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Toward a better understanding of task
demands, workload, and performance
during physician-computer interactions
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ABSTRACT
....................................................................................................................................................

Objective To assess the relationship between (1) task demands and workload, (2) task demands and performance, and (3) workload and perfor-
mance, all during physician-computer interactions in a simulated environment.
Methods Two experiments were performed in 2 different electronic medical record (EMR) environments: WebCIS (n¼ 12) and Epic (n¼ 17). Each
participant was instructed to complete a set of prespecified tasks on 3 routine clinical EMR-based scenarios: urinary tract infection (UTI), pneumo-
nia (PN), and heart failure (HF). Task demands were quantified using behavioral responses (click and time analysis). At the end of each scenario,
subjective workload was measured using the NASA-Task-Load Index (NASA-TLX). Physiological workload was measured using pupillary dilation
and electroencephalography (EEG) data collected throughout the scenarios. Performance was quantified based on the maximum severity of omis-
sion errors.
Results Data analysis indicated that the PN and HF scenarios were significantly more demanding than the UTI scenario for participants using
WebCIS (P< .01), and that the PN scenario was significantly more demanding than the UTI and HF scenarios for participants using Epic (P< .01).
In both experiments, the regression analysis indicated a significant relationship only between task demands and performance (P< .01).
Discussion Results suggest that task demands as experienced by participants are related to participants’ performance. Future work may support
the notion that task demands could be used as a quality metric that is likely representative of performance, and perhaps patient outcomes.
Conclusion The present study is a reasonable next step in a systematic assessment of how task demands and workload are related to perfor-
mance in EMR-evolving environments.

....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
There is increasing reliance on health information technology systems
to perform clinical work. As part of their daily workflow, providers are
required to interact continually with multiple, sometimes disparate,
computer-based systems (eg, electronic medical records [EMRs],
computerized physician order entry, image repositories, directories for
paging, and the diverse informational offerings of the Internet) while
providing care to patients, talking to family, or working with staff.
There is no question that features of these computer-based systems
afford unparalleled opportunities for improved patient care (eg, more
ready access to patient-specific information, data integration, decision
support, etc.) and thus have been vigorously embraced, explaining
their near-universal implementation in provider health systems.1–7

Nevertheless, the suboptimal levels of adoption and integration of
health information technology in US hospitals, and the need for providers
to interact with multiple computer-based systems, also raise serious
challenges that can hinder quality care.8,9 The unintended conse-
quences include temporal productivity losses,10 and increased rates of
information processing errors11–14 and catastrophic errors.15–18 These
studies are concerning and suggest that thoughtful systems design is
required for effective electronic health records system implementation,
incorporating only key safety- and quality-enhancing features while min-
imizing additional workload placed on providers.

Specifically, the extraction and integration of data from EMRs can
be cumbersome to providers and add unnecessary work. Providers

need to efficiently review and interpret diverse types of electronic in-
formation, including text (eg, clinical notes), quantitative data
(eg, laboratory measures), and medical images. This can be challeng-
ing, especially as the amount of useful clinical data is rapidly
growing.5–7,19 If interfaces are designed and implemented subopti-
mally, they can increase task demands and providers’ workload,
which in turn may negatively affect their performance and patient
safety.20–24 Numerous studies in various health care settings demon-
strate that excess task demands and workload streaming from task
complexities,25–27 cross-coverage,28 workflow interruptions,29 subop-
timal workflows,30 job-related stress,31 staffing levels,32 and overall
cognitive information processing33–38 can hinder performance and
safety. Workload in general has been shown to affect performance, in-
cluding in aviation39–42 and nuclear power.44–45

OBJECTIVES
Thus it seems reasonable to further advance our understanding of the
relationship between clinical task demands, workload, and perfor-
mance.46,47 This could allow providers to develop safer EMR systems
for better care, and to acquire new skills and knowledge to proactively
manage their task demands and workload while maintaining concern
for patient safety.49–51 The objective of this research was to assess
the relationship between (1) task demands and subjective and physio-
logical measures of workload, (2) task demands and performance,
and (3) subjective and physiological measures of workload and
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performance, all during physician-computer interactions in a simulated
environment (Figure 1).

