant was transferred to a 250 µl vial 
insert tube for test.

After that, ultra-high performance liquid chro-
matography (UPLC Waters, Milford, MA, USA) 
and Rapid Separation LC (RSLC, Shimazu 
LC-20AXR, Kyoto, Japan) was used to separate 
AA and FFA/LP, respectively. The mobile phas-
es and gradient conditions of metabolites 
detection in liquid chromatography separation 
were shown in Figure S1. Then, multiple reac-
tion monitoring (MRM) analysis was performed 
using Xevo TQ-S mass spectrometer for AA and 
5500Qtrap mass spectrometer for FFA/LP (AB 
SCIEX, Boston, USA). The electrospray ioniza-
tion (ESI) for AA and LP was positive mode 
(ESI+), while the negative mode (ESI-) was used 
for FFA. The ion source temperature and capil-
lary voltage were set to 150°C/2.0 kV for AA, 
650°C/4.5 kV for FFA, and 650°C/5.0 kV for 
LP. The cone gas flow rate was 150 L/h, the 
desolvation temperature was 600°C and the 
desolvation gas flow was 1000 bar for AA 
detection. The system was controlled by the 
Masslynx Analysis software (SCIEX, Boston, 
MA, USA). The Skyline software (MacCoss, WA, 
USA) was used to analyze the raw data and 
analysis model was established according to 
their precise molecular weight and optimal 
retention time, while the integral of target 
metabolite peaks were assessed using analy-
sis mode. 

We used the quality control sample pooled 
from all the serum samples in the testing. 5 
blank samples were used to balance the chro-
matographic column, and then 3 quality control 
samples were used to balance the column con-
ditions. We inserted a quality control sample 
into injection after every 6-8 samples to moni-
tor the stability and repeatability of the entire 
liquid-mass system.

DNA extraction, next-generation sequencing 
(NGS) and data processing

Genomic DNA was extracted from tissue using 
the QIAamp DNA FFPE Tissue kit (Qiagen, 
Valencia, CA, USA) and quantified using Qubit 
3.0 Fluorometer and Qubit dsDNA HS Assay kit 
(Invitrogen, Carlsbad, CA, USA) according to the 
manufacturers’ instructions. The DNA samples 

were prepared for DNA library using The KAPA 
Hyper Prep kit (Kapa Biosystems, Wilmington, 
MA, USA) and captured by SureSelect XT Target 
Enrichment System (Agilent Technologies, 
Santa Clara, CA, USA) using 474 cancer-related 
genes panels for NGS according to the manu-
facturers’ protocols. The library concentration 
and fragment size were evaluated with Qubit 
3.0 Fluorometer (Invitrogen) and 2100 Bio- 
analyzer (Agilent Technologies), respectively. 
DNA library was then sequenced on Illumina 
HiSeq-X10 platform (Illumina, San Diego, CA, 
USA). 

FASTQ files of raw sequencing reads were gen-
erated using bcl2fastq Conversion Software 
(Illumina, Version: 2.17.1.14) for NGS data anal-
ysis. Low quality reads were filtered out and 
short reads were aligned to human reference 
genome (UCSC hg38) using BWA-MEM (Version: 
0.7.17-r1188). Alignments were converted to 
BAM format using Samtools (Version: 1.4). PCR 
duplicates were removed using GATK Picard 
(Version: 2.18.0). Variants were then called 
using VarScan2 and Vardict (Version: 1.6.0). 
Variant annotation was done by Jannovar 
(Version: 0.20). Synonymous and intronic vari-
ants were subsequently filtered out. To identify 
high-confidence SNVs and indels, we only 
retained variants that were called by both 
VarScan2 and Vardict, and with the allele fre-
quency (AF) ≥ 5% and variant read depth > 5. 
For known hotspot variants (EGFR L858R, 
19del), a variant was retained if its AF ≥ 2%. To 
distinguish common population polymorphisms 
from somatic mutations, we further filtered out 
variants with population frequency > 0.5% in 
the gnomAD database.

Pathway enrichment analysis and interaction 
network analysis of co-mutant genes 

Pathways enrichment analysis and interaction 
network analysis for co-mutated genes were 
conducted in Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway database (https://
www.kegg.jp/kegg/pathway.html) and STRING 
(https://string-db.org/) database, respectively. 

Building of metabolites discriminant models 
predictive of icotinib efficacy

The multivariate method partial least squares 
discrimination analysis (PLS-DA) implemented 
in the R package MetaboAnalystR was utilized 
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to establish predictive model [4].  Moreover, the 
variable importance in projection (VIP) score 
was utilized to weigh the influence of each 
metabolite in the classification model. The per-
mutations were repeated 1000 times and 
P≤0.05 was considered statistically significant. 
Besides, the receiver operating characteristic 
(ROC) analysis was conducted using the R 
package ROCR (R version 4.0.2; R Fo- 
undation for Statistical Computing; www.r- 
project.org). The missing value imputation and 
data normalization procedures were reached 
according to the R package MetaboAnalyst 
[23]. For deep learning modeling, AutoGenome 
package was used to search for net structures 
and hyperparameters for skip-connection neu-
ral networks and automatically train a model to 
predict patient PFS using metabolites profiles 
[24]. AutoGenome-built-in model-explanation 
function was used to weight the importance of 
each metabolite to the prediction. t-distributed 
stochastic neighbor embedding (t-SNE) algo-
rithm was used to perform dimension reduc-
tion on patients’ metabolite profiles by R pack-
age tsne.

Network-based omics data integration analysis 
of metabolites and co-mutated genes

eResponseNet was used to build a causal-
mediator network [25]. eResponseNet algo-
rithm is a minimum-cost flow optimization algo-
rithm, which finds the maximal flow from source 
nodes to target nodes in a given network while 
minimizes the overall cost of the network. We 
first obtained the corresponding IDs of metabo-
lites in Human Metabolome (HMDB) Database 
and then searched the KEGG IDs from the 
online systems-level MetaboAnalyst analysis 
web site (https://www.metaboanalyst.ca/). We 
defined PFS-relevant mutated genes as 
upstream causal genes (source nodes) and 
genes of PFS-relevant metabolites pathways as 
downstream response genes (target nodes) 
respectively. The eResponseNet was then used 
to find corresponding mediator genes that lin- 
ks the upstream genes and the downstream 
metabolite pathways in a manually curated PPI 
reference network. Each of the upstream, 
downstream, mediator genes, and each edge 
connecting the genes, were assigned with a 
weight of flow value, reflecting the importance 
degree in the current causal-mediator net-
works. The causal-mediator networks were 

visualized by Cytoscape software. The PPI ref-
erence network consists of 238,897 interac-
tions collected from Reactome FI, STRING, and 
HPRD databases. For STRING database, only 
high-confidence interactions with a confidence 
score ≥ 900 were used. 

