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Abstract: Reprogramming of metabolism is one of the hallmarks of cancer, among which glucose metabolism dys-
function is the most prominent feature. The glucose metabolism of tumor cells is significantly different from that of 
normal cells. Glucose metabolism reprogramming of hepatocellular carcinoma (HCC) has become an important re-
search hotspot in the field of HCC, a variety of tumor metabolic interventions have been applied clinically. Moreover, 
various Non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding (lncRNAs) as well as circular 
RNAs (circRNAs), have recently been proved to play potential roles in glucose metabolism. This review summarizes 
the effects of ncRNAs on HCC that participate in glucose metabolism and discuss the related mechanisms to find 
potential and effective targeted treatments for HCC.

Keywords: Hepatocellular carcinoma, glucose metabolism, glycolysis, non-coding RNA, microRNAs, long non-cod-
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Introduction

Liver cancer is the sixth highest-incidence can-
cer and it is also the 4th most deadly cancer 
with easy metastasis and poor prognosis. 
There were approximately 850,000 new cases 
and 780,000 deaths of liver cancer occurred in 
2018. HCC accounts for 75% to 85% of primary 
liver cancer and more than half of the world’s 
HCC cases occur in China [1]. 

For early-stage HCC, a comprehensive treat-
ment plan is mainly based on surgery, com-
bined with transcatheter arterial chemoemboli-
zation (TACE) and radiofrequency ablation [2]. 
However, it is regrettable that most patients 
have reached an advanced stage or distant 
metastasis at the first diagnosis, that losing the 
opportunity for surgery. As for advanced HCC, 
there is no standard treatment, and the 5-year 
survival rate of HCC is 3% to 5% [3]. 

Despite the unremitting efforts of researchers, 
the key molecular mechanism of HCC develop-
ment remains inconclusive, limiting the pro-
gression of therapeutic regimens. Recently, 

multiple lines of evidence have shown that met-
abolic reprogramming is closely related to the 
occurrence and development of HCC, among 
which glucose metabolism reprogramming is 
one of the most prominent features [4]. The 
mechanisms of glucose metabolic reprogram-
ming often involve gene mutations, especially 
C-MYC and P53 [5, 6]. While changes in the 
expression or activity of glucose metabolism 
genes and related glucose metabolism enzymes 
also have global effects [7].

Non-coding RNAs (ncRNAs) are RNA transcribed 
from DNA and unable to encode proteins, which 
account for the majority of RNAs (Figure 1). 
With the improvement and maturity of ncRNAs 
identification technology, the crucial role of 
ncRNAs in tumorigenesis has been increasingly 
recognized. They participate in almost all bio-
logical functions, including proliferation, apop-
tosis, migration, invasion, EMT, cancer stem 
cells and drug resistance [8, 9]. 

Multiple lines of evidence have manifested that 
ncRNAs, mainly miRNAs, lncRNAs and circular 
RNAs (circRNAs) may play pivotal roles in repro-
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gramming glucose metabolism, including gly- 
colytic pathway, pentose phosphate pathway 
(PPP) and gluconeogenesis via altering the 
expression or activity of the glucose metabo-
lism genes and related glucose metabolism 
enzymes (Figure 2) and regulating the activa-
tion of various signaling pathways (Figure 3).

MiRNAs

MiRNAs are a class of ncRNAs that about 22 nt 
in length. MiRNAs completely or incompletely 
combine with the 3’ untranslated regions (3’-
UTR) of the target genes, leading to direct deg-
radation or blocked translation of the target 
genes, thereby decreasing the expression of 

The regulation of glycolysis is mainly through 
manipulating the activity of the rate-controlling 
enzymes (key enzymes), including hexokinase 
(HK), 6-phosphate fructokinase (PFK) and pyru-
vate kinase (PK). Hypoxia-inducible factors 
(HIFs), particularly HIF-1α is a crucial mediator 
of hypoxia response, promoting glycolysis pro-
cess to adapt cancer cells to hypoxic environ-
ment [20]. On the one hand, emerging studies 
demonstrated that alters miRNAs expression 
profiles may orchestrate the glycolytic pathway 
of HCC cells by regulating the expression of 
glycolysis-related enzymes, including HK, PFK, 
PK, HIFs. On the other hand, different glucose 
levels also alter the level of miRNAs. For exam-
ple, the expression of miR-483-3p is low under 

Figure 1. A. The biogenesis of ncRNAs. miRNAs are transcribed into pri-
miRNA under the help of RNA Polymerase II, pri-miRNA is processed into 
a pre-miRNA by Drosha/DGCR8 in the nucleus, and then transported to 
the cytoplasm via Exportin-5, pre-miRNA is further cleaved by Dicer to form 
mature miRNA. lncRNAs are transcribed by RNA Polymerase II or III. B. Cir-
cRNAs formed by exon circularization.

these specific mRNAs by ei- 
ther mRNA cleavage or transla-
tional repression [10-12]. In 
recent years, more and more 
studies have found that miR-
NAs are involved in the regula-
tion of glucose metabolism, 
including glycolytic pathway, 
pentose phosphate pathway 
(PPP) and gluconeogenesis. 
Here we discuss the role of 
miRNAs on glucose metabo-
lism of HCC. The related stud-
ies’ contents are summarized 
in Table 1.