MATERIALS AND METHODS
Environment
Assessments were performed in a simulated environment as part of
an Institutional Review Board approved study. All potential participants
were given an opportunity to review a consent document that included
information regarding study goals, procedures, risks and benefits, the
voluntary nature of their participation, the confidentiality of data, etc.
The following risks were also discussed with all potential participants
(1) stress and anxiety during experiments, especially for participants
with past experiences/memories of patient harm, and (2) possibility of
boredom, mental fatigue, embarrassment at poor performance, frus-
tration, and/or coercion. All participants had the right to decline partici-
pation at any time. All participants who were offered participation
signed the consent form and participated in the study.

Scenarios
Each subject performed a set of predefined clinical tasks related to 3
scenarios (clinical task flows were based on the current best clinical
practices). The 3 scenarios were designed by experienced physicians
to vary by level of clinical complexity (the urinary tract infection [UTI]
case being relatively “simple” with 5 tasks, and the pneumonia [PN]
and heart failure [HF] cases being relatively more “difficult” with 8 and
9 tasks, respectively), and an increasing number of clinical tasks
(Table 1). Each task within each scenario corresponding to ordering
tests and/or medications was preassigned a severity grade based on
its potential clinical impact (Grade 0: no error; Grade 1: Mild with no
direct meaningful clinical impact expected; Grade 2: Moderate with no
meaningful clinical impact expected; Grade 3: Severe with meaningful
clinical impact expected; Grade 4: Life-threatening clinical impact ex-
pected; Grade 5: Death) (Table 1). The proposed severity grading
system is analogous to the National Cancer Institute Common
Terminology Criteria for Adverse Events. The grading was determined
by a consensus of physicians who helped to create the scenarios.

Participants
For the experiment run in the Web Computer Information System
(WebCIS) environment, invitations to participate in the research study
were sent to all residents and fellows in the school of medicine to
form a relatively heterogeneous group with variable levels of clinical
and WebCIS experience as related to our simulated scenarios
(Table 2). For the experiment in the Epic environment, experiment invi-
tations were sent only to medical students and resident physicians
from the Emergency and Internal Medicine departments to form a rela-
tively homogenous group with a relatively similar level of clinical and
EMR experience as related to our simulated scenarios (Table 2).

All participants were incentivized to participate with a $100 gift
card. Final selections were made based on participants’ availability to
participate in the study during designated weeks for data collection.
Twelve participants completed the WebCIS experiment and 17 partici-
pants completed the Epic experiment, all from 1 teaching hospital.

Figure 1: Study Objectives Table 1: Required tasks for each clinical scenario

Scenario 1: Urinary Tract Infection Severity
Grade

Review the clinical history and physical exam notes.

Specify low risk for venous thromboembolism (VTE)
prophylaxis.

1

Note: Ambulatory, out-of-bed, and education are suffi-
cient prophylaxis.

Order any necessary urine test(s). 3

Check results of test(s).

Order the appropriate treatment for the patient. 3

Scenario 2: Pneumonia

Review the clinical history and physical exam.

Specify low risk for VTE prophylaxis. 1

Note: Ambulatory, out of bed, and education are suffi-
cient prophylaxis.

Write admission orders:

Admit to Med wing G. 2

Supplemental O2/nasal cannula, wean per nursing. 3

IV antibiotics, arterial blood gas, blood and sputum
cultures, posterior-anterior and lateral chest X-ray
(PA/Lat CXR).

4

AM labs: Complete blood count with differential, basic
metabolic panel.

2

Check results of tests and PA/Lat CXR.

Order CT of chest w/o contrast. 2

Check results of CT.

Change to oral antibiotics and write discharge order;
schedule for follow-up to Medicine clinic in 1 week.

3

Scenario 3: Heart Failure

Review the History and Physical. This contains perti-
nent clinical history as well as physical exam.

Specify high risk for VTE prophylaxis. 3

Subcutaneous heparin. 3

Order labs: complete blood count, chemistry, trans-
thoracic echocardiogram.

3

Check results of labs.

Write admission orders including daily weights and
low-salt diet.

2

Restart meds. 3

Tobacco cessation consult. 1

Order IV Lasix. 3
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Each participant was instructed to complete a set of prespecified tasks
on 3 routine clinical EMR-based scenarios under a “cross-coverage”
status (not familiar with the patients) in a simulated environment
(Table 1).

Data collection and processing
Quantification of scenario-specific demands
To obtain the click- and time-related data, scenario workflows were
reconstructed from recorded screen-capture videos, including eye
movements and computer pointer movements and clicks.

