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Using age, triage score, and disposition
data from emergency department
electronic records to improve Influenza-like
illness surveillance
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ABSTRACT
....................................................................................................................................................

Objective Markers of illness severity are increasingly captured in emergency department (ED) electronic systems, but
their value for surveillance is not known. We assessed the value of age, triage score, and disposition data from ED elec-
tronic records for predicting influenza-related hospitalizations.
Materials and Methods From June 2006 to January 2011, weekly counts of pneumonia and influenza (P&I) hospitaliza-
tions from five Montreal hospitals were modeled using negative binomial regression. Over lead times of 0–5 weeks, we
assessed the predictive ability of weekly counts of 1) total ED visits, 2) ED visits with influenza-like illness (ILI), and 3)
ED visits with ILI stratified by age, triage score, or disposition. Models were adjusted for secular trends, seasonality, and
autocorrelation. Model fit was assessed using Akaike information criterion, and predictive accuracy using the mean
absolute scaled error (MASE).
Results Predictive accuracy for P&I hospitalizations during non-pandemic years was improved when models included
visits from patients �65 years old and visits resulting in admission/transfer/death (MASE of 0.64, 95% confidence inter-
val (95% CI) 0.54–0.80) compared to overall ILI visits (0.89, 95% CI 0.69–1.10). During the H1N1 pandemic year,
including visits from patients <18 years old, visits with high priority triage scores, or visits resulting in admission/
transfer/death resulted in the best model fit.
Discussion Age and disposition data improved model fit and moderately reduced the prediction error for P&I hospitaliza-
tions; triage score improved model fit only during the pandemic year.
Conclusion Incorporation of age and severity measures available in ED records can improve ILI surveillance algorithms.
....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
Monitoring the incidence of severe illness is useful to inform
intervention decisions, plan resources, and guide communica-
tion strategies. For influenza surveillance, the burden of
severe illness can be monitored through counts of influenza-
related hospitalizations and deaths, although hospitalization
diagnoses or causes of death may not be readily available for
prospective surveillance. Since syndromic surveillance is
increasingly used as part of a strategy to monitor influenza,
emergency department (ED) visits with influenza-like illness
(ILI) are readily available and may be useful for surveillance
of severe influenza illness. Patients presenting to the
ED are, however, likely to have a wider range of illness
severity than hospitalized patients, so methods must be de-
veloped to measure the severity of illness among people that
visit the ED.

The severity of illness among those visiting the ED can be
measured using routinely captured data such as standardized
triage scores and patient disposition. However, few studies
have reported using severity markers for influenza surveil-
lance. Some authors have suggested that a combination of ED
clinical and disposition data could be used for estimation and
real-time monitoring of influenza-related hospitalizations. 1,2

The use of triage scores in surveillance systems has been
reported,3,4 but their value for surveillance has not been
evaluated.

Analysis of age-stratified ED visits, although they are not a
direct marker of disease severity, may also enhance surveil-
lance of severe influenza disease. Children and young adults
with ILI have been identified as a sentinel population heralding
the occurrence of epidemics, as measured by virological iso-
lates, influenza-related hospitalizations, or influenza-related
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mortality, although the exact age group providing the earliest
lead time varied across studies and seasons.5–10 ILI visits by
older adults7 and the youngest children8 have been most
strongly associated with overall influenza-related hospitaliza-
tions or mortality.

OBJECTIVE
The objective of this study was to evaluate the potential value
of age, triage score, and disposition data contained in ED elec-
tronic records for predicting influenza-related hospitalizations.
Our hypothesis was that counts of severe ILI visits, or visits
from specific age groups, would better predict counts of influ-
enza-related hospitalizations than would overall ILI ED visits.