Statistical analysis

χ2 test and Fisher’s exact test were used to 
compare differences in clinical and genetic 
characteristics between patients with different 
PFS. The survival package in R (https://cran.r-
project.org/web/packages/survival/) was us- 
ed to analyze survival data of patients stratified 
by gene mutations, while the Wilcoxon-test was 
used to analyze continuous variables. Survival 
curves were plotted using the Kaplan–Meier 
method and a log-rank test was used to assess 
the statistical significance of survival differenc-
es. Univariate and multivariate COX regression 
models were used to investigate the relation-
ship between mutated genes, clinical charac-
teristics and PFS.

Results

Clinical characteristics of patients

Out of the 49 LUAD patients, 24 were poor-
responders and 25 were good-responders. The 
median PFS of patients in these two groups 
were 3.62 months and 19.34 months (HR, 
5.63, 95% CI 2.53-12.53; P < 0.0001), re- 
spectively. The median age of all the pa- 
tients was 56.4 years old (range: 41.3-69.7  
years old). The majority of patients were  
female (65.3%) and non-smokers (73.5%). 
Moreover, 23 (46.9%) and 26 (53.1%) of pa- 
tients had EGFR 19 deletions and 21 L858R 
mutations detected by ARMS assay, respec-
tively. The distributions of age, gender, smoking 
history status, ECOG PS, EGFR sensitizing 
mutations, and clinical stage did not exhibit sig-
nificant differences between the two groups 
(Table 1). 

Identification of targeted metabolites associ-
ated with the efficacy of icotinib using two dis-
criminant models

44 pretreatment serum samples were sub- 
jected to targeted metabolomics profiling that 
covers 199 metabolites to explore the potential 
relevance of metabolites to the efficacy of ico-
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tinib. The 44 patients consisted of 22 poor-
responders with a median PFS of 2.91 months 
and 22 good-responders with a median PFS of 
19.34 months (HR, 5.33, 95% CI 2.34-12.17; P 
< 0.0001). We assigned the 44 patients into a 
training set of 30 patients and a testing set of 
14 patients to establish and test metabolites 
models distinguishing good-and poor-respon- 
ders. 

Firstly, we built a discriminating model using 
partial least squares discrimination analysis 
(PLS-DA) and identified 27 differential meta- 
bolites with VIP score > 1.5 (Figure 2A, 2B and 
Table S1) in the training set. The PLS-DA sc- 
ores plot showed a clear separation between 
good-responders and poor-responders with a 
model accuracy of 0.77 (the cross-validated 
R2=0.74 and pperm =0.016). Next, the ROC 
analysis revealed that the model distinguished 
good-responders from poor-responders in the 
testing set with a sensitivity of 0.8, a specificity 
of 0.67, and an area under the ROC curve (AUC) 
of 0.62 (Figure 2C). These 27 metabolites were 
mainly involved in linoleic acid, glycerophos-
pholipid, and histidine metabolism pathways 

(Figure 2D). Among the 27 metabolites, the lev-
els of 15 metabolites including 7 sphingomy-
elins (SMs), 3 ceramides (Cers), 2 phosphatidyl-
cholines (PCs), 2 amino acids (AAs, L-β-Amino-
N-butyric acid, 3-Methyl-L-Histi dine), and a 
fatty acid 18:0 (FA 18:0), were higher in poor-
responders than those in good-responders, 
whereas 12 metabolites including 5 lysophos-
phatidylcholines (LPCs), 3 phosphatidyletha-
nolamines (LPEs), 3 amino acids (L-tyrosine, 
ethanolamine, histamine) and FA 18:2 showed 
a contrary trend (Figure 2E and Table S1). 

Secondly, we built a deep-learning neural net-
work model using the same cohorts through  
an AutoGenome auto-machine learning tool. 
Trained by data from 30 patients, the Auto- 
Genome model achieved an AUC of 0.85 tested 
by 14 patients data in the testing set (Figure 
3C). Among the top 80 metabolites ranked by 
feature importance contribution in the Auto- 
Genome model’s prediction, 10 metabolites 
overlapped with the PLS-DA-filtered 27 metab-
olites (Table S2). Specifically, the 10 overlapped 
metabolites could best distinguish the good- 
and poor-responders visualized by tSNE, with 

