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A growing number of studies use data before and after treatment initiation in groups exposed to different
treatment strategies to estimate “causal effects” using a ratio measure called the prior event rate ratio (PERR).
Here, we offer a causal interpretation for PERR and its additive scale analog, the prior event rate difference
(PERD). We show that causal interpretation of these measures requires untestable rate-change assumptions
about the relationship between 1) the change of the counterfactual rate before and after treatment initiation in the
treated group under hypothetical intervention to implement the control strategy; and 2) the change of the factual
rate before and after treatment initiation in the control group. The rate-change assumption is on the multiplicative
scale for PERR but on the additive scale for PERD; the 2 assumptions hold simultaneously under testable, but
unlikely, conditions. Even if investigators can pick the most appropriate scale, the relevant rate-change assumption
might not hold exactly, so we describe sensitivity analysis methods to examine how assumption violations of
different magnitudes would affect study results. We illustrate the methods using data from a published study of

proton pump inhibitors and pneumonia.

causal inference; confounding; observational studies; prior event rate difference; prior event rate ratio;

rate-change methods

Abbreviations: PERD, prior event rate difference; PERR, prior event rate ratio.

Many recent pharmacoepidemiologic studies (1-11) col-
lect outcome data before and after treatment initiation in 2
groups of individuals, each exposed to a different strategy
(henceforth, we refer to these groups as the treated and
control groups, even though both can be receiving active
treatment, and we refer to the strategies they are exposed
to as the treatment and control strategy, respectively). These
studies estimate “treatment effects” on outcomes that can
occur multiple times by using a measure called the prior
event rate ratio (PERR). Although modeling details differ
across applications, a common thread is that the ratio of
event rates before and after treatment initiation in the control
group is used as a proxy for what the ratio of event rates
before and after treatment initiation would have been in the
treated group, under intervention to implement the control
strategy. Because PERR relies on assumptions about the
change of the rate before and after treatment we refer to it
as a “rate-change” method. It is often informally claimed
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that a causal interpretation of PERR does not require the
absence of confounding by unmeasured time-fixed variables
(12, 13).

Here, we define the target causal quantity of PERR
analyses and formalize the requirements for endowing the
analyses with a causal interpretation. We show how PERR
analysis can be viewed as a form of “difference-in-
differences” analysis (14) on the multiplicative scale. We
also describe an analog of PERR on the additive scale,
the prior event rate difference (PERD), which connects
with the econometric literature on difference-in-differences
methods. For both PERR and PERD analyses, we show
that identification of the target causal quantities requires
strong and untestable rate-change assumptions about the
relationship between 1) the change of the counterfactual
rate before and after treatment initiation in the treated group
under hypothetical intervention to implement the control
strategy and 2) the change of the factual rate before and after
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Table 1. Data for an lllustrative Example of Estimating the Rate of the Outcome Among Treated and Control

Groups?

Pretreatment

Posttreatment

Treatment Group

Events Person-Years Events Person-Years
A=1 9,642 155,341 8,727 142,110
A=0 4,298 157,783 4,516 148,504

@ Data for this illustration is from Table 4 in Othman et al. (5).

treatment initiation in the control group. The rate-change
assumption is on the multiplicative scale for PERR but on
the additive scale for PERD. We show that these assumptions
can hold simultaneously only under testable, but unlikely,
conditions. Even if investigators can decide which rate-
change assumption is most appropriate, that assumption
is unlikely to hold exactly; to address possible violations,
we describe sensitivity-analysis methods that can be used
to examine the degree to which violations of assumptions
might affect study results. We illustrate the methods using
data from a recently published study of the effect of proton
pump inhibitors on pneumonia.