Click analysis: The total number of clicks for participants to com-
plete each scenario was quantified, and further subcategorized
into: (i) navigation clicks (eg, moving from one window to another
window on the screen, etc.), (ii) decision clicks (eg, selecting a test
or medication, etc.), (iii) search clicks (eg, initiating the search op-
tion for medications/orders, etc.), and (iv) total clicks (sum of navi-
gation, decision, and search clicks).
Time analysis: The total time for participants to complete each sce-
nario was quantified.

Quantification of subjective workload
The NASA-Task-Load Index (TLX) is widely considered to be a valid
and reliable subjective measure of workload, and is used across many
disciplines.52,53 The NASA-TLX considers 6 dimensions: mental, phys-
ical, temporal demands, frustration, effort, and performance. At the
end of each simulated scenario, participants completed the NASA-TLX
questionnaire without being aware of their actual clinical performance.
First, each participant performed 15 separate pair-wise comparisons
between the 6 dimensions (mental, physical, and temporal demands,
frustration, effort, and performance) to determine the relevance (and
hence a greater weight) of that dimension for a given scenario for that
participant. Second, participants marked a workload score ranked
from “low” (corresponding to 0) to “high” (corresponding to 100) for
each dimension for each scenario. Finally, the composite NASA-TLX

score for each scenario was obtained by multiplying the dimension
weight (number of times a dimension was chosen) with the corre-
sponding NASA-TLX dimension score, summing across all dimensions,
and dividing by 15.

Quantification of physiological workload (eye-data)
For the WebCIS experiment, pupil dilation data was recorded from the
left eye using the 60 Hz VisionTrak (ISCAN Inc., Burlington, MA, USA)
head-mounted eye-tracking system. For the Epic experiment, pupil di-
lation data was recorded as an average value derived from both eyes
using the 60 Hz Tobi TX-60 remote eye-tracking system. For both ex-
periments, the baseline pupillary data regarding cognitive work was
computed by averaging the pupillary dilation collected during the last
1 second prior to recall of the 3-letter memorization tasks repeated 10
times, as previously recommended by experts.54–57

Eye blinks and other artifacts (partial closures and outliers, based
on visual inspection by an expert) were removed from the raw pupil di-
ameter data and linearly interpolated to fill the missing data, resulting
in <10% loss for any participant. We used the average pupil diameter
and the percent of time that a subject’s pupil was dilated by
�0.45 mm, calculated from our baseline as measures of workload. As
shown by scholars, in both basic and practical applications, maximum
pupillary dilation response under cognitive load ranges from �0.5–
0.7 mm (corresponding to about a 6-digit memorization task), and pu-
pil dilation �0.45 mm was considered as “high” workload where per-
formance degradation might be expected.

Quantification of physiological workload (EEG)
During the experiment in the WebCIS environment, electroencephalog-
raphy (EEG) data were collected using a Nicolet nEEG V32 amplifier.
Electrodes were placed using the 10–20 international system on Fp1,
Fp2, F3, F4, T3, T4, Cz, O1, O2 with reference and ground electrodes
at FCz/A1 and A2 and CPz, respectively. Data processing was accom-
plished by subtracting the averaged A1/A2 reference signal from the
remaining 9 neural signals. Data was filtered using the fourth-order
Butterworth band-pass filter with cutoff frequencies of 0.3 Hz and
250 Hz. Independent component analysis58 was performed to remove
temporal muscle activity from signals. Extreme value rejection was
performed on epoched data (1 s event-locked trials) with a rejection
threshold at 3 times the largest standard deviation across all electrode
sites. Frequency content extraction was accomplished using a Morlet
wavelet,59 for 0.5–50 Hz at 0.5 Hz increments, allowing us to analyze
EEG rhythmic activity frequency bands. We compared the average
power of the frontal midline theta signal (6–7 Hz) at Fz, with the power
of the posterior midline alpha signal at Pz (8–10 Hz). The averaged
data have been converted to z-scores for each participant across the
scenarios and then averaged across participants. This methodology
was originally developed to measure working memory load,60,61 and
was further refined by Smith, Gevins, and colleagues62 for monitoring
task loading during complex forms of human-computer interactions
(eg, air traffic control), with increase (synchronization) in theta and de-
crease (de-synchronization) in alpha power indicating higher mental
effort to perform the task.