Table 1. Clinical characteristics in LUAD patients

Characteristic
Patients Good-responders Poor-responders

P-value
No. Percent (%) No. Percent (%) No. Percent (%)
49 25 24

Age 0.879
    ≥ 57 years 23 46.9 12 52.2 11 47.8
    < 57 years 26 53.1 13 50 13 50
Gender 0.108
    Female 32 65.3 19 59.4 13 40.6
    Male 17 34.7 6 35.3 11 64.7
Smoking history 0.088
    yes 13 26.5 4 30.8 9 69.2
    no 36 73.5 21 58.3 15 41.7
ECOG-PS 1.000
    0-1 47 95.9 24 51.1 23 48.9
    ≥ 2 2 4.1 1 50 1 50
Clinical stage 0.322
    IIIb 10 20.0 7 0.70 3 0.30
    IV 39 80.0 18 46.2 21 53.8
EGFR mutation types 0.062
    19 deletions 23 46.9 15 65.2 8 34.8
    21 L858R mutations 26 53.1 10 38.5 16 61.5
LUAD, lung adenocarcinoma; ECOG-PS, Eastern Cooperative Oncology Group performance status; EGFR, epidermal growth 
factor receptor.
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Figure 2. Correlation between the 27 metabolites and the efficacy of icotinib using PLS-DA. A. PLS-DA scores plot showed the clustering of good-responders and 
poor-responders, S1-S30 represented 30 LUAD patients in the training set. B. 27 metabolites with a VIP score > 1.5. C. ROC curve to validate the capacity of the 
PLS-DA model to distinguish good- and poor-responders in the testing set including 14 LUAD patients. D. Enrichment metabolism pathways of 27 metabolites. 
E. Hierarchical clustering of 27 metabolites in good- and poor-responders. The top columns in red and cyan represented good-responders and poor-responders, 
respectively. Generally, the level of metabolites above the horizontal black line was higher in poor-responders than that in good-responders, whereas the level of 
metabolites below the black line was higher in good-responders. LUAD, lung adenocarcinoma; PC, phosphatidylcholine; SM, sphingomyelin; Cer, ceramides; FA, fatty 
acid; PLS-DA, partial least squares discrimination analysis; LPC, lysophosphatidylcholine; LPE, phosphatidylethanolamine. Amino acids included L-β-amino-N-butyric 
acid, 3-methyl-L-histidine, Histamine, L-tyrosine, and ethanolamine.
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Figure 3. Deep-learning neural network model of AutoGenome and performance of the overlapped 7 metabolites in distinguishing good- and poor-responders. A. The 
net structure of a metabolite-to-PFS prediction deep learning model searched by AutoGenome. B. Silhouette scores of poor- and good-responders using 4 different 
sets of metabolites: all 199 metabolites, 80 AutoGenome-filtered metabolites, 27 PLS-DA-filtered metabolites and 10 metabolites overlapped in AutoGenome and 
PLA-DA. A high silhouette score indicates better distinguishing capacity between two groups using given features of metabolites. C. AUC of AutoGenome metabolite-
PFS prediction model tested in 14 patients data. D. tSNE visualization of poor- and good-responders using 199, 80, 27 and 10 metabolites mentioned above. E. 
Boxplot of 7 metabolites significantly different in good- and poor-responders. Red and blue boxes represented good-responders and poor-responders. *P < 0.05, 
**P < 0.01, ***P < 0.001. F. ROC analysis showed AUC of 0.89 for 7 metabolites in discriminating good- and poor-responders. PFS, progression-free survival; LUAD, 
lung adenocarcinoma; tSNE, t-distributed stochastic neighbor embedding; ROC, receiver operating characteristic; AUC, area under the curve.
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the highest intra- vs. inter-similarity ratio (sil-
houette score =0.097) superior to 199, 80  
and 27 metabolites (silhouette score =0.013, 
0.010, and 0.074; Figure 3D). 

Seven of the 10 metabolites exhibited signifi-
cantly difference between good- and poor-
responders including 2 Cers (Cer 36:1-3, Cer 
38:1-3), 2 LPCs (LPC 16:1, LPC 22:5-1), 2 SMs 
(SM 36:1-2, SM 42:2) and LPE 18:2. Specifically, 
the 2 LPCs and LPE 18:2 had elevated levels in 
good-responders, while the other 4 metabo-
lites had higher levels in poor-responders 
(Figure 3E). The 7 metabolites in combination 
yielded an improved AUC of 0.89 in the ROC 
analysis (Figure 3F), and were used in the fol-
lowing omics integration analysis.

Association of concurrently mutated genes 
with the efficacy of icotinib therapy

Among the 49 patients, 19 patients were 
sequenced using a 474-gene NGS panel. The 
median PFS of 7 poor-responders and 12 good-
responders were 6.84 months and 21.38 
months, respectively (HR, 6.67, 95% CI 1.17-
37.89; P < 0.0001). With regard to mEGFR, 11 
samples had EGFR L858R mutations and 8 
samples had EGFR 19 deletions, which was  
in concordance with ARMS detection. Good-
responders had roughly identical numbers of 
the EGFR L858R mutations and 19 deletions, 
while the majority of the poor-responders (86%, 
6/7) only had EGFR L858R mutations (Figure 
4). We identified 239 concurrently mutated 
genes using a 5% allele frequency of mutations 
as cutoff under the quality control (Table S3). 
Kaplan-Meier survival analysis showed 28 
mutated genes were related to PFS. We further 
performed a univariate COX regression analysis 
of 28 genes and the clinical characteristics (P < 
0.05, log-rank test). 23 concomitantly mu- 
tated genes remained significantly correlated 
with PFS, while age, gender, clinical stage, EG- 
FR sensitizing mutation types (19 deletions vs 
21 L858R mutations), and smoking history dis-
played no significant association with PFS 
(Table S4). We then focused on 6 genes (ARI- 
D1A, BCR, PTCH1, RBM10, FANCD2, ARID1B) 
with the highest mutation frequency (16%) out 
of the top 10 genes relevant to PFS. Mutation 
of the 6 genes indicated shorter PFS in mEGFR 
LUAD patients (Figure 5). Given the knowled- 
ge of the different therapeutic response of 
patients with 19 deletions or 21 L858R muta-

tions, we conducted COX multivariate analysis 
for the 6 genes by considering EGFR sensitizing 
mutation types. The result showed that BCR 
and FANCD2 remained significant (P=0.020 
and P=0.016) and RBM10 was marginally sig-
nificant (P=0.058), while the EGFR sensitizing 
mutation types remained no significant differ-
ence between the two groups (P=0.695) (Figure 
S2A).

Furthermore, mutated BCR or RBM10 indicat-
ed shorter PFS in our cohort and also had a 
similar effect on overall survival (OS) in the 
TCGA datasets. In TCGA cohorts, NSCLC pa- 
tients harboring both mEGFR and BCR/RBM10 
mutations had a poorer OS (Figure S2B and 
S2C). Restricted to the details of EGFR-TKI ther-
apy and OS, only 2 patients with both mEGFR 
and RBM10 mutations receiving EGFR-TKI 
treatment showed a poorer OS compared with 
the 37 patients with only mEGFR (Figure S2D). 
RBM10 and BCR mutations also tended to 
coexist with EGFR mutations in TCGA datasets 
(Figure S2E).

We also compared the KEGG pathways and 
STRING networks of uniquely mutated genes in 
good- and poor-responders. Compared with the 
good-responders, poor-responders were found 
to harbor more co-occurring mutant genes (50 
vs 125) which were enriched in the MAPK sig-
naling pathway, Ras signaling pathway, and 
Rap1 signaling pathway (Figure 6A and Table 
S5). PI3K-Akt signaling pathway and EGFR tyro-
sine kinase inhibitor resistance pathway were 
seen in both groups (Figures 6A and S3A). 
These signaling pathways have all been dem-
onstrated to be closely related to EGFR-TKI 
resistance. Additionally, STRING network re- 
vealed EP300 and PIK3CA as the hub genes 
exhibiting the most interactions with other 
genes (Figures 6B and S3B). 