MiRNAs involved in aerobic 
glycolysis

Aerobic glycolysis also call- 
ed the “Warburg effect”, which 
preference for tumor cells ac- 
quire energy through glycolysis 
rather than oxidative phos-
phorylation even in the suffi-
cient aerobic and mitochon- 
drial function [13]. Glycolysis 
also provides raw materials for 
other anabolic [13]. Further- 
more, aerobic glycolysis can 
produce a large amount of lac-
tic acid and creating an aci- 
dic microenvironment, which is 
conducive to tumor cell inva-
sion and metastasis [15]. The- 
refore, inhibition of aerobic gly-
colysis may be a promising 
anti-tumor therapy [16-19]. 
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low glucose, while under high glucose condi-
tions, the expression of miR-483-3p increases 
and inhibits apoptosis [21].

MiRNAs and HK: HK is the first rate-limiting 
enzymes of aerobic glycolysis, which catalysis 
phosphorylation of glucose to glucose 6-phos-
phate [22]. The overexpression of HK has been 
highlighted in HCC cells. On the contrary, sup-

pression of HK expression may induce HCC 
cells apoptosis. Therefore, it is considered to 
be a vital molecule in the glycolysis pathway 
and has been proposed as a therapeutic target 
for cancer. 

In mammals, there are four hexokinase iso-
forms, HKI, HKII, HKIII, and HKIV. On the one 
hand, miRNAs weaken glycolysis of HCC by 

Figure 2. Glycolysis pathway, PPP and gluconeogenesis pathway of HCC, and the role of ncRNAs in glucose metabo-
lism via regulating rate-controlling enzyme and GLUT.
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directly targeting HKII expressions. For in- 
stance, miR-885-5p, miR-143 and miR-125b 
have proved plays a decisive role in limiting gly-
colysis in HCC cells by targeting HKII, thereby 
inhibiting the HCC growth [23-25]. On the other 
hand, miRNAs elevate glycolysis of HCC by sta-
bilizing HKII expression. For example, miR-455-
3p induces cell proliferation, metastasis and 
glycolysis by increasing HKII expression, which 
is achieved by stabilizing HKII protein through 
proteasome. Mir-455-3-p directly targets the 
3’UTR of AMP-activated protein kinase subunit 
beta 2 (AMPKβ2), an important role in the 
AMPK pathway. Suppress AMPKβ2 expression 
has been shown to induced p-mTOR, Snail and 
HKII expressions, leading to enhanced cell gly-
colysis [26].

Furthermore, HKI has also been found to be 
involved in the regulation of glycolysis. MiR-
139-5p negative regulate HKI and 6-phospho-
fructo-2-kinase/fructose-2,6-biphosphatase 3 
(PFKFB3) expression by directly targeting the 
ETS1, which is a transcription factor and bound 

to the promoters of the HKI and PFKFB3 genes 
[27]. 

MiRNAs and PFK: PFK, the second rate-limi- 
ting enzyme in glycolysis that catalyzes fruc-
tose-6-phosphate to fructose-1,6-bisphospha- 
te [28]. Mammals have three PFK isoforms: 
liver (PFKL), muscle (PFKM) and platelet (PFKP). 
Expression of PFKP was significantly up-regu-
lated in a variety of cancers, including brain 
cancer, pancreatic cancer, breast cancer and 
HCC [29-31].

Recently, several miRNAs have been shown to 
be involved in regulating glycolysis of HCC by 
altering the expression of PFK. For instance, 
miR-520 family, including miR-520a-3p, miR-
520b, and miR-520e are indicated to inhibited 
glycolysis by target the 3’UTR of PFKP in HCC. 
On the contrary, inhibit the expression of miR-
520a/b/e was notably potentiated the rate of 
glycolysis [32]. MiR-338-3p dampens glycolysis 
by directly interacted with PFKL. MiR-338-3p 
act as a tumor suppressor was down-regulated 

Figure 3. NcRNAs may play an important role in regulating glucose metabolism of HCC through different signal 
pathways and mechanisms.
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Table 1. MiRNAs involved in glucose metabolism in HCC
Glucose metabolism microRNA Effect Target Mechanism Reference
glycolytic pathway miR-885-5p Decrease HKII - [23]

miR-143 Decrease HKII - [24]
miR-125b Decrease - Inhibit HKII [25]

miR-455-3p Increase AMPKβ2 stabilizes HKII protein active AMPK pathway [26]
miR-139-5p Decrease ETS1 Inhibit HKI and PFKFB3 expression [27]

miR-520 family Decrease PFKP - [32]
miR-338-3p Decrease PFKL - [33]
miR-139-5p Decrease PKM2 - [27]
miR-199a Decrease PKM2 - [36]

miR-491-5p Decrease PKM2 - [37]
miR-338-3p Decrease PKM2 - [38]

miR-122 Decrease PKM2 - [39]
miR-4417 Increase - Promote PKM2 phosphorylation [40]

miR-365a-3p Increase - Inhibit PKM2 degradation [41]
miR-374b Decrease hnRNPA1 Inhibit PKM2 expression [42]

miR-142-3p Decrease LDHA - [44]
miR-383 Decrease LDHA - [45]
miR-34a Decrease LDHA - [46]