STUDY DESIGN AND DATA
Study design

Suppose that 2 groups of individuals are exposed to 2
different treatment strategies. For example, we might want
to compare outcomes among individuals in 2 health-care
plans that are subject to different reimbursement policies
after a given date. Or we might want to compare outcomes
among individuals who meet some eligibility criteria and
who receive recommendations to initiate 2 different treat-
ments for the same condition. We refer to the time of policy
implementation or treatment initiation as time zero. We
focus on outcomes that can be assessed both before time zero
(during the pretreatment period) and after time zero (during
the posttreatment period).

For concreteness, in the remainder of the paper we will
consider as an illustration a recent pharmacoepidemiologic
study that examined the effect of proton pump inhibitor
prescription on the risk of community acquired pneumonia
(5). The authors used UK-based primary care electronic
health records to identify a treated group that received a
proton pump inhibitor prescription and a matched control
group that did not. We will use numerical data from that
study to illustrate different methods. Our main objective is
to discuss the methods in general terms; we do not take any
position on the validity of this particular study.

Observed data

The study design described above provides adequate data
to estimate the rate of the outcome among the treated and
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control groups, during the pretreatment and posttreatment
periods. Specifically, for each of these periods and each of
the treatment groups we observe the events that occurred and
the person-time under follow-up for the treated and control
groups, during the pretreatment and posttreatment periods
(Table 1).

To introduce some notation for the population parameters
underlying the data of Table I, let rpe(A = a) denote
the pretreatment event rate and rpost(A = a) denote the
posttreatment event rate among individuals who received
treatment A = a at time zero. In our example, the random
variable A denotes “proton pump inhibitor prescription” (1 if
received at time zero; 0 if not received). The study design can
be used to identify the population rate parameters in Table 2
and that the data in Table | can be used to estimate those
parameters.

CAUSAL QUANTITIES OF INTEREST

To define causal quantities of interest and state identifi-
ability conditions, we need additional notation for counter-
factual incidence rates, that is, rates that would be observed
under interventions to implement a particular treatment strat-
egy, possibly contrary to fact (15, 16). Let rg;? (A=1)be
the counterfactual (potential) posttreatment event rate under
intervention to implement the control strategy a = 0 in the
treated group, rg(i% (A = 1) the counterfactual posttreatment
event rate under intervention to implement the treatment
strategy @ = 1 in the treated group, and rgr:eo(A = 1) the
counterfactual pretreatment event rate under intervention to
implement the control strategy a = 0 in the treated group.

We are now ready to define 2 causal quantities of interest,
both of which pertain to the treated group (i.e., they are
similar to the average treatment effect on the treated (17)).
The first quantity is the causal incidence rate ratio (IRR)

Table 2. Treatment Group and Period-Specific Population Rate
Parameters

Treatment Group Pretreatment Posttreatment
A=1 rore(A=1) Ipost(A = 1)
A=0 rore (A = 0) I'post(A = 0)
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among the treated,

r“=liA=1
IRR a5t A = 1) = 5(:8—‘
Tpost A=1

The second quantity is the causal incidence rate difference
(IRD) among the treated,

IRDcausal (A = 1) = rg;l A=1)— VS:S? A=1).

Our next task is to consider the conditions under which
these causal quantities can be identified from the observed
data.

IDENTIFICATION
Why exchangeability-based methods might not work

The most commonly used methods (17) for identifying
IRR ausa1 (A = 1) and IRD¢yys01(A = 1) rest on exchange-
ability (ignorability) assumptions between the treatment
groups (18). Specifically, these methods require that, during
the posttreatment period, the counterfactual event rate in the
treated group under intervention to implement the control
strategy is equal to the factual rate in the control group,
typically within strata defined by baseline covariates. That
is to say, the usual approaches require that, conditional
on covariates, the observed posttreatment event rate in the
control group is a good proxy for the counterfactual event
rate for the treated group, under intervention to implement
the control strategy. This assumption is often questionable
in pharmacoepidemiologic studies because it requires that
baseline (pretreatment) covariates be sufficiently informa-
tion-rich to remove all confounding.