The interrelation between the targeted metab-
olites and concurrently mutated genes

To acquire a better understanding of the possi-
ble mechanisms leading to the difference in 
efficacy, we integrated metabolites and concur-
rent gene mutations that were both related to 
icotinib efficacy from two perspectives. Firstly, 
we analyzed the correlation between the 6 effi-
cacy-related mutated genes and 7 metabolites 
mentioned above in 14 patients with both eli-
gible sequencing and metabolites data in this 
study. The median PFS of 5 poor-responders 
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Figure 4. Heatmap of mutations identified in 19 LUAD patients with mEGFR. Heatmap of most frequent somatic 
mutations identified in this study. The top panel shows mutational burden for each sample, red for synonymous mu-
tations, blue for non-synonymous mutations and green for frameshift mutations. The down panel shows groups of 
12 good-responders (red) and 7 poor-responders (cyan), respectively. The left panel shows the number of mutations 
identified in each gene. The right panel shows the genes identified in each patients. LUAD, lung adenocarcinoma; 
mEGFR, epidermal growth factor receptor sensitizing mutation.

and 9 good-responders was 9.18 months and 
21.38 months (HR, 6.07, 95% CI 0.74-49.91; 
P=0.001). We found that different levels of 4 

metabolites (Cer 36:1-3, Cer 38:1-3, LPC 16:1, 
SM 36:1-2) associated with the mutation status 
of 4 genes (ARID1A, ARID1B, BCR, and RBM10) 
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(P < 0.05, Table S6). Cer 36:1-3 levels signifi-
cantly increased in the ARID1A and BCR mutant 
group, and Cer 38:1-3 only rose in the ARID1A 
mutant group compared to the wild-type gro- 
up. Patients with mutated ARID1A, BCR, and 
RBM10 genes had higher levels of SM 36:1-2, 
while patients with wild-type of the 3 genes had 
higher levels of LPC 16:1 (Figure 7A and Table 

S6). These results suggested that the mutant 
genes may have an impact on metabolism. 
Herein, the 4 metabolites and 4 concurrently 
mutant genes were referred to as our target 
metabolites and target genes, respectively.

Secondly, we performed a systematic causal-
mediator network analysis to further explore 

Figure 5. Kaplan-Meir survival curves of PFS and 6 concurrently mutated genes in 19 LUAD patients with mEGFR 
and treated with icotinib. Cyan line indicates wild-type and red line indicates mutant type of genes. LUAD, lung ad-
enocarcinoma; mEGFR, epidermal growth factor receptor sensitizing mutation; PFS, progression-free survival.
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Figure 6. KEGG pathways and STING interaction network in poor-responders. A. KEGG pathways of concurrently mutant genes uniquely mutated in poor-responders. 
Red outlined frame highlighted important pathways relevant to EGFR-TKI resistance. B. STRING network of the uniquely mutated genes in poor-responders. EP300 
in red frame as the hub gene of the STRING network.
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the genes-metabolites relationship based on 
interactome databases. We obtained the KEGG 
IDs of 4 metabolites (Cer 36:1-3, Cer 38:1-3, 
LPC 16:1, and SM 36:1-2) using the Metabo- 
Analyst tool, queried the corresponding meta-
bolic pathways and abstracted all the metabol-
ic genes involved in the pathways within KEGG 
database. We denoted the 4 concurrently mu- 
tated genes of interest (ARID1A, ARID1B, BCR, 
and RBM10) as upstream nodes and metabolic 
genes modulating the biological processes of 
the 4 metabolites as downstream nodes to 
track any possible inner interaction between 
them. The 4 concurrently mutated genes were 
connected to metabolic genes in glycerophos-
pholipid metabolism pathway and sphingolipid 
metabolism pathway through mediator genes 
(Figure 7B and 7C). In general, ARID1A con-
nects to CTNNB1 (catenin beta 1)/CREBBP 
(CREB binding protein) and EP300 (E1A binding 
protein p300), ARID1B interacts with SMAD9 
(SMAD family member 9) and ZNF263 (zinc fin-
ger protein 263)/CUL2 (cullin2), BCR interacts 
with PLCG1 (phospholipase C gamma 1) and 
GRB2 (growth factor receptor bind protein 2), 
and RBM10 interacts with PRCC (proline-rich 
mitotic checkpoint control factor) mediator 
genes to eventually impact the following down-
stream metabolic genes in the 2 metabolic 
pathways. Overall, the testification in our cohort 
and in interactome databases convinced us of 
the correlation between mutated genes and 
targeted metabolites.

Discussion

EGFR-TKI is an important treatment for 
advanced NSCLC patients with mEGFR, but the 
molecular heterogeneity of NSCLC leads to dif-
ferent clinical responses [5, 6, 26]. There are 
currently no validated biomarkers addressing 
the issues related to the difference of EGFR-TKI 
efficacy for patients with mEGFR. Recent stud-
ies are principally focused on a single perspec-
tive of gene variations or protein alterations, to 
explore mechanisms for this therapeutic re- 

sponses divergence [14, 16]. In this study, we 
revealed that targeted metabolites and con-
comitantly mutated genes with mEGFR were 
both relevant to the efficacy of icotinib treat-
ment, which provides a promising strategy in 
distinguishing patients subgroups and may 
facilitate mEGFR to improve the personalized 
therapy.

Altered metabolites in tumor cells could be 
potential biomarkers for cancer diagnosis and 
prognosis because of their close relationship to 
phenotypes and direct reaction to stimuli from 
the microenvironment [12]. The fact that the 
sensitivity of tumor cells to anti-cancer drugs  
is closely related to metabolic perturbation is 
well-acknowledged. Meanwhile, metabolites 
are stable and can be quantitatively detected 
via non-invasive serum samples, thus making 
them more convenient potential prognosis bio-
markers. Previous studies have demonstrated 
that a plurality of metabolites could assist in 
the diagnose of NSCLC or multiple metabolites 
models that can predict the efficacy of chemo-
therapy, yet there is a lack of relevant studies 
on metabolites profiling derived directly from 
patients pretreatment serum samples to 
explore their relationship to EGFR-TKI treat-
ment [27, 28]. In this study, we profiled targeted 
metabolites in mEGFR LUAD patients and 
established discriminative models by both  
traditional PLS-DA analysis and deep learning-
based AutoGenome analysis. Our results re- 
vealed that metabolites based models pos-
sessed the potency to distinguish between dif-
ferent responders to icotinib treatment with 
moderate to good capacity (AUC of PLS-DA: 
0.62, AUC of AutoGenome: 0.85). It’s worth not-
ing that the overlapped 10 metabolites contrib-
uted to both models in enhancing the confi-
dence of their underlying relevance to the effi-
cacy of icotinib. 