miR-100-5p Decrease LDHA - [47]
miR-592 Decrease WSB1 Disrupting HIF-1α stabilization [51]

miR-199a-5p Decrease HIF-1α - [52]
miR-3662 Decrease HIF-1α Inactivate ERK and JNK [53]
miR-145 Decrease - Inhibit HIF-1α and PDK1 expression [54]
miR-873 Increase NDFIP1 Active AKT/mTOR [56]

miR-199b-5p Decrease - Up-regulates HIF-1α transcription through overexpression of NPAS2 [57]
mitomiR-181a-5p Decrease - Impair electron transport chain [59]

miR-342-3p Decrease IGF-1R Downregulate GLUT1 Inactivate PI3K/AKT [61]
miR-455-5p Decrease IGF-1R Downregulate GLUT1 Inactivate PI3K/AK [62]
miR-129-5p Decrease PDK4 - [55]

pentose phosphate pathway miR-122 Decrease G6PD - [65]
gluconeogenesis miR-4641 Decrease PCK1 - [69]

miR-517a Decrease FBP1 - [72]
miR-23a Decrease G6PC PGC-1α - [74]
miR-96 Increase IRS-1 - [76]

miR-122 Increase - Promoted glutaminolysis [78]
“-”: unknown. Abbreviations: HCC: Hepatocellular carcinoma; HK: Hexokinase; PFK: 6-phosphate fructokinase; PK: Pyruvate kinase; HIFs: Hypoxia-inducible factors; AMPKβ2: AMP-activated protein kinase 
subunit beta 2; PFKFB3: 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PKM2: Pyruvate kinase M2; LDHA: Lactate dehydrogenase A; IGF-1R: Insulin-like growth factor-1 receptor; GLUT: Glucose 
transporters; PDK4: Pyruvate dehydrogenase kinase 4; PEPCK: Phosphoenolpyruvate carboxylase; FBP1: Fructose 1,6-bisphosphatase; G6PC: Glucose 6-phosphatase; PGC-1α: Peroxisome proliferator-
activated receptor gamma, coactivator 1 alpha; IRS-1: Insulin receptor substrate 1.
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in HCC, while, the expression of miR-338-3p 
was increased after HCC cells treatment with 
125I irradiation, which was considered as a 
potential strategy for HCC. The up-regulated 
miR-338-3p elevates the suppression of PFKL 
expression, thereby inhibiting glycolysis of HCC 
[33].

Moreover, miRNAs can regulate PFKFB to inhib-
it glycolysis. For instance, miR-139-5p reduced 
the expression of HKI and PFKFB3, thereby 
inhibiting aerobic glycolysis [27]. PFKFB is an 
allosteric activator of PFK1 and an effective 
stimulator of glycolysis. PFKFB3 is related to 
many aspects of tumorigenesis and develop-
ment. And recent studies also found that 
PFKFB3 regulates immune response and the 
sensitivity of sorafenib in HCC [17, 34]. 

MiRNAs and PK: PK is the last rate-limiting 
enzyme in glycolysis, which transfers phos-
phate group from phosphoenolpyruvate to ade-
nosine diphosphate (ADP) to produce pyruvate 
ATP [35]. So it is not surprising that miRNAs can 
regulate glycolysis and the progression of HCC 
through manipulating PKM2 expression. For 
example, miR-199a, miR-491-5p, miR-338-3p, 
and miR-122 act as a tumor suppressor that 
induces apoptosis, growth arrest and sup-
presses glycolysis of HCC cells by direct binding 
to 3’UTR of PKM2, which is one of isozymes of 
pyruvate kinase PK, and is universally expres- 
sed in embryonic development, tissue repair, 
and tumors [36-39].

Several miRNAs act as cancer-promoting fac-
tors by promoting PKM2 activation. For exam-
ple, miR-4417 could promote the phosphoryla-
tion of PKM2 and facilitates the proliferation 
and glycolysis of HCC cells [40]. miR-365a-3p 
dampens PKM2 degradation and provokes 
Akt/mTOR signaling pathway activation via tar-
geting linc01554, and thereby accelerates gly-
colytic of HCC cells [41]. 

MiRNAs not only manipulates the proliferation, 
metastasis and invasion of HCC through regu-
lating PKM2, but also regulates the drug sensi-
tivity of HCC. MiR-374b reverses the sensitivity 
of sorafenib-resistant HCC cells to sorafenib by 
counteracting PKM2-mediated glycolysis path-
way via binding to the 3’-UTR of hnRNPA1, 
which is a RNA-binding protein [42]. It provides 
new ideas for the treatment of sorafenib re- 
sistance.

MiRNAs and lactate dehydrogenase: Lactate 
dehydrogenase A (LDHA) catalyzes the last key 
step of glycolysis, catalyzing lactate dehydroge-
nation to pyruvate. Down-regulation of LDHA 
expression notably inhibits the proliferation, 
invasion and migration of HCC cells [43]. 
Several miRNAs act as tumor suppressors, and 
decrease the expression of LDHA by binding to 
the 3’-UTR of LDHA mRNA, thereby inhibiting 
aerobic glycolysis. For instance, miR-142-3p, 
miR-383, miR-34a and miR-100-5p inhibit aer-
obic glycolysis and cell proliferation of HCC by 
targeting the 3’-UTR of LDHA [44-47]. 