METHODS
Study setting
The Montreal Public Health Department, responsible for a pop-
ulation of 1.85 million, conducts routine influenza surveil-
lance.11 Data available for surveillance include detailed records
of ED visits for a subset of the hospitals in Montreal, via the
Regional Emergency Department Warehouse (Entrepôt
Régional des Urgences). This database contains records for
each ED visit to a participating hospital, including data on chief
complaint, age, triage score, and disposition. Hospitals transmit
records once daily to the database, which the Public Health
Department accesses for surveillance. Complete data were
available for five hospitals, including three tertiary centers, cov-
ering �28% of the ED visits to non-psychiatric, non-pediatric
hospitals of the Montreal region.

The triage urgency for each visit is recorded in the database
using the Canadian Triage and Acuity Scale (CTAS). CTAS is
used throughout Canada.12 It has been validated as a predictor
of individual patient outcomes, including admission, length of
stay, resource utilization, and mortality.13,14 The CTAS catego-
ries are 1 (resuscitation – needs immediate care), 2 (emergent
– needs physician assessment within 15 min), 3 (urgent –
30 min), 4 (semi-urgent – 1 h), and 5 (nonurgent – 2 h).

The Public Health Department also has access to detailed in-
formation on all hospitalizations in acute care hospitals in
the province of Québec, Canada, through a registry called MED-
ÉCHO (Maintenance et exploitation des données pour l’étude de
la clientèle hospitalière). However, these data are only available
with a delay of approximately 1 year after the date of discharge
and are not suitable for real-time surveillance.

The study period spanned from June 25, 2006 to January
29, 2011. In the analysis, the H1N1 influenza pandemic year
was defined as the 52 weeks between April 12, 2009 and April
10, 2010, covering both H1N1 waves. Statistical analyses were
performed using STATA 10 (StataCorp LP, College Station,
Texas, USA). This research was approved by the Research
Ethics Committee of the Montreal Regional Health and Social
Services Agency.

ILI ED visits
Weekly ILI counts were obtained from the Regional Emergency
Departments Warehouse. Visits were classified using the chief

complaint, which triage nurses select for each visit using a
drop-down menu. One or more symptoms, syndromes, or pre-
sumptive diagnoses may be selected for each visit to describe
the chief complaint. A case definition based on fever and
(cough or sore throat) was chosen to be consistent with the
World Health Organization (WHO) and Centers for Disease
Control and Prevention (CDC) definitions of ILI,15,16 and to be
comparable to what has been used elsewhere.5,17 The case
definition was extended to include direct mention of influenza
or ILI, since a descriptive analysis of the chief complaints indi-
cated that these keywords were used commonly in the partici-
pating hospitals. Thus, a record was classified as an ILI
syndrome if the chief complaint met the following condition:
“(feverþ cough) OR (feverþ sore throat) OR influenza OR influ-
enza-like illness.” Weekly counts were used, based on the date
of registration to the ED.

Counts of ILI visits were stratified by age group, triage score,
and disposition. Age was categorized into <18, 18–64, and �65
years old. Triage scores were grouped into “severe” (scores 1–3)
and “non-severe” (4 and 5) categories. Dispositions of
“Admission,” “transfer (to another facility),” or “death” were
grouped together into a “severe” disposition category. Counts
of disposition-stratified ILI visits were based on the date of dis-
charge from the ED (as opposed to the date of registration).

Influenza-related hospitalizations
Hospitalization data for the five hospitals in the study were
obtained from the MED-ÉCHO registry. Influenza-related hospi-
talizations were defined as hospitalizations with a primary or
secondary diagnosis of pneumonia and influenza (P&I)
(International Classification of Disease 10th revision J09–J18).
P&I hospitalizations have been used elsewhere to estimate
influenza-related hospitalizations.1,5–7,18–20 Weekly counts
were tabulated based on date of admission.

To facilitate visualization of the data, a smoothed time
series was produced where each data point was replaced by a
value obtained from a locally weighted regression using values
in an interval or bandwidth centered on the data point.21 A
bandwidth of 4 weeks was chosen to smooth week-to-week
variation while leaving seasonal patterns.