During experiment in the Epic environment, EEG data collection
was done using the X-10 wireless EEG headset system from
Advanced Brain Monitoring (ABM). The ABM system included multiple
bipolar sensor sites: Fz, F3, F4, Cz, C3, C4, POz, P3, and P4. In
general, ABM software filters EEG signals with a band-pass filter
(0.5–65 Hz) before the analog-to-digital conversion. In order to remove
environmental artifacts from the power network, sharp notch filters at
50 Hz, 60 Hz, 100 Hz, and 120 Hz are applied. The algorithm

Table 2: Composition of participants within each experiment

Post-
graduate
year

No. of
participants

Experience
with EMR
(years)

WebCIS 1 1 1

2 2 0.5–2

3 4 0.5–3

4 1 2

5 2 0.5–2

>5 2

Epic 0a 7 0.5

1 4

2 1

3 2

4 2

5 1

aMedical students
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automatically detects and removes a number of artifacts in the time-
domain EEG signal, including spikes caused by tapping or bumping of
the sensors, amplifier saturation, and excursions that occur during the
onset or recovery of saturations. In addition to the conventional data
analysis methodology (power of theta [6–7 Hz] at Fz versus power of
alpha signal at Pz [8–10 Hz]),62 the ABM’s algorithm automatically cal-
culated the index of cognitive workload using quadratic and linear dis-
criminant function analyses of model-selected EEG variables derived
from the power spectral analysis of the 1 Hz bins from 1–40 Hz,63,64

which is different from the conventional analysis.60–62 It has been
shown that ABM’s workload index increases with working memory
load and increasing difficulty of cognitive tasks (eg, arithmetic, prob-
lem-solving), and has been validated in a variety of “simple” and
“complex” environments, including military, industrial, and educational
simulation environments.65–68

Quantification of performance
From a patient’s perspective, clinical outcome is arguably the most
meaningful endpoint. Performance is the most immediate upstream
surrogate for clinical outcome, and is therefore a commonly consid-
ered metric.1,6,11,13,16,33,69 Performance was quantified using the fol-
lowing set of metrics:

Errors: Not ordering predetermined tests and/or medications speci-
fied in clinical scenarios as shown in Table 1 was considered an
omission error (see Table 1 for severity scores as related to studied
tasks). For each participant, the error with the most severe grade
was considered for analysis.

Data analysis
As physicians vary in how they interact with computer-based systems
(ie, use different workflows to complete tasks), the actual task de-
mands as experienced by participants needed to be determined as
part of data analysis. The standard least square regression analysis
was used to check for significant differences in task demands be-
tween scenarios as quantified by the total number of clicks and the

time to complete scenarios, while treating the scenarios (UTI, PN, HF)
as a fixed effect and participants as a random variable. This allowed
us to rank tasks demands as “low” or “high,” which was further used
during analyses of main objectives.

The relationship between (1) task demands and workload was de-
termined using standard least square regression analysis. The rela-
tionships between (2) task demands and performance and (3)
workload and performance were determined using ordinal regression
analysis. Before data analysis, we completed tests for normality and
equal variance for all study variables using Shapiro-Wilk’s and Bartlett
tests, respectively. Results indicated that assumptions were satisfied
(normality: all P> .05; equal variance: all P> .05). All our data analy-
ses were conducted using JMP 10 software while specifying missing
data (during the WebCIS experiment, our research team neglected to
collect one NASA-TLX score for the HF scenario; we also lost 4 data
points related to click analysis due to corrupted video-recording files).

RESULTS
Quantification of task demands
Descriptive statistics of task demands, subjective and objective work-
loads, and performance for each scenario are provided in Table 3. The
fixed effects test indicated significant differences between scenarios
as quantified by the total number of clicks: WebCIS: F (2,19)¼ 13.99,
P< .01 with PN and HF significantly >UTI; Epic: F (2,32)¼ 31.86,
P< .01 with PN significantly> UTI and HF; and time to complete sce-
narios: WebCIS: F (2,22)¼ 25.53, P< .01 with PN and HF
significantly> UTI; Epic: F (2,32)¼ 29.01, P< .01 with PN
significantly> HF and UTI. This allowed us to establish appropriate
ranking of task demands as experienced by participants (WebCIS: PN
and HF> UTI; Epic: PN> UTI and HF). MANOVA revealed significant
differences (with at least P< .05) between all types of clicks (naviga-
tion, decision, searching) in both experiments (further reassuring the
ranking; see Table 1). Overall, in both the UTI and HF cases in both ex-
periments, the severity of omission errors was generally< grade 3
(no meaningful clinical impact). In the PN case, participants in each
experiment were more likely to be noted with severity� grade 3. The