MiRNAs and HIF-1α: Emerging data have indi-
cated that hypoxia of cancer cells is the initial 
factor for malignant transformation and even 
metastasis of tumors, and also one of the key 
factors that lead to the resistance of tumor 
cells to radiochemotherapy [48]. Among them, 
hypoxia-inducible factor-1 alpha (HIF-1α) is an 
important transcriptional regulator under hy- 
poxia, which has the function of promoting 
tumor angiogenesis and glucose metabolism, 
affecting tumor cell proliferation [49]. Under 
the induction of HIF-1α, glycolytic-related en- 
zyme expression increased, which further in- 
crease glycolytic activity, thus improve the 
imbalance between energy supply and energy 
consumption caused by hypoxia in tumors [50].

Several miRNAs have been demonstrated to 
deceased the efficacy of glycolysis by suppress-
ing HIF-1α expression. For instance, miR-592 
disrupts HIF-1α protein stabilization and inhib-
ited glycolysis in HCC cells via targeting WSB1 
mRNA [51]. Moreover, WSB1 negatively regu-
lates JAK-STAT signaling pathway. MiR-199a-5p 
inhibits glycolysis by directly targets HIF-1α 
[52]. Interestingly, HIF-1α overexpression can 
in turn inhibit the abundance of miR-199a-5p 
under hypoxic environment. miR-3662 directly 
targets HIF-1α, and negatively regulates the 
activation of ERK and JNK signaling pathways 
in HCC, thereby dampened glycolysis [53]. miR-
145 attenuates the expression of HIF-1α and 
PDK1, opposing glycolysis and suppress cell 
survival of HCC cells [54].

Other mechanisms: MiR-129-5p targets the 
mitochondrial matrix protein pyruvate dehydro-
genase kinase 4 (PDK4), which diminished 
phosphorylation of the E1α subunit of pyruvate 
dehydrogenase (PDH) complex and hinders gly-
colysis [55].
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MiR-873 promotes the Warburg effect through 
activating AKT/mTOR signaling pathway via tar-
geting NDFIP1, which triggers metabolic shift 
and NDFIP1 was shown to suppress the PTEN/
AKT signaling pathway activation [56].

MiRNAs also involved in glycolysis of HCC by 
regulating circadian gene expression. For exam-
ple, miR-199b-5p prevents glycolysis via inhib-
iting NPAS2 expression, which is a circadian 
gene and notable boosts glycolysis through 
elevating the transcription of HIF-1α and do- 
wnregulated the expression of PGC-1α [57]. 
Numerous studies have indicated that the con-
sequences of circadian rhythm disturbances 
are related to many diseases, including obesity, 
type 2 diabetes and cancer [58]. Additionally, 
NPAS2 promoted glycolysis by heterodimeric 
with BMAL1, another core circadian rhythm fac-
tor, which regulates the expression of a variety 
of target genes including glycolysis in HCC cells 
[57]. 

MitomiR-181a-5p damages mitochondrial func-
tion and accelerates glycolysis in HCC by regu-
lating the electron transport chain (ETC) [59]. 
MitomiRs refers to miRNAs located in the mito-
chondria. It is well known that mitochondria are 
the site of oxidative phosphorylation and ade-
nosine triphosphate (ATP) production, and the 
explanation of the mechanism of oxidative 
phosphorylation is mainly based on the elec-
tron transport chain [60]. So it is not surprising 
that dampened ECT can inhibit oxidative phos-
phorylation and promotes glycolysis in HCC.

miR-342-3p and miR-455-5p attenuate glycoly-
sis of HCC cells by target insulin-like growth fac-
tor-1 receptor (IGF-1R), which has been verified 
to activates the intracellular AKT signaling path-
way, then up-regulates the expression of GLUT1 
on the plasma membrane and enhances gly-
colysis in HCC cells [61, 62].

MiRNAs involved in PPP

The PPP is also known as hexose phosphate 
bypass, which is a glucose catabolic pathway 
commonly found in animals, plants and micro-
organisms. In addition to providing energy, the 
PPP provides a variety of raw materials for ana-
bolic metabolism, for example, NADPH and 
ribose-5-phosphate. Therefore, the PPP is an 
important multifunctional metabolic pathway 
[63, 64]. 

Multiple lines of evidence indicated that miR-
NAs participate in PPP by altering G6PD expres-
sion. G6PD is a rate-limiting enzyme of the PPP, 
and its expression is significantly up-regulated 
in HCC. MiR-122 plays a tumor suppressive role 
in HCC and dampens PPP process by targeting 
G6PD [65].

MiRNAs involved in gluconeogenesis

Gluconeogenesis is the process by which an 
organism converts a variety of non-carbohy-
drate carbon substrates into free glucose. In 
mammals, the liver is the main organ of gluco-
neogenesis that ensures the blood sugar levels 
are normal. It has been reported that gluconeo-
genesis pathway is reduced in HCC. Additionally, 
Metformin was originally considered as an oral 
hypoglycemic agent. Recently, metformin has 
attracted people’s attention due to its anti-
tumor therapeutic effect in inhibiting liver glu-
coneogenesis [22].