Statistical model
Weekly counts of P&I hospitalizations were modeled using
negative binomial regression. Negative binomial models, which
account for over-dispersion of count data as compared to a
Poisson distribution (ie, where the variance is greater than the
mean), have been used by others to model influenza-related
outcomes.22–25 Secular trends were modeled with polynomial
terms, and seasonal trends with sine and cosine terms. The
number of polynomial terms and harmonics was chosen based
on the Akaike information criterion (AIC), which is a measure of
goodness of fit while taking into account parsimony. A lower
AIC suggests a better model fit.26 P&I hospitalization counts
from previous weeks were included as independent variables,
when an analysis of the residuals indicated the presence of
autocorrelation. This baseline model was fit separately for
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non-pandemic and pandemic years because the pandemic
year did not exhibit the usual influenza seasonality.

To this baseline model we added, in separate models,
weekly counts of 1) all-cause ED visits, 2) overall ILI visits, 3)
age-stratified ILI visits (one model per age category), 4) severe-
triage ILI visits, and 5) severe-disposition ILI visits. Lead times
of up to 5 weeks were tested (ED visits occurring before the
P&I hospitalization count date). In all models, the dependent
variable remained the overall weekly counts of P&I hospitaliza-
tions. Models were fit separately for the non-pandemic and
pandemic periods.

The predictive accuracy of the models was assessed us-
ing the mean absolute scaled error (MASE), which quantifies
prediction accuracy and is comparable across data sets and
prediction methods.27 The MASE is defined as the mean of
the prediction error of the model (the absolute difference be-
tween predicted and observed counts) over the mean of the
prediction error for a one-step-ahead naı̈ve forecast (where
each predicted count equals the previous observed count). A
MASE of one indicates a model equivalent to naı̈ve forecasts;
the lower the MASE, the lower the prediction error.28 To
compute the MASE of one-step-ahead forecasts for the non-
pandemic period, each model was first fit using as a training
period June 25, 2006 to February 7, 2009. P&I hospitaliza-
tions were then predicted over the testing period of February
8, 2009 to January 29, 2011, excluding the pandemic year.
Errors were then computed for each data point of the testing
period, and the mean of those errors was compared to the
mean of the errors obtained with a naı̈ve model, thus obtain-
ing the MASE.

Because we did not want to make assumptions about the
distribution of the MASE values, we used bootstrapping to
estimate the standard error of the MASE. We resampled
(with replacement) 50,000 times the testing period data for
which prediction errors had been calculated, each time
re-calculating the MASE and thus obtaining a distribution and
a standard error. The number of resampling repetitions was
chosen to ensure convergence of the estimated standard
errors. Reported confidence intervals (CIs) are bias-corrected
95% CIs.29

In secondary analyses, we selected the most promising
predictors (counts of age- or severity-stratified ILI visits) and
lags from models using a single predictor and combined the
multiple predictors into a single model. To assess whether
predictability varied by hospital, we selected the most accurate
predictive model with the pooled data, and applied it to hospi-
tal-stratified data, where the predicted outcome was each
hospital’s P&I hospitalizations.

MASE values could not be obtained for models fit to pan-
demic data, due to the lack of data to evaluate forecast accu-
racy. These models were therefore compared using the AIC,
which allows qualitative comparisons between models based
on goodness of fit, but does not quantify predictive accuracy.
The AIC was also obtained for models fit to the entire non-
pandemic data set, to allow comparison of the rank ordering of
models between the non-pandemic and pandemic periods.

RESULTS
There were on average 3634 ED visits per week over the study
period. At least one chief complaint was recorded for 98% of
visits, and 2.1% and 3.5% of these visits had chief complaints
that met the ILI definition during the non-pandemic and the
H1N1 periods, respectively. Table 1 shows the distribution of
visits by age group, triage category, and disposition in non-
pandemic and pandemic years. There was an increase in ILI
visits during the H1N1 period for almost all subgroups. The
mean weekly count of P&I hospitalizations was 39.9 (standard
deviation (SD) 8.9) during the non-H1N1 period and 43.3 (SD
10.1) during the H1N1 period. Figure 1 illustrates the time
series of ED visits with ILI and the time series of P&I hospitali-
zations. ILI visits, and to a lesser extent P&I hospitalizations,
display clear seasonal variation, in addition to peaks corre-
sponding to each H1N1 wave.