Table 3: Averages and standard deviations of workload measures for each scenario within each experiment

Scenario Total
Clicks

Navigation
Clicks

Decision
Clicks

Search
Clicks

Time to
Scenario
Completion
(sec)

No. of
Participants
with Omission
Errors

Severity
Grade of
Omission
Errors (Range)

WebCIS
Average (SD)
n¼ 12

Urinary tract
infection

63 24 32 7 308 0 0

(18) (4) (9) (3) (121)

Pneumonia 188 48 114 24 770 7 1–4

(16) (4) (12) (3) (316)

Heart failure 176 49 107 20 575 2 1–3

(16) (4) (12) (3) (254)

Epic
Average (SD)
n¼ 17

Urinary tract
infection

128 52 59 17 570 2 2

(44) (20) (19) (7) (245)

Pneumonia 185 58 95 32 863 13 1–4

(39) (14) (19) (12) (375)

Heart failure 113 37 59 17 506 7 1–3

(22) (10) (12) (7) (223)
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number of participants with omission errors and the associated range
of severity grade are presented in Table 3.

Relationship between task demands and subjective workload
(NASA-TLX)
Standard least square analysis indicated a significant relationship be-
tween task demands and NASA-TLX scores in the WebCIS experiment:
F (1,33)¼ 10.54, with parameter estimate b ¼ 12.93, P< .01, with
NASA-TLX scores UTI [30 (12)], PN [46 (11)], and HF [39 (9)] (Figure
2a); but not in the Epic experiment, with NASA-TLX scores UTI [41
(18)], PN [48 (17)], and HF [43 (20)] (Figure 2b). Considering all NASA-
TLX dimensions as dependent variables simultaneously, the MANOVA
revealed significant differences in both experiments (WebCIS: mental
(46)> effort (40)> temporal (39)> frustration (36)> performance
(26), with physical dimension not applicable [not selected during pair-
wise comparisons]; Epic: mental (51)> effort (48)> temporal
(44)> frustration (32)> performance (32), with physical dimension not
applicable [not selected during pair-wise comparisons]).

Relationship between task demands and physiological workload
(eye data)
In both experiments there were no significant relationships between
task demands and eye data as quantified by frequency of pupillary di-
lations> 0.45 mm and average amplitude from the 3-letter memoriza-
tion baseline.

Relationship between task demands and physiological workload
(EEG data)
In both experiments there were no significant relationships between
scenario-specific demands and EEG as quantified by conventional
methods (theta versus alpha powers) and the ABM’s index of workload.

Relationship between task demands and performance
Ordinal regression analysis indicated a significant relationship be-
tween scenario-specific demands and severity of errors in the
WebCIS X 2ð1; N ¼ 36Þ ¼ 8:73, P< .01 (Figure 2a) and Epic
X 2ð1; N ¼ 51Þ ¼ 16:67, P< .01 (Figure 2b) experiments.

Relationship between subjective and objective measures of
workload and performance
Ordinal regression analysis indicated a significant relationship between
subjective workload, as quantified by the NASA-TLX, and severity of errors
in the WebCIS X 2ð1; N ¼ 35Þ ¼ 11:86, P< .01 (Figure 2a) but not in
the Epic experiment. There were no significant relationships in either ex-
periment between physiological measures of workload and performance.

DISCUSSION
The results suggest that there was a significant relationship between
tasks demands as experienced by participants and performance as
quantified by the severity of omission errors. This relationship was
seen in both experiments irrespective of study group and type of EMR,
thus suggesting that task demands as experienced by physicians (eg,
more clicks, more time) are related to performance (more omission er-
rors). This is most evident in the PN case, which demanded that par-
ticipants complete a set of predefined admission orders (see step 3 in
Table 2) with relatively detailed instructions, resulting in more omis-
sion errors (eg, forgetting to complete the order, not being able to find
the order set/item). A relationship between task demands and severity
of omission errors has not been widely quantified and reported for
physicians interacting with EMRs. Future work may support the notion
that human-computer behavioral data (clicks) as well as total time
spent to complete EMR-based tasks could also be used as quality
metrics that are likely representative of performance, and perhaps