Gluconeogenesis and glycolysis are coordinat-
ed, glycolysis is extremely active in HCC cells, 
and thereby the activity of gluconeogenesis is 
inhibited accordingly. Gluconeogenesis app- 
ears to be the reverse reaction of glycolysis, 
because the seven steps of gluconeogenesis 
are all reverse reactions of glycolysis and are 
catalyzed by the same enzymes. But there are 
three steps in glycolysis, which are irreversible 
reactions, and these three steps must be 
bypassed during gluconeogenesis [66]. 

These three steps are bypassed by the follow-
ing three rate-controlling enzymes: phospho-
enolpyruvate carboxykinase (PEPCK), Fructo- 
se 1,6-bisphosphatase (FBP1), and glucose 6- 
phosphatase (G6Pase) [67]. They can not only 
affect the overall speed of the entire metabolic 
pathway but also change the direction of 
metabolism. 

Emerging evident verified that miRNAs play crit-
ical roles in gluconeogenesis of HCC by influ-
encing the expression of the rate-controlling 
enzyme, including PEPCK, FBP1 and G6PC.

MiRNAs and PEPCK: PEPCK is the first rate-
controlling enzyme of gluconeogenesis, which 
catalyzes the irreversible reaction of phospho-
enolpyruvate (PEP) and HCO3- to oxaloacetate 
(OAA) and inorganic phosphoric acid. It is the 
first and most important reaction in the pro-
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cess of gluconeogenesis [68]. Accumulating 
evidence has indicated that PCK1 overexpres-
sion could block the glycolysis process and ini-
tiate the gluconeogenesis process by potentiat-
ing PEPCK expression.

MiR-4641 attenuates the expression of PEPCK 
by targeting PCK1, thereby inhibiting gluconeo-
genesis and promoting the growth and migra-
tion of HCC cells [69]. PCK1 is the coding gene 
of PEPCK and is widely involved in metabolic 
and biological processes such as glucose 
metabolism, lipid metabolism, diabetes, and 
tumor cell proliferation and apoptosis [70]. 

MiRNAs and FBP1: FBP1 is the second rate-
controlling enzyme of the gluconeogenesis pro-
cess. It hydrolyzes fructose 1,6-diphosphate 
(FDP) to phosphoric acid and fructose 6-diphos-
phate (F6P) [67]. The expression of FBP1 was 
suppressed in various cancers. In addition, 
HCC patients with low FBP1 expression have a 
higher malignant classification, including tumor 
enlargement, poor differentiation, impaired glu-
coneogenesis and enhanced glycolysis [71]. 
Therefore, FBP1 is expected to become a reli-
able prognostic marker for HCC patients.

MiR-517a inhibits gluconeogenesis, promotes 
glycolysis of HCC via directly targeting FBP1 
[72]. MiR-517a was dominantly overexpressed 
and FBP1 expression was significantly lower in 
HCC cells and tissues. Ectopic expression of 
FBP1 upregulates gluconeogenesis and weak-
en miR-517a induced cell proliferation.

MiRNAs and G6Pase: G6Pase is the last rate-
controlling enzyme of the gluconeogenesis pro-
cess, which catalyzes glucose 6 phosphates to 
glucose [67]. G6Pase expression is significantly 
decreased in HCC cell lines and clinical tissue, 
G6Pase expression also correlated with tumor 
grade in HCCs. Moreover, G6Pase deficiency 
leads to glycogen storage disease type-Ia (GSD-
Ia), while HCC is a long-term complication of 
GSD-Ia. Restore G6Pase expression normaliz-
es glucose homeostasis and prevents the 
development of HCC in the initial stage [73].

Recently, several miRNAs have been proved to 
reduce gluconeogenesis of HCC by suppressing 
the expression of G6Pase. Wang et al. showed 
that miR-23a inhibits gluconeogenesis and pro-
motes HCC progression by targeting G6PC, whi- 
ch is encoding the key gluconeogenic enzymes 

G6Pase, thereby suppressing the expression  
of G6Pase [74]. Moreover, miR-23a inhibits glu-
coneogenesis via targeting peroxisome prolifer-
ator-activated receptor gamma, coactivator 1 
alpha (PGC-1α), which has been demonstrated 
to accelerate hepatic gluconeogenesis in previ-
ous studies [75]. 

Other mechanisms: Jeong et al. found that miR-
96 is up-regulated in mitochondrial dysfunction 
HCC cells and exhibit insulin resistance. Fur- 
thermore, mitochondrial dysfunction induced 
miR-96 overexpression, increase the level of 
gluconeogenesis in HCC cells via targeting the 
3’UTR of Insulin receptor substrate 1 (IRS-1), 
which resulted in inhibition of gluconeogenesis 
in HCC cells [76].

It has been affirmed that mammalian cells uti-
lize glutamine (Gln) as an alternative energy 
source of glucose and as an anaplerotic source 
for biomass generation. Glutamine-derived 
oxaloacetate is converted to PEP by PEPCK2, 
and then participates in the gluconeogenesis 
and other biosynthesis pathways [77]. Some 
miRNA can regulate gluconeogenesis by alter-
ing glutamine metabolism. For example, the 
level of miR-122 is reduced in HCC, and its 
expression is negative correlates with malig-
nant classification. Silence miR-122 expression 
promoted glutaminolysis but suppressed gluco-
neogenesis in the mouse model. In contrast, 
ectopic expression of miR-122 promotes gluco-
neogenesis [78]. 