The baseline prediction model included linear and quadratic
terms and sine–cosine terms up to the second harmonic.
Residual autocorrelation remained at 4 weeks, thus P&I hospi-
talization counts from the 4 previous weeks were included in
the model. The baseline model was as follows:

Log Yi ¼ b0 þ b1 tð Þ þ b2 t2
� �
þ b3sin 2pt=52:18ð Þ

þ b4 cos 2pt=52:18ð Þ þ b5 sin 4pt=52:18ð Þ

þ b6 cos 4pt=52:18ð Þ þ b7Yi�1 þ b8Yi�2

þ b9Yi�3 þ b10Yi�4

where Yi is the number of P&I hospitalizations at week i, t is
the time elapsed in weeks from a time t0 arbitrarily set at the
beginning of the study period, and 52.18 represents the aver-
age number of weeks per year.

Figure 2 presents the MASE values for the non-pandemic
period, where darker shading indicates a lower MASE and
thus, better prediction. Prediction error was lowest for models
with ILI visits from patients �65 years old, with MASEs of 0.75
(95% CI 0.58–0.93) and 0.78 (95% CI 0.60–0.97) at lead times
of 0 and 1 week, respectively. In comparison, the MASE was
0.91 (95% CI 0.71–1.12) for the baseline model; at lead times
of 0 and 1 week, MASE values were 0.92 (95% CI 0.72–1.14)
and 0.93 (95% CI 0.73–1.16) for all ED visits, and 0.92 (95%
CI 0.72–1.14) and 0.86 (95% CI 0.67–1.07) for overall ILI vis-
its. ILI visits with admission/transfer/death also resulted in
lower prediction errors at lead times of 0 and 1 week, with
MASEs of 0.77 (95% CI 0.60–0.95) and 0.80 (95% CI
0.63–0.99).

Combining the four most promising predictors (ILI visits
from patients �65 years old and ILI visits with admission/
transfer/death, both with 0- and 1-week lead times) resulted in
a model with a MASE of 0.64 (95% CI 0.54–0.80). This model
compared favorably to a model with overall ILI visits with
lead times of 0 and 1 week (MASE 0.89, 95% CI 0.69–1.10).
Figure 3 shows the predictions from these two models as well
as from the baseline model, against observed P&I counts, for
the reserved test data during the non-pandemic interval. The
baseline model and the model with all ILI visits produced nearly
identical forecasts and tended to underestimate observed
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P&I hospitalizations. The model combining age and severity
indicators predicted P&I hospitalizations with greater accuracy,
especially towards the end of the series.

We were able to estimate the MASE for the model with the
four most promising predictors, stratified by hospital, for four
out of the five hospitals. Counts were too low for the other hos-
pital to obtain stable parameter estimates. None performed
better than the model applied to the pooled data, and signifi-
cant differences were observed in the predictive accuracy of
the model applied to the different hospitals.

Figure 4 shows the AIC goodness of fit of the models, where
darker shading indicates lower AIC and thus, better fit. During
the non-pandemic period, the models with the better fit (lower
AIC) were generally the same as the models with better predic-
tive accuracy (lower MASE). The models with ILI visits among
patients �65 years old provided a better fit to the data than
models with overall ED visits or overall ILI ED visits, at lead
times of 0 and 1 week. With 1-week lead time, the model with
ILI visits resulting in admissions/transfers/deaths also provided
a better fit than the models with overall ED visits or overall ILI
ED visits. Models with visit counts from the other age groups,
and visits with severe triage categories, did not improve the fit
over the models with all ILI visits. The model with the best fit to

the data included ILI visits from patients �65 years old,
followed by the model with all ED visits and all ILI visits, with 0
lead time.