Figure 2: Relationship between tasks demands as experienced by participants (ranking: Low task demands versus High task demands),
subjective workload as quantified by NASA-TLX, and performance as quantified by severity grade of omission errors (Grade 0: no error;
Grade 1: Mild with no direct meaningful clinical impact expected; Grade 2: Moderate with no meaningful clinical impact expected; Grade
3: Severe with meaningful clinical impact expected; Grade 4: Life-threatening clinical impact expected; Grade 5: Death). In both graphs,
squares represent the UTI scenario, triangles represent the PN scenario, and circles represent the HF scenario. Data analysis indicated
that the PN and HF scenarios were significantly more demanding than the UTI scenario for participants using WebCIS (P< .01), and that
the PN scenario was significantly more demanding than the UTI and HF scenarios for participants using Epic (P< .01). In both experi-
ments, the regression analysis indicated a significant relationship only between task demands and performance (objective #2; P< .01).
In the WebCIS experiment, there was also a relationship between task demands and subjective measures of workload (objective #1;
P< .01). (a) Results from WebCIS experiment. (b) Results from Epic experiment.
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patient outcomes. This could be operationalized using automated
scoring technology in EMRs (eg, an unusually high number of total/
navigation/search/decision clicks, etc.).

Our results also suggest the existence of relationships between the
subjective measure of workload as quantified by the NASA-TLX scores
and (i) task demands as quantified by the behavioral interactions
(clicks and time to complete) and (ii) performance as quantified by the
severity of omission errors. However, these relationships were only
found in the WebCIS experiment, which included a relatively heteroge-
neous group of participants with a variable level of clinical and EMR
experience as related to our simulated scenarios. Future work may
support the notion that perceived workload by physicians could also
be considered as a quality metric that is representative of performance
and perhaps patient outcomes. Asking providers to score their work-
load at the end of a preselected task involving EMRs could be relatively
easily operationalized in actual clinical environments. However, in the
more homogeneous group of participants tested in the Epic environ-
ment, there was no relationship between either subjective measures
of workload and task demands or performance. This suggests that the
subjective evaluation of workload may be masked by participants’ ex-
perience (or confidence) and therefore might not reflect the actual
suboptimal behavioral experience (more clicks, time) with the EMR.

No significant relationships were found between task demands and
physiological measures of workload. This is somewhat contradictory
to previous findings supporting the applicability of physiological mea-
sures of workload to detect differences in task demands or perfor-
mance.60–68,70–72 This might be indicative of limitations to our data
processing and quantification procedures and methods, or the pres-
ence of other confounding factors related to cognitive information pro-
cessing or general cognitive states (eg, arousal, anxiety, stress)
experienced by participants during our simulated experiments. It is also
possible that the physiological measures of workload used in this study,
which were primarily developed and validated based on activations re-
lated to working memory,60–64 might not be appropriate (ie, sensitive
and specific enough) to reflect the complex information processing ex-
perienced by participants during our experiments. We also acknowl-
edge the possibility that despite significant differences in task demands
(eg, clicks, time), the workload experienced by participants was not
“distinctive” enough to produce significant differences in their physio-
logical responses.

There are several limitations to this study, and thus caution should
be exercised in generalizing our findings. First, the results are based on
2 experiments, each with a limited number of participants (medical stu-
dents, residents, and fellows) from 1 teaching hospital, performed on a
set of specific scenarios without random assignment of scenarios to
participants. In the WebCIS experiment, we purposefully sampled from
a relatively heterogeneous population of participants with variable levels
of clinical and EMR experience as related to our simulated scenarios,
so that we could sample a range of capabilities. However, inclusion of
2 particular residents who committed the most errors and most severe
errors, including the highest severity scores (both indicated perfor-
mance degradation at the end of the experiment), may have unduly af-
fected the results. The analysis was repeated with the 2 residents
excluded, and the overall conclusions regarding our findings remained
virtually unchanged. None of the participants in the Epic experiment in-
dicated performance degradations at the end of the experiment.
Similarly, we repeated our analysis while excluding the 1 participant
with the severity score of 4, and the overall conclusions regarding our
findings also remained virtually unchanged. Nonetheless, larger stud-
ies, controlling for levels of clinical and EMR experience, could allow for
a regression of provider-specific factors like specialty, training level,

etc. We also purposefully did not randomly assign scenarios to partici-
pants in order to avoid potential differences in the learning curve and to
control for a potential carryover of a workload effect from scenario to
scenario, which could unexpectedly bias the study. To minimize this ef-
fect, we elected to administer experiments consistently across all par-
ticipants starting with the UTI case and followed by the PN and HF
cases.