More importantly, 7 out of the 10 overlapped 
metabolites exhibited a significant difference 
between good-responders and poor-respond-

Figure 7. The interrelation between 4 target metabolites and 4 concurrently mutated genes. A. Boxplot shows the 
difference in the levels of Cer 36:1-3, Cer 38:1-3, SM 36:1-2, LPC 16:1 between wild-type and mutant type of 
ARID1A, ARID1B, BCR and RBM10 genes. Red and blue boxes represented mutant and wild-type type of the 4 
genes, respectively. *P < 0.05. B. The interrelation of upstream mutated genes (ARID1A, ARID1B, BCR and RBM10) 
and downstream metabolic genes in sphingolipid metabolism pathway by causal-mediator network analysis. C. The 
interrelation of upstream mutated genes (ARID1A, ARID1B, BCR and RBM10) and downstream metabolic genes 
in glycerophospholipid metabolism pathway by causal-mediator network analysis. The red outlined rectangles rep-
resented 4 upstream concurrently mutated genes, blue outlined ellipse represented mediator genes, red outlined 
triangles represented downstream metabolic genes and black edges denoted the connections between genes.
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ers, which were mainly involved in the lipids 
metabolism including Cers, LPCs, LPEs, SMs 
and FAs. Notably, 7 metabolites in combination 
further improved the distinguishment of differ-
ent responders. Among them, Cers as a bioac-
tive sphingolipid can be hydrolyzed from SMs 
and plays dichotomous roles in inducing apop-
tosis or implicating cancer cell proliferation 
[29]. In this study, increased Cer 36:1-3 and 
Cer 38:1-3 associated with poor-responders, 
which may preferably be associated with the 
tumor-promoting function of Cers. Besides, 
higher Cers levels produce more sphingosine-
1-phosphate (S1P) which excites FAK, SRC 
oncoproteins and arousing MAPK/ERK, PI3K/
AKT pathways activation to promote tumor cell 
proliferation, invasion and migration. SMs do 
not only serve as an essential constituent of 
the cell membrane but also as the sources of 
secondary messengers like Cers, sphingosine 
(Sph) and S1P, which are involved in many criti-
cal signal transduction pathways [30]. Correctly 
arraying SMs across the cellular membrane at 
certain concentrations is essential for Ras pro-
tein localization and normal functioning [31]. 
Elevated SM contents may be an indication of 
adaption to the overactivation of EGFR-Ras-
ERK signaling pathway to facilitate tumor prolif-
eration, which could explain the increased SM 
36:1-2 and SM 42:2 levels in poor-responders. 
LPCs are a lysophospholipid intermediate in 
the biosynthesis and degradation of phosphati-
dylcholine (PC). Various studies observed that 
the plasma levels of LPCs were decreased in 
advanced metastatic cancer patients. Li- 
kewise, lower LPC 16:1 concentrations were 
detected in poor-responders perhaps as a 
result of its well-known involvement in cell pro-
liferation, migration, and angiogenesis [32]. 
LPEs is hydrolyzed from phosphatidylethanol-
amine and functions in stimulating the calcium 
signaling pathway [33]. The levels of LPCs in 
lung cancer patients have been reported to be 
controversial. In this study, poor-responders 
had reduced levels of LPC 16:1 which indicated 
the deregulation of LPE relevant signaling tr- 
ansduction turbulence linked to cancer devel-
opment. Accumulated evidence has been eluci-
dated the important role of fatty acids in cancer 
progression. A higher level of FA 18:0 in patients 
with shorter PFS complies with the biological 
effect of FA affecting the proper localization 
and function of EGFR and STAT3/NF-κB-cyclin 
D1/survivin axis [34]. 

Several studies have demonstrated that co-
existing somatic gene alterations can affect 
EGFR-TKI efficacy [21]. In this study, we focused 
on 6 mutated genes accompanied with mEG- 
FR, which were correlated with a shorter PFS. 
Among them, BCR and RBM10 were also shown 
to affect OS in TCGA cohort. BCR gene, origi-
nally identified in the BCR/ABL complex in 
chronic myeloblastic leukemia, is a serine/thre-
onine kinase that may activate RAS/RAF/MARK 
signaling pathway and promote DNA synthesis 
[35]. RBM10 is a LUAD tumor suppressor that 
mutated in 16% patients within our cohort 
which is similar to its prevalence of 5%-20% in 
other studies indicating its mutation co-oc- 
curred with EGFR, PIK3CA, and KRAS muta-
tions [36-39]. It has been demonstrated that 
RBM10 mutations disrupted alternative splic-
ing of NUMB (a Notch pathway regulator) and 
are closely related to EGFR, MAPK, PI3K-AKT, 
and RAS signaling pathways, hence promoting 
the growth of lung cancer cells [40-42]. RBM10 
mutations tended to be associated with low 
RBM10 expression levels and a poorer progno-
sis in LUAD patients [37], which is consistent 
with the results of this study. ARID1A and 
ARID1B both encode key proteins in the SWI/
SNF chromatin remodeling complex and their 
loss-of-function because of mutations pro-
motes carcinogenesis [43]. PTCH1 encodes a 
protein that participates in the Hedgehog sig-
naling pathway, which has been implicated in 
the regulation of cell proliferation, differentia-
tion, and associated with the sensitivity to che-
motherapy [44, 45]. Similarly, we hereby ob- 
served that PTCH1 mutations are associated 
with a shorter PFS in icotinib therapy. FANCD2 
encoding protein plays an important role in 
DNA cross-linking damage repair and the patho-
genesis of Fanconi anemia (FA). Mutant EGFR 
is epistatic with FANCD2 and EGFR signaling 
may be linked to altered FA/BRCA functions 
leading to increased responses to chemothera-
py [46]. However, the exact mechanism through 
which the coexistence of mEGFR and muta- 
ted FANCD2 influences patients’ response to 
EGFR-TKI therapy remains to be investigated. 
Simultaneously, concurrently mutated genes in 
poor-responders were enriched in PI3K-AKT, 
MAPK, Ras, Rap1 signaling pathways which are 
involved in the drug resistance of EGFR-TKI 
therapy [47-49]. Rap1 can be activated down-
stream by different receptor tyrosine kinases 
(RTKs) including EGFR, FGFR, VEGFR, IGFR, and 
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MET [50, 51], suggesting that RTKs bypass sig-
naling induces resistance to EGFR-TKIs [52]. 
Additionally, we identified EP300 as the hub of 
the gene interaction network, which is consis-
tent with its important role in transcription of 
target genes and is closely involved in the resis-
tance of EGFR-TKI [53]. 