LncRNAs

LncRNAs refers to transcripts longer than 200 
nucleotide units and is not involved in protein-
coding [79]. LncRNAs regulations are diverse, 
which have been shown to regulate almost 
every step of gene expression. LncRNAs may 
serve as signals, decoys, guides or scaffolds. 
They also act as “sponge” or competing endog-
enous RNAs (ceRNAs) through the combination 
of their complementary miRNA response ele-
ments (MREs) and the primary miRNAs, playing 
a positive or negative role in the processing 
and expression of mature mRNAs, thereby indi-
rectly participating in a variety of physiological 
process [80].

Growing researches have reported that lncRNAs 
play an important role in various tumors, includ-
ing HCC. Although lncRNAs have been exten-
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sively studied in regulating gene expression, 
the role of lncRNAs in glucose metabolism is 
not yet clear. The related research contents are 
listed in Table 2.

LncRNAs involved in glycolytic pathway

An increasing number of studies have verified 
that lncRNAs could influence the glycolysis 
pathway in a variety of tumors by regulating the 
expression and activation of glycolytic enzy- 
mes. We summarize the influence of lncRNAs 
on glycolytic pathway and related mechanis- 
ms, including PI3K/Akt/mTOR pathway, PPARγ, 
PFK/PKM2, and HIF-1α, so as to find potential 
and effective targeted therapies for HCC.

LncRNAs and PI3K/Akt/mTOR pathway: The 
PI3K/AKT/mTOR pathway is an intracellular sig-
naling pathway that is often activated in various 
types of cancer cells, and its regulatory role in 
the process of glycolysis has been emphasized 
in HCC [81].

Linc01554 diminished the rate of glycolytic by 
accelerating PKM2 degradation and suppress-
es Akt/mTOR signaling pathway activation. 
Linc01554 is highly expressed in liver, while it 
is frequently down-regulated in HCC in the le- 
vel of protein mRNA and DNA contrast with  
adjacent normal tissues. Moreover, silence 
linc01554 was significantly associated with 
aggressive clinicopathological features [41]. 
Furthermore, overexpression of linc01554 in 
combination with Akt inhibitor MK2206 exhib-
its a synergistic effect compared with used 
each alone, which shed new light on introduc-
ing Akt inhibitor to HCC treatment.

LncRNAs and PPARγ: Peroxisome proliferator-
activated receptor γ (PPARγ) belongs to the 
family of PPARs, which plays a crucial regulato-
ry role in cell differentiation, proliferation, me- 
tabolism and tumorigenesis [82]. Currently, 
PPARγ is the most extensively researched sub-
type. It has been demonstrated that ectopic 
expression of PPARγ inhibits WNT/β-catenin 
pathway and then downregulates PDK1, thus 
suppressed glycolysis [83].

LncRNA Ftx facilitates glucose consumption 
through promotes GLUT, including GUL1 and 
GUL4, and inhibits tumor necrosis factor (TNF) 
α and leptin expression via targeting PPARγ in 
HCC cells [84]. Furthermore, lncRNA Ftx poten-
tiates glycolysis of HCC via directly targeting 
PPARγ, which elevating the activity and expres-
sion of glycolytic enzymes (LDH and PFKL) and 
decreases the activity of Krebs-cycle-associa- 
ted molecules (TNFα, leptin and PDK1). 

LncRNAs and PFK/PKM2: LncRNA WFDC21P 
diminished glycolysis via decreasing the expres-
sion and activity of PFKP and PKM2 [85]. 
Moreover, lncRNA WFDC21P is positively regu-
lated by Nur77, which is a member of the orphan 
nuclear receptor NR4A family. Nur77 is down-
regulated in HCC and shows the ability to in- 
hibit glycolysis and promotes gluconeogene- 
sis by stabilizing PEPCK1 [86]. Additionally, 
Linc01554 diminished the rate of glycolytic by 
accelerating PKM2 degradation [41]. LncRNA 
Ftx contributes to glycolysis of HCC via enhanc-
ing the activity and expression of PFKL [84].

LncRNA and HIF-1α: Recently, Takahashi et al. 
uncover linc-RoR knockdown significantly de- 
creased HIF-1α expression as well as PDK1 

Table 2. LncRNAs and circRNAs involved in glucose metabolism in HCC  
Glucose 
metabolism

LncRNA/
circRNA Effect Target Mechanism Signaling pathway Reference

glycolysis linc01554 Decrease - Promote PKM2 ubiquitination Inactive Akt/mTOR [42]

lncRNA Ftx Increase - Promote GLUT active PPARγ [85]

lncRNA WFDC21P Decrease - Suppress PFKP and PKM2 transcription - [86]

linc-RoR Decrease miR-145 Inhibit HIF-1α and PDK1 expression - [54]

lncRNAIDH1-AS1 Decrease - Inhibit  HIF-1α expression - [89]

lncRNA RAET1K Increase miR-100-5p Increase LDHA expression - [47]

gluconeogenesis MALAT1 Decrease - Enhance TCF7L2 translation Active Wnt and mTOR pathway [90]

glycolysis circMAT2B Increase - Promote PKM2 expression - [39]