Second, performing the tasks in the simulated environment, where
the participants knew that their work was going to be critiqued, may
have caused stress and anxiety that could influence their physiological
measures and performance. On the other hand, performing the tasks in
the simulated environment might have induced less attentiveness and
vigilance in participants as perceived by no possibility of real harm to
patients based on performance.70 This potential bias is present in es-
sentially all simulation-based research. To minimize this effect, all par-
ticipants were informed (via the consent form and verbally by the
researchers before the experiments) that they had the right to decline
participation and that the subject-specific findings would remain confi-
dential. None of the participants voiced any concerns to the researchers
over this issue, and no participants declined participation in the study.

Third, reporting workload via NASA-TLX is subjective and can be chal-
lenging for some participants. Our research group has had extensive ex-
perience with the NASA-TLX tool in the clinical and simulated
environment, and investigators in the present study felt most comfortable
instructing participants on how to complete this assessment. Further,
some of the NASA-TLX dimensions might not be relevant for this research
setting (eg, physical demand).53 Using multiple instruments and measures
could provide more robust results and protect against potential interpretive
errors. Nevertheless, the NASA-TLX is currently the most widely accepted
instrument to perform such assessments.53 We repeated the analyses for
a modified NASA-TLX excluding the physical demand component from
the global score, and the results were largely unchanged.

Fourth, the techniques used to assess human-computer interaction
behaviors are inexact. For example, the investigators may or may not
have accurately interpreted all clicks (decision versus navigation ver-
sus search) related to the appropriate behavior while reviewing the
videos. To minimize this source of error, 2 investigators of this study
independently reviewed the original analysis to ensure accuracy.

Fifth, the use of different instrumentation for collection of physiologi-
cal data could have affected participants differently (eg, differences in
setup). However, it is not likely that instrumentation would affect partici-
pants’ overall performance. Sixth, our simulation environment did not
fully replicate a real clinical environment, as some components or condi-
tions of the studied scenarios were not easily emulated in our simulation.
For example, some participants wanted to look up documentation in an
alternative piece of software while conducting a simulated scenario, or
had a question regarding how to locate a particular test or medication
within the EMR. Thus, all participants were informed about the limitations
of our simulated environment before the experiments (eg, no access to
additional software, no consultations/help regarding the use of EMR,
etc.). Despite these limitations, we believe that the findings support the
use of task demands and subjective evaluation of workload as quality
metrics representative of performance, and perhaps patient outcomes.

Directions for future research include: (i) random assignment of
scenarios to participants with additional assessments and with a larger
sample size, (ii) assessment of the targeted population of physicians in
terms of academic background and EMR experience, and (iii) additional
studies involving alternative EMR environments. It might be particularly
valuable to perform studies focused on task demands, workload, and
performance in real clinical settings. In the future, one might be able to
perform a prospective assessment of an intervention using projected

RESEARCH
AND

APPLICATIONS

Mazur Lukasz M, et al. J Am Med Inform Assoc 2016;23:1113–1120. doi:10.1093/jamia/ocw016, Research and Applications

1118



task demands and workload metrics to distribute work more evenly
among staff in order to prevent dangerous task demands and workload
thresholds from being crossed. This would need to be carefully done in
order to control for confounding variables such as system design, vary-
ing technologies, communication, workflow, and environment. Indeed,
it is the presence of such confounding variables that makes simulation-
based research appealing.70 There is also a need to further develop
and assess the utility of physiological measures of workload to predict
performance while considering potential confounding factors streaming
from cognitive information processing or general cognitive states (eg,
participants’ arousal, anxiety, and stress).

CONCLUSION
It is widely believed that health information technology, when de-
signed, implemented, and used appropriately, can enhance patient
safety and improve quality of care. However, designed and applied in-
appropriately, health information technology can add complexity and
frustration, increase task demands, increase workload, and reduce
performance that can negatively affect clinical care. Physicians will
continue to be challenged by the increasing reliance on computer-
based tools in the clinical environment. Much has been written about
the unforeseen consequences of health information technology, with
many scholars and practitioners raising concerns about decreased
quality of care. The present study is a reasonable next step in the sys-
tematic assessment of how task demands and workload are related to
performance in EMR-evolving environments.
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