Importantly, the interrelation between concur-
rently mutated genes and metabolites from two 
aspects to better illustrate their correlation to 
the prognosis of LUAD patients. Firstly, the sta-
tistical associations of metabolites (Cers, LPCs, 
and SMs) and target genes (ARID1A, ARID1B, 
BCR, and RBM10) were depicted in this study. 
The following results were in concordance with 
each other and strengthened the confidence  
of their relationship to icotinib efficacy: (1) 
Elevated Cers/SMs and reduced LPCs were 
related to poor response; (2) Mutant type of the 
4 genes were associated with poor-response; 
(3) Increased Cers/SMs and decreased LPCs 
were also observed in patients with the mutant 
type of the 4 mutated genes; Secondly, we illus-
trated possible interaction mechanisms be- 
tween the target genes and the target metabo-
lites in glycerophospholipid metabolism and 
sphingolipid metabolism pathways by causal-
mediator network analysis. The causal-media-
tor network is a manually curated PPI reference 
network, which enables us to explore the inner 
causal relationship with rich data supported by 
238,897 interactions collected from Reactome 
FI, STRING, and HPRD databases. Mediator 
genes connecting upstream and downstream 
genes are well-known cancer-related genes 
involved in transcriptional regulation and signal 
transduction. Specifically, ARID1A links to 
EP300 and CTNNB1/CREBBP in the 2 metabo-
lism pathways. EP300 and CREBBP encoding 
transcriptional coactivators and CTNNB1 en- 
coding β-catenin, all mediate resistance to 
EGFR-TKI [53, 54]. ARID1B interacts with 
SMAD9 and SMARCs(SWI/SNF family) which 
both could affect the transcription of their tar-
get genes by mediating TGF-β signaling trans-
duction and chromosome remodeling, respec-
tively [55]. BCR interacts with signal-transduc-
ing adaptor proteins GRB2 and phosphati-
dylinositol signaling/AKT1 survival pathway 
components PLCG1 to potentially regulate 
metabolic genes [56, 57]. RBM10 connects to 
PRCC which is reported as fusion partners with 
the TFE3 gene in renal cell carcinoma [58]. 
Nevertheless, further investigation is required 

to elucidate the mechanism through which 
ARID1B, BCR, and RBM10 regulate the media-
tor genes and downstream metabolically active 
genes. Overall, these results suggested that 
the concurrently mutated genes interacted with 
genes participating in metabolism and contrib-
ute to the different clinical responses to icotinib 
therapy. Given the easy accessibility of blood 
samples, the results convinced us the potential 
of the 4 target serum metabolites (Cer 36:1-3, 
Cer 38:1-3, SM 36:1-2M, LPC 16:1) in predict-
ing the efficacy before icotinib treatment.

In this study, despite the 3-4 years storage of 
FFPE and serum samples before testing, the 
possible decrease in sample quality may not  
be major concern in affecting the accuracy of 
these tests results because sequencing and 
metabolites testing underwent rigorous quality 
control. Besides, studies have demonstrated 
that long-term stored FFPE for 8-32 years still 
showed robustness in the NGS data of muta-
tion-analysis [59, 60]. Moreover, a study report-
ed that the human plasma metabolome is ade-
quately stable for long-term storage at -80°C 
for up to seven years [61].

The limitations of this study include the small 
sample size, serial specimen deficiency and 
lack of functional validation of experiments in 
vitro.

Conclusion

To the best of our knowledge, this is the first 
study to profile the targeted metabolites in non-
invasive pretreatment serum samples from 
mEGFR LUAD patients who received icotinib 
treatment. Double-modeling-filtered lipid me- 
tabolites and concurrently mutated genes dem-
onstrated the potential to predict the efficacy of 
icotinib, which may also provide insights into 
identifying which patients could benefit from 
icotinib therapy. The interrelation between the- 
se dual-level molecules also mutually con-
firmed their respective association with icotinib 
efficacy. Further studies are warranted to vali-
date these findings.
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Figure S1. Liquid chromatography separation conditions. A. Mobile phases and separation settings. B-D. The gradi-
ent conditions for amino acids, fatty acids and lipids. 
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Table S1. 27 metabolites used to establish PLS-DA model in training set
Metabolites Wilcoxon test P-valuea VIPscore FoldChangeb

3-Methyl-L-Histidine 0.003* 2.933 3.323 
LPE 18:2 0.007* 2.670 0.605 
Cer 38:1-3 0.003* 2.520 1.688 
LPE 20:4 0.004* 2.345 0.702 
Histamine 0.035* 2.074 0.850 
L-β-Amino-N-butyric acid 0.086* 2.030 2.630 
SM 37:2 0.028* 1.981 1.503 
Cer 42:2-3 0.010* 1.960 1.606 
LPC 22:5-1 0.039* 1.948 0.604 
LPC 18:2 0.031* 1.935 0.760 
PC 30:1 0.017* 1.901 1.282 
SM 34:1-1 0.025* 1.851 1.235 
SM 37:1 0.072 1.851 1.327 
Cer 36:1-3 0.053 1.819 1.763 
SM 35:0 0.072 1.812 1.240 
LPE 18:1 0.123 1.783 0.730 
SM 42:2 0.039* 1.772 1.406 
LPC 18:3 0.094 1.743 0.612 
LPC 22:0 0.085 1.687 0.677 
SM 36:1-2 0.053 1.680 1.519 
L-Tyrosine 0.079 1.672 0.833 
Ethanolamine 0.063 1.638 0.866 
LPC 16:1 0.065 1.617 0.751 
PC 32:0 0.086 1.595 1.251 
SM 38:3 0.072 1.550 1.319 
FA 18:0 0.003* 1.535 1.393 
FA 18:2 0.123 1.506 0.598 
a,bmarked the Wilcoxon test P-value and FoldChange calculated by the comparison of poor-responders vs good-responders; 
*marked the metabolites with significant difference (P < 0.05) between two different response groups.