gluconeogenesis circC3P1 Increase miR-4641 Promote PCK1 expression - [69]
“-”: unknown. Abbreviations: HCC: Hepatocellular carcinoma; PKM2: Pyruvate kinase M2; HIFs: Hypoxia-inducible factors; GLUT: Glucose transporters; PPARγ: Peroxisome 
proliferator-activated receptor γ; PFKP: the platelet isoform of phosphofructokinase; PDK1: Pyruvate dehydrogenase kinase; LDHA: Lactate dehydrogenase A; MALAT1: 
Metastasis-associated lung adenocarcinoma transcript 1; TCF7L2: Transcription factor 7 like 2.
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expression, especially under hypoxia stress. 
Linc-RoR is a hypoxia-responsive lncRNAs, and 
thereby cancer cells release a large amount of 
linc-RoR under hypoxia context, facilitating cell 
survival in recipient cells by promoting glycoly-
sis. In detail, Linc-RoR severs as a miRNA 
“sponge” to limit miR-145, which attenuates 
the expression of HIF-1α and PDK1, opposing 
glycolysis and suppress cell survival of HCC 
cells [54].

LncRNAIDH1-AS1 potentiates the activity of 
isocitrate dehydrogenase 1 and augments the 
production of α-ketoglutarate under normoxia, 
attenuating the expression of HIF-1α and inhib-
its glycolysis. Furthermore, MYC-dependent 
inhibition of lncRNAIDH1-AS1, induction of the 
Warburg effect by HIF1α [87]. 

Additionally, HIF1α boosting lncRNA RAET1K 
expression and facilitates glycolysis by binding 
to the promoter region of lncRNA RAET1K, and 
lncRNA RAET1K sponge miR-100-5p, which 
directly binging to LDHA and significantly inhib-
its glycolysis [47].

LncRNAs involved in gluconeogenesis

LncRNA metastasis-associated lung adenocar-
cinoma transcript 1 (MALAT1) acts as an onco-
gene in HCC. MALAT1 potentiated glycolytic 
and attenuated gluconeogenesis by enhancing 
the expression of Transcription factor 7 like 2 
(TCF7L2) [88]. TCF7L2 is one of the earliest 
genes to be found and deeply studied and 
TCF7L2 transcription factor strongly activates 
the Wnt signaling pathway. And gluconeogene-
sis has been shown to be negatively regulated 
by TCF7L2 [89].

Moreover, MALAT1 activates the mTORC1 path-
way by increasing phosphorylation of eIF4E 
binding protein (4EBP1) and enhancing the 
expression and function of the splicing on- 
coprotein SRSF1. 4EBP1 is an important do- 
wnstream effector of mTORC1 pathway, and 
SRSF1 has been reported to activate mTOR and 
protein translation. Both the Wnt and mTOR sig-
naling pathways have been suggested to play a 
negative regulator role in gluconeogenesis pro-
gram of HCC [90].

CircRNAs

CircRNAs, a group of endogenous ncRNAs with 
covalently closed continuous circular structure 

formed by exon circularization [91]. However, 
circRNAs were considered to be caused by 
splicing errors and without function in the previ-
ous. Due to the rapid development of high-
throughput sequencing, increasingly circRNAs 
have been discovered and proved to be involved 
in a variety of biological processes. 

The potential functions of circRNAs include: a) 
served as “miRNA sponge”, inhibit the function 
of the target miRNAs, one circRNAs may “spon- 
ge” multiple mRNAs; b) regulate the splicing of 
pre-mRNA, thereby affecting protein produc-
tion; c) interact with proteins; d) translated into 
protein or polypeptide; e) Regulate the expres-
sion of parental genes [92]. 

Emerging evidence indicates that changes in 
circRNA expression profiles play pivotal roles in 
the initiation and development of various can-
cers, including breast cancer [93], colon cancer 
[94], gastric cancer [95] and HCC [96]. Even 
though various studies have highlight miRNAs 
and lncRNAs partly account for glucose repro-
gram of HCC, it was very limited research about 
circRNAs was involved in metabolic regulation 
in HCC. Recently, Li et al. found that circRNA 
MAT2B promotes glycolysis and endows HCC 
cells with clinical aggressiveness under hypox-
ic [38]. Mechanistically, circMAT2B promotes 
glycolysis and HCC progression via increasing 
the abundance of the miR-338-3p, which sub-
sequently blocking PKM2. Moreover, circRNA 
circC3P1 has been proved to promote the glu-
coneogenesis process and suppress HCC 
growth and metastasis through miR-4641/
PCK1 pathway [69]. CircC3P1 enhancing the 
expression of PCK1 by sponging miR-4641 in 
HCC. PCK1 is the coding gene of PEPCK, which 
is a rate-controlling enzyme of gluconeogene- 
sis.