During the pandemic (H1N1) year, on the other hand, the
models including ILI visits from patients <18 years old had a
lower AIC than models with all ED or all ILI visits, at lead times
of 1–3 weeks. Models that included ILI visits with severe triage
category at 2- and 3-week lead times, and those with admis-
sions/transfers/deaths at 1-week lead time, had a better fit than
models with all ED visits and models with all ILI visits at the cor-
responding lead times. The model with the best fit was the one
with admissions/transfers/deaths with 1-week lead time, fol-
lowed by the models with overall ED visits with 0 lead time and
ILI visits from patients <18 years old at 1-week lead time.

DISCUSSION
Stratification by age and disposition from the ED during both
non-pandemic and pandemic periods, as well as by triage cat-
egory during pandemic period, improved the fit and accuracy
of models for predicting overall P&I hospitalizations. During the
non-pandemic period, models including visits from patients
�65 years old reduced the mean absolute prediction error for
P&I hospitalizations by 18% and 9% at leads times of 0 and 1

Table 1: Mean number of weekly influenza-like illness emergency department visits according to visit
characteristics, Montreal hospitals contributing records to the Regional Emergency Department
Warehouse, June 25, 2006 to January 29, 2011

Weekly mean (interquartile range)

Non-pandemic period (N¼ 188) Pandemic yeara (N¼ 52)

Age (years)

<18 16 (9–20) 27 (15–28)

18–64 49 (32–61) 86 (5–99)

�65 10 (6–14) 13 (10–16)

Triage score

1-Resuscitation 0.1 (0–0) 0.1 (0–0)

2-Emergent 3 (1–4) 5 (3–6)

3-Urgent 25 (16–33) 38 (24–42)

4-Semi-urgent 39 (25–50) 71 (43–84)

5-Nonurgent 8 (5–10) 12 (7–14)

Disposition

Home/residence 71 (46–92) 121 (76–136)

Admission 3 (1–5) 5 (2–6)

Transfer 0.4 (0–1) 0.7 (0–1)

Death 0.02 (0–0) 0.00 (0–0)

Total 75 (48–96) 126 (80–142)
aPandemic (H1N1) year: April 12, 2009 to April 10, 2010.
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week, respectively, compared to models that included all ILI
visits. Similarly, models including visits resulting in admission/
transfer/death (severe ED disposition) reduced mean absolute
prediction error by 16% and 7%, respectively. A model com-
bining visits from patients �65 years old and visits resulting in

admission/transfer/death with lead times of 0 and 1 week re-
duced the mean absolute prediction error by 26% compared to
a model including all ILI visits.

There was no significant difference in predictive accuracy
between the model that included visits from patients

Figure 1: Weekly emergency department visits with influenza-like illness and pneumonia and influenza hospitalizations,
Montreal hospitals contributing records to the Regional Emergency Department Warehouse, June 25, 2006 to January 29, 2011.

Weekly ILI ED visits (dotted line), and weekly P&I hospitalization counts (dots) and smoothed series (line).

ILI: influenza-like illness; ED: emergency department; P&I: pneumonia and influenza.
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Figure 2: Mean absolute scaled error (MASE) of one-step ahead forecasts of pneumonia and influenza hospitalizations,
Montreal hospitals contributing records to the Regional Emergency Department Warehouse, June 25, 2006 to January 29,
2011, excluding April 12, 2009 to April 10, 2010.

Models adjusted for secular trends, seasonality, and autocorrelation. Disposition A/T/D: admission, transfer, or death.
Lower MASE (darker color) indicates better prediction. A MASE of 1 is equivalent to forecasts from a naı̈ve model and a
MASE of 0 means perfect prediction.
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�65 years old and the model that included visits with severe
ED disposition, but both models had a prediction accuracy that
was significantly greater than a naı̈ve model. In contrast, the
model using overall ILI visits as a predictor did not have a pre-
dictive accuracy that was significantly different from the naı̈ve
model. These results suggest that the use of age, disposition
from the ED and, possibly, triage score data from ED electronic
records in surveillance algorithms may enhance the ability of
public health agencies to monitor and predict the burden of
severe illness in a timely manner. Although hospitalizations
are only an indirect measure of illness severity, in most
situations they are still, arguably, better than other available
measures such as ED visits — hence the role of monitoring
and predicting hospitalizations as part of severe illness
surveillance.