Table S2. The 10 metabolites overlapped in PLS-DA and AutoGenome models
Metabolites Wilcoxon test P-valuea VIPscore foldChangeb Contribution in poor-/good-responder predictionc

LPE 18:2 0.007* 2.670 0.605 0.041 
Cer 38:1-3 0.003* 2.520 1.688 0.037 
LPE 20:4 0.004* 2.345 0.702 0.011 
LPC 22:5-1 0.039* 1.948 0.604 0.010 
Cer 36:1-3 0.053 1.819 1.763 0.030 
SM 42:2 0.039* 1.772 1.406 -0.012 
SM 36:1-2 0.053 1.680 1.519 0.014 
L-Tyrosine 0.079 1.672 0.833 0.014 
LPC 16:1 0.065 1.617 0.751 0.020 
FA 18:0 0.003* 1.535 1.393 0.022 
a,bmarked the Wilcoxon test P-value and FoldChange calculated by the comparison of poor-responders vs good-responders; 
*marked the metabolites with significant difference (P < 0.05) between two different response groups. crepresented contribu-
tion in predicting as poor- or good-responders. Higher value indicated more contribution in predicting as poor-responders and 
lower value indicated for good-responders. PLS-DA, partial least squares discrimination analysis.
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Table S3. Quality control of NGS in 19 LUAD patients
Library NO Depth Picard de-weighting Data output (MB) Q30%
003-001-PR 6575 330 21199 92.08%
003-004-PR 6227 507 24110 90.56%
003-005-PR 8236 613 27139 90.88%
003-006-PR 2473 96 28456 91.54%
003-010-PR 1609 87 24188 91.29%
003-011-PR 9061 217 29780 92.56%
003-002-PR 3125 1082 11929 87.38%
003-003-PR 3118 548 11349 87.59%
003-007-PR 3316 1043 12332 86.56%
003-008-PR 2967 1576 11045 86.47%
003-009-PR 3718 730 12669 91.32%
003-012-PR 3688 1443 18007 90.08%
003-013-PR 4014 1379 14481 90.04%
003-014-PR 1185 106 21168 88.55%
003-015-PR 7339 65 24552 91.78%
003-016-PR 4561 258 21308 89.02%
003-017-PR 4322 2207 15520 90.13%
003-018-PR 3017 325 10943 91.65%
003-019-PR 3219 994 10475 90.84%
003-001-PR 1965 59 13090 89.10%
003-004-PR 2361 13 13248 88.50%
003-005-PR 2579 56 11681 87.70%
003-006-PR 1161 13 9778 86.80%
003-010-PR 1608 87 9992 87.50%
003-011-PR 1839 43 10222 89.90%
003-014-PR 1319 15 1914 88.80%
003-015-PR 3132 20 3877 90.80%
003-016-PR 1761 13 2561 87.60%
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Table S4. The relationship between clinical characteristics and 23 concomitantly mutated genes by 
univariate COX survival analysis
Genes beta HR(95% CI) wald.test P.value
Clinical characteristics
    Age 0.00 1.00 (0.91-1.10) 0.00 0.974
    Gender -0.89 0.41 (0.13-1.29) 2.34 0.126
    Clinical stage 0.70 2.01 (0.44-9.16) 0.82 0.365
    Smoking history 0.36 1.43 (0.30-6.76) 0.20 0.651
    EGFR mutation type 0.43 1.53(0.48-4.90) 0.52 0.469
Genes
    ARID1A 2.52 12.47 (2.00-77.75) 7.31 0.007
    BCR 2.31 10.61 (1.73-65.13) 6.50 0.011
    MAZ 3.04 20.89 (1.84-236.83) 6.02 0.014
    PTCH1 2.27 9.65 (1.56-59.58) 5.95 0.015
    RBM10 1.90 6.69 (1.45-30.79) 5.96 0.015
    ATRX 2.17 8.84 (1.46-53.63) 5.62 0.018
    FANCD2 1.75 5.75 (1.35-24.44) 5.61 0.018
    BARD1 2.22 9.18 (1.27-66.14) 4.84 0.028
    KDM5C 2.03 7.59 (1.25-46.17) 4.84 0.028
    ARID1B 1.61 5.01(1.10-22.87) 4.32 0.038
    ADAMTS20 1.87 6.52 (1.07-39.58) 4.15 0.042
    BCL2L11 1.87 6.52 (1.07-39.58) 4.15 0.042
    CARD11 1.87 6.52 (1.07-39.58) 4.15 0.042
    DICER1 1.87 6.52 (1.07-39.58) 4.15 0.042
    EP300 1.87 6.52 (1.07-39.58) 4.15 0.042
    EPHB1 1.87 6.52 (1.07-39.58) 4.15 0.042
    FH 1.87 6.52 (1.07-39.58) 4.15 0.042
    GRM8 1.87 6.52 (1.07-39.58) 4.15 0.042
    LYN 1.87 6.52 (1.07-39.58) 4.15 0.042
    MAP2K4 1.87 6.52 (1.07-39.58) 4.15 0.042
    MAP3K1 1.87 6.52 (1.07-39.58) 4.15 0.042
    PIM1 1.87 6.52 (1.07-39.58) 4.15 0.042
    RNF43 1.87 6.52 (1.07-39.58) 4.15 0.042
HR, hazard ratio.
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Table S5. Mutated genes in the good-responders and poor-responders

Good-responders All mutant genes Poor-responders  
All mutant genes

Good-responders  
Uniquely mutant genes

Poor-responders  
Uniquely mutant genes

AKT1 ACVR1B AKT1 ACVR1B
ALK ADAMTS12 ALK ADAMTS12
APC ADAMTS20 AURKA ADAMTS20
ARID1B ADGRB3 BAP1 ADGRB3
ATM AMER1 BLM AMER1
AURKA APC CASP8 APCDD1
AXIN1 APCDD1 CDK2 ARAF
AXL ARAF CHEK1 ARID1A
BAP1 ARID1A CIC ARID2
BIRC5 ARID1B CREB1 ASXL1
BLM ARID2 DAG1 ATR
BRCA1 ASXL1 ELF3 ATRX
BRCA2 ATM EPHB2 BARD1
BRD3 ATR FANCG BCL2L11
CASP8 ATRX FGF14 BCOR
CDH1 AXIN1 FGF6 BCR
CDK2 AXL FOXM1 BRD4
CHEK1 BARD1 FOXO3 BRIP1
CIC BCL2L11 FRS2 CARD11
CREB1 BCOR FUBP1 CCND2
CREBBP BCR IFNAR1 CCNE1
CTNNA1 BIRC5 IKZF1 CDK12
CYP2C19 BRCA1 IL7R CDK8
DAG1 BRCA2 IRF2 CDKN1B
DNMT1 BRD3 JAK1 CDKN2C
DNMT3B BRD4 KDM5A CHD2
DOT1L BRIP1 KDR CSF1R
EGFR CARD11 MAPK8 CTCF
ELF3 CCND2 MITF CYLD
EPHA2 CCNE1 MSH2 DDR2
EPHB2 CDH1 MSH4 DICER1
ERBB3 CDK12 MYC DNMT3A
FANCA CDK8 NTRK3 ELAC2
FANCD2 CDKN1B PALB2 EP300
FANCG CDKN2C PARP2 EPHA5
FAT1 CHD2 PDGFRA EPHA7
FGF14 CREBBP PIK3CA EPHB1
FGF6 CSF1R PIK3CG ERBB2