Conclusion and future directions

Glucose is the main nutritional component of 
the animal body, and a unique source of fuel for 
some organizations to generate and sustain 
biological function. The reprogramming of glu-
cose metabolism is one of the hallmarks of 
HCC. This reprogramming is caused by various 
factors and is closely related to the initiation, 
development and poor prognosis of HCC. The 
glucose metabolic differences between HCC 
and normal cells may become potential new 
targets. Some related drugs are already under-
going clinical trials and are expected to be used 
in clinical later (Table 3).
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Table 3. Glucose metabolism targets and drugs which are in pre-
clinical and clinical development for anti-tumor therapy
Target Drug Status References
GLUTs Phloretin Preclinical [99, 100]

Fasentin Preclinical [101]
STF-31 Preclinical [102]
WZB117 Preclinical [103]
Ritonavir Phase III [104]
Silybin Phase I [105]

HKII 2-Deoxy-D-glucose Phase II [106, 107]
Lonidamine Phase II [108]
Genistein-27 Preclinical [109]
Benserazide Preclinical [110]
Resveratrol Phase I [111]
Astragalin Preclinical [25]
Chrysin Preclinical [112]

PDK Dichloroacetate Phase I [113-115]
LDHA Oxamate Preclinical [116]

FX11 Preclinical [117]
Quinoline-3-sulfonamide Preclinical [118]
GNE-140 Preclinical [119]
PSTMB Preclinical [120]

PKM2 Shikonin Preclinical [121]
Benserazide Preclinical [122]

PFKFB 3PO Preclinical [123]
PFK158 Preclinical [124]

GAPDH Bromopyruvate Preclinical [125]
IDH Enasidenib Approved [126]

Ivosedinib Approved [127]
DS-1001b Preclinical [128]
Olutasidenib Preclinical [129]
GSK864 Preclinical [130]
BAY1436032 Preclinical [131]
HMS-101 Preclinical [132]
I-8 Preclinical [133]

Abbreviations: GLUT: Glucose transporters; HK: Hexokinase; PDK: Pyruvate 
dehydrogenase kinase; LDHA: Lactate dehydrogenase A; PKM2: Pyruvate kinase 
M2; PFKFB3: 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; GAPGH: 
glyceraldehyde-3-phosphate dehydrogenase; IDH: Isocitrate dehydrogenase.

Extensive studies have demonstrated the func-
tions of ncRNAs in glucose reprogramming. It 
provides us a novel perspective of tumorigene-
sis and potential therapeutic targets. In addi-
tion, the aberrant expression of glucose metab-
olism related ncRNAs may be serving as bio-
markers for the diagnosis or prognosis of HCC. 
Moreover, some ncRNA-based therapeutics for 
other diseases has been used in clinical treat-
ment. Although these ncRNAs may only ser- 
ve as a fine-tuning mechanism, the synergistic 

effect of multiple ncRNAs 
may lead to specific major 
metabolic changes in gluco- 
se metabolism in HCC. For 
example, Tang et al. synthe-
sizes an artificial lncRNA 
(AlncRNA) that could tar- 
get multiple sorafenib-resis-
tance-related miRNAs simul-
taneously, including miR-21, 
miR-153, miR-216a, miR-217, 
and miR-494, restore the 
sensitivity of drug-resistant 
HCC cells to sorafenib again 
[97]. It brings a bright re- 
search prospect that ncRNAs 
combined with the glucose-
metabolism-related-enzyme 
inhibitors would be a better 
choice than utilized inhibitors 
alone in the battle against 
HCC. 

However, there are still some 
difficulties remain to be over-
come. First, researches on 
glucose-metabolism-related 
ncRNAs are still very limited, 
especially in lncRNAs and cir-
cRNAs, which urgently need-
ed to be explored. Second, 
how to efficiently deliver 
ncRNA molecules to the tar-
get is the biggest problem 
facing in their clinical applica-
tion. There are several major 
problems with ncRNA com-
pounds delivery: 1) Naked 
single-stranded RNA mole-
cules are easily degraded by 
nucleases in the physiologi-
cal environment; 2) RNA mol-
ecules are immunogenic and 
activate the immune system; 

3) ncRNAs are biological macromolecules, and 
they are negatively charged, making it difficult 
to cross the cell membrane into cells; 4) The 
toxic effects of ncRNAs are unknown and may 
overlap the toxicity of existing chemotherapy 
drugs. 5) Liver is the site where the drug is act-
ing and the site where the drug is metabolized. 
The amount of medicine, adverse reactions, 
and treatment of adverse reactions in patients 
with HCC need attention [98]. Therefore, it  
is necessary to design a suitable ncRNA de- 
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livery method or delivery vector to deliver 
ncRNAs to the target site to fully realize its huge 
disease treatment potential.

After decades of searching for ncRNA-based 
therapeutics, some ncRNA-based therapeutics 
has been approved for disease treatment. The 
development of ncRNA-based therapeutics in 
the future will focus on three aspects: 1) explore 
more ncRNA molecules that are critical for dif-
ferent glucose metabolism steps. 2) develop 
chemical modification technology for nucleic 
acid therapeutics to further improve the efficien- 
cy of ncRNA-based therapeutics; 3) develop 
diverse delivery systems for different types of 
ncRNA-based therapeutics based on the size  
and mechanism of action of ncRNAs; 4) com-
bining ncRNA-based therapeutics with a variety 
of other drugs, such as combining ncRNAs with 
gene-editing tools, including CRISPR/Cas9-
gRNA, antibodies, small molecules, or chemo-
therapeutics to maximize the effect of HCC 
treatment; 5) design individualized ncRNA-
based therapeutics according to the etiology 
classification of patients by using gene se- 
quencing technology.

Taken together, ncRNA-based therapies in or- 
chestrates glucose metabolism of HCC have 
promising prospects. However, the evidence for 
the practical clinical application of ncRNAs is 
still very limited and desirable for further in- 
vestigation.
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