Our hospital-stratified analysis suggests that a predictive
model fit to data pooled from many hospitals may perform
poorly when applied to the individual hospitals, and that pre-
dictive accuracy can vary significantly between hospitals. One
possible explanation for this finding is that as counts are

lower, random variation becomes relatively more important
and prediction accuracy decreases. Another possible explana-
tion is that there may be hospital-specific factors (for
instance, related to case load, patient populations, clinical
management, and coding practices) that influence model per-
formance at the hospital level but that average out with the
pooled data.

The age group providing the greatest improvement in
prediction differed during non-pandemic years (patients �65
years old) and the H1N1 year (patients <18 years old). Our
results suggest that the older age group may be a sentinel pop-
ulation for trends in hospitalizations during seasonal influenza,
and similarly for the younger age group during the H1N1 pan-
demic influenza. However, a decision to hospitalize a patient
can be influenced by considerations beyond the actual illness
severity, such as the age of the patient, the circulating strain,
and the associated perception of risk. These factors could
explain in part findings that ED visits from some age groups
are predictors of hospitalizations. Beyond improving prediction
of hospitalizations and heralding epidemic trends, age-stratified

Figure 3: Weekly pneumonia and influenza hospitalizations, observed and predicted, Montreal hospitals contributing
records to the Regional Emergency Department Warehouse, February 1, 2009 to January 29, 2011 (excluding H1N1 year).

Weekly P&I hospitalizations observed counts (diamonds), and counts predicted by baseline model (line), model with all ILI
ED visits with 0 and 1-week lead time (circles), and model combining ILI ED visits from �65 year-olds and ILI ED visits re-
sulting in admission/transfer/death with 0 and 1-week lead time (stars). Models adjusted for secular trends, seasonality,
and autocorrelation.

ILI: influenza-like illness; ED: emergency department; P&I: pneumonia and influenza.
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information may also allow detection of shifts in age-specific
attack rates associated with novel strains, and may inform de-
cisions such as which age group to prioritize for vaccination.

Others have found that ILI ED visits by patients �65 years
old were associated with overall P&I hospitalizations, with
higher correlation coefficients than for other age groups.7

However, this relationship has not been observed consistently.
Some studies have reported no significant difference in predic-
tive value of different age groups for influenza-related hospitali-
zations,6 while others have found that the youngest age groups
(patients <3 and 3–4 years old) provide the best predictive
value, although for P&I mortality rather than hospitalizations.8

The use of different metrics between studies prevented us
from quantifying differences in model performance.

A decrease in the importance of patients �65 years old and
an increase in the importance of patients <18 years old in pre-
dictive value for P&I hospitalizations during the H1N1 period,
compared to the non-pandemic period, is consistent with the
age-specific attack rates for H1N1 reported in the literature. In
one study, the greatest increase of ILI visits to sentinel physi-
cians was observed for school-age children, adolescents, and
young adults in the United States when compared to seasonal
influenza; the lowest increase was for adults �65 years old.
As for influenza-related hospitalizations, the greatest increase
was in young and middle-aged adults, followed by school age

children and adolescent; the lowest increase being in individ-
uals �65 and <4 years old.30 Another study found the propor-
tion of individuals 10–19 and 20–29 years old affected by
H1N1 to be greater than the proportion usually affected by sea-
sonal influenza.10