Figure S2. Multivariate COX analysis of 6 concurrently mutated genes and the impact of BCR and RBM10 on the 
OS of NSCLC patients in 5 TCGA cohorts (OncoSG, Nat Genet 2020; TCGA, Nat Genet 2016; TCGA, Nat Genet 2014; 
TCGA, PanCancer Atlas; LUAD broad, Cell 2012). The effect of BCR and RBM10 on OS was studied using the Kaplan-
Meir analysis. The blue line indicates mutant type of genes whereas yellow line indicates wild-type of gens. A. Forest 
plot of 6 concurrently mutated genes with the highest mutant frequency. B. The difference of OS in mEGFR NSCLC 
patients with or without BCR mutation. C. The difference of OS in mEGFR NSCLC patients with or without RBM10 
mutation. D. The difference of OS in mEGFR NSCLC patients with or without RBM10 mutation who were treated with 
EGFR-TKI. E. The gene OncoPrint of the coexistence of EGFR and BCR/RBM10, and the mutual exclusivity analysis 
of BCR or RBM10 co-occurrence with mEGFR. OS, overall survival; mEGFR, epidermal growth factor receptor sen-
sitizing mutation; NSCLC, non-small cell lung cancer; EGFR-TKI, epidermal growth factor receptor-tyrosine kinase 
inhibitor.
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FOXM1 CTCF PLCG2 ERBB4
FOXO3 CTNNA1 PREX2 ESR1
FRS2 CYLD PRKCB ETV1
FUBP1 CYP2C19 RAD50 FANCC
GATA1 DDR2 RAD51 FANCE
IDH1 DICER1 RARA FGF10
IFNAR1 DNMT1 RET FGFR3
IKZF1 DNMT3A RUNX1T1 FGFR4
IL7R DNMT3B SMAD4 FH
INHBA DOT1L SNCAIP FLCN
IRF2 EGFR TLR4 FLT3
JAK1 ELAC2 ZBTB2 FLT4
JAK3 EP300 FOXO1
KAT6A EPHA2 GAB1
KAT6B EPHA5 GABRA6
KDM5A EPHA7 GATA2
KDR EPHB1 GATA6
KEAP1 ERBB2 GLI1
KLF4 ERBB3 GRIN2A
KMT2C ERBB4 GRM3
KMT2D ESR1 GRM8
LRP1B ETV1 HDAC1
MAPK8 FANCA HDAC6
MITF FANCC HSPA4
MSH2 FANCD2 IGF1R
MSH4 FANCE IKBKE
MTOR FAT1 ING4
MUC16 FGF10 KDM5C
MYC FGFR3 KDM6A
NOTCH1 FGFR4 KIT
NOTCH3 FH LYN
NSD1 FLCN MAGI2
NTRK1 FLT3 MAP2K1
NTRK3 FLT4 MAP2K4
NUP93 FOXO1 MAP3K1
PAK3 GAB1 MAPK1
PALB2 GABRA6 MAPK8IP1
PARP2 GATA1 MAZ
PARP3 GATA2 MDM4
PARP4 GATA6 MEN1
PBRM1 GLI1 MET
PDGFRA GRIN2A MMP9
PIK3C2G GRM3 MSH6
PIK3CA GRM8 MYCL
PIK3CG HDAC1 NF1
PLCG2 HDAC6 NFE2L2
POLD1 HSPA4 NSD2
PREX2 IDH1 NSD3
PRKCB IGF1R PAX5
PRKDC IKBKE PDGFRB
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PTEN ING4 PIK3C2A
PTPN11 INHBA PIK3C2B
RAD50 JAK3 PIK3C3
RAD51 KAT6A PIM1
RANBP2 KAT6B PLK1
RARA KDM5C PML
RBM10 KDM6A POLE
RET KEAP1 PTCH1
ROS1 KIT PTK2B
RUNX1T1 KLF4 RAD21
SMAD4 KMT2C RCOR1
SMARCA4 KMT2D RNASEL
SMO LRP1B RNF43
SNCAIP LYN RPTOR
SPTA1 MAGI2 SDHB
TET1 MAP2K1 SDHC
TET2 MAP2K4 SETD2
TGFBR2 MAP3K1 SLIT2
TLR4 MAPK1 SMARCA2
TNFRSF13B MAPK8IP1 SMARCD1
TOP2B MAZ SMC3
TP53 MDM4 SPEN
TSC1 MEN1 SRC
TSC2 MET STAG2
TSHR MMP9 STAT3
ZBTB2 MSH6 STAT5A

MTOR STAT5B
MUC16 SUFU
MYCL TAF1
NF1 TERT

NFE2L2 TNFRSF8
NOTCH1 TOP2A
NOTCH3 TRIM33

NSD1 WT1
NSD2 YY1
NSD3 ZNF143

NTRK1 ZNF217
NUP93
PAK3

PARP3
PARP4
PAX5

PBRM1
PDGFRB
PIK3C2A
PIK3C2B
PIK3C2G
PIK3C3
PIM1
PLK1
PML
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Figure S3. KEGG pathway enrichment analysis and STRING interaction network in good-responders. A. KEGG pathways of concurrently mutant genes uniquely mu-
tated in good-responders. B. STRING network of the uniquely mutated genes in good-responders. PIK3CA as the hub gene of the STRING network.
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Table S6. The differences of 4 metabolites according to different status of 4 concurrently mutated 
genes
Genes/Metabolites Mutant type Wild-type Wilcoxon test P-value
ARID1A
    LPE.20.4 1.06 0.10 0.04 
    Cer.36.1.3 2.05 -0.31 0.02 
    SM.36.1.2 1.45 -0.62 0.04 
    LPC.16.1 -1.21 0.15 0.04 
ARID1B
    Cer.38.1.3 1.72 -0.33 0.04 
BCR
    LPE.20.4 1.06 0.10 0.04 
    Cer.36.1.3 2.05 -0.31 0.02 
    SM.36.1.2 1.45 -0.62 0.04 
    LPC.16.1 -1.21 0.15 0.04 
RBM10
    SM.36.1.2 1.78 -0.62 0.02 
    LPC.16.1 -1.55 0.15 0.02 