In our illustrative example, we might be suspicious of the
assumption that all confounding factors are sufficiently cap-
tured in the observational data. For example, comorbid con-
ditions were categorized on the basis of the Charlson comor-
bidity score, obtained using diagnostic codes extracted from
electronic health records. For many chronic diseases, such
information does not differentiate between different severity
levels or reflect how well disease is controlled by treat-
ment. Limitations like these might explain why the authors
themselves considered that treatment effect estimates that
were obtained from methods that require exchangeability
of the treatment groups conditional on baseline time-fixed
covariates were likely affected by residual confounding (5).

A number of recent publications suggest that rate-change
methods can overcome these limitations by allowing iden-
tification of the causal quantities of interest even in the
presence of confounding by unmeasured baseline variables.
To our knowledge, these arguments have not been couched
in explicitly causal terms, and we undertake the task in the
next section.

Identification of the causal rate ratio by PERR

Identifiability conditions.  The following identifiability con-
ditions are sufficient for identifying IRR¢aysa1 (A = 1).

1. Consistency among the actually treated: rgozs% A =
1) = rpost(A = 1). Among the treated group, the
counterfactual event rate under intervention to assign
treatment is equal to the factual rate.

2. Hypothetical intervention to implement the control
strategy does not affect the pretreatment event rate
among the treated: rgr:eO(A =1 = rpre@ = 1.
The factual pretreatment event rate among the treated
equals the counterfactual event rate of the same group
under intervention to implement the control strategy.

3. Common rate-change assumption on the multiplica-
tive scale:

rg:s(t) A=1 _ Tpost A=0)
rOA=1) rpe@=0"

pre

The ratio of the counterfactual posttreatment and pre-
treatment event rates among the treated under inter-
vention to implement the control strategy equals the
ratio of the factual posttreatment and pretreatment
event rates among the control group.

4. Positivity of the treatment probability: 1 > Pr [A =
1] > 0, so that, in large samples, we observe individ-
uals in both the treated and untreated groups.

5. Positivity of event rates: for all treatments a € {0, 1},
Tpre(A = a) > 0 and rpos (A = a) > 0.

In addition to these conditions, we assume that all subjects
can be observed from the start of the pretreatment period
until the end of the posttreatment period. Extensions to
address identification in the presence of drop-out or compet-
ing events are possible but beyond the scope of this work.

Reasoning about the identifiability conditions. The first
3 conditions listed above make up the core of the PERR
method and cannot be verified using observed data (i.e.,
they are untestable). Reasoning about the conditions requires
background knowledge and can be informed by results of
other studies (e.g., research about treatment preferences
or the impact of time-varying factors on the outcome).
Web Appendix 1 (available at https://academic.oup.com/aje)
offers a brief discussion of potential violations of assump-
tions 1 through 3.

Identification of the causal rate ratio by PERR. As we
show in Web Appendix 1, under identifiability conditions 1
through 5, the causal incidence rate ratio among the treated
IRRcausal (A = 1) is identifiable by the population PERR,
defined as

Tpost (A = 1) /rpost (A = 0)
T'pre A= 1)/"pre A=0)

PERR = (1

Identification of the causal rate difference

Astute readers will have perceived the similarity between
PERR and the assumptions needed for it to have a causal
interpretation, and so-called difference-in-differences meth-
ods (14). The connection stems from the fact that both
PERR and difference-in-differences methods use the change
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between the posttreatment and pretreatment period in the
“average” factual outcome among the control group as a
proxy for the change between the posttreatment and pre-
treatment period in the counterfactual outcome among the
treated group, under intervention to implement the control
strategy. The difference is that in conventional difference-
in-differences analyses the assumption is usually made on
the additive scale (i.e., change over time is expressed as a
difference), whereas in PERR analyses the assumption is
made on the multiplicative scale (i.e., change over time is
expressed as a ratio). The connection between PERR and
difference-in-differences analyses suggests that with slight
modification of the identifiability conditions for the causal
incidence rate ratio, we