In our study, ILI ED visits resulting in admission/transfer/
death were consistently associated with P&I hospitalizations
with a 1-week lead time, during both non-pandemic and
pandemic periods. Similarly, using ILI visits with “severe”
triage category improved the fit of models predicting P&I hospi-
talizations, although only during the H1N1 year. Counts of ILI
visits with “severe” disposition status or triage score may be a
marker of the severity of an influenza epidemic in the commu-
nity, rising earlier than counts of hospitalizations with a
discharge diagnosis of P&I. Thus, monitoring them could po-
tentially be useful for timely surveillance of influenza epidemic
severity. It is not clear why using triage category improved the
predictive models for hospitalizations during the H1N1 year
only. It is conceivable that during the pandemic, ILI visit counts
reflected, in addition to the incidence of influenza in the popu-
lation, care-seeking by individuals with mild symptoms who
would not normally visit the ED during a seasonal epidemic. In
this context, ILI visits with “severe” triage categories may have
a stronger association with true influenza as compared to visits
assigned other triage categories.

Figure 4: Akaike’s information criterion of predictive models for pneumonia and influenza hospitalizations, Montreal hospi-
tals contributing records to the Regional Emergency Department Warehouse, June 25, 2006 to January 29, 2011.

Pandemic (H1N1) period: April 12, 2009 to April 10, 2010. Models adjusted for secular trends, seasonality, and autocorre-
lation. Disposition A/T/D: admission, transfer, or death. Lower AIC (darker color) indicates better fit.
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A few studies assessed the use of ED disposition data to
predict influenza-related hospitalizations. The use of ED data
(signs and symptoms, chief complaints, ED or admission diag-
nosis) allowed prediction of hospitalizations with a discharge
diagnosis of P&I (or pneumonia) with moderate sensitivity
(40–62%), high specificity (94–99%), and moderate positive
predictive value (41–71%).1,2 To our knowledge, however, no
study has previously reported the disposition of ED visits for ILI
to be a leading indicator of P&I hospital admissions. Finally,
although the use of triage category in surveillance systems has
been reported in the literature3,4 and has been deemed useful,4

performance metrics, association measures, or other quantita-
tive analyses have not been reported.

One limitation of our study is that hospitals included in the
surveillance system may not be representative of the whole
Montreal health region. Notably, the absence of a pediatric
hospital in the dataset limits generalization of the results to the
pediatric population, although our dataset does include general
EDs that serve patients of all ages. Another limitation is that it
was not possible to verify the specificity and sensitivity of the
chief complaint for ILI detection, since no gold standard was
available. However, the fact that the triage nurse may select
more than one symptom and may also select “influenza” or
“ILI” as a chief complaint increases the likelihood that the chief
complaint will have good sensitivity for detecting ILI as defined
by the WHO or the CDC.15,16

Neither ILI nor P&I are specific for influenza, and both case
definitions can capture diseases due to other respiratory patho-
gens, such as respiratory syncytial virus or bacteria. However,
we defined ILI to be consistent with the WHO and CDC defini-
tions,15,16 and P&I hospitalizations have often been used as a
measure of influenza-related hospitalizations.5–7,9,31,32 We
chose to report the MASE as a measure of forecast accuracy,
so that the results of future research can be compared quanti-
tatively to our results.

Public health organizations that conduct syndromic surveil-
lance for influenza may use our results to guide the selection
and further evaluation of covariates for inclusion in their sur-
veillance algorithms. In the most accurate model, inclusion of
age- and severity-stratified ED visits reduced mean absolute
prediction error by 26% over a model using all ILI visits.
Improved surveillance algorithms can help decision making
and prioritization of interventions.

CONCLUSIONS
Stratifying ILI ED visits by age group, triage score, and disposi-
tion status improved the fit and the predictive accuracy of mod-
els for overall P&I hospitalizations, as compared to models
using only overall ILI ED visits. In settings where the capacity
exists, it may be valuable to incorporate age and severity mea-
sures as covariates in algorithms used in ED-based ILI surveil-
lance systems. However, future research should evaluate the
practical utility of using these covariates, in terms of informing
decisions and improving the use of influenza control measures,
while taking into account surveillance information available
from other data sources.
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Espace montréalais d’information sur la santé 2011. http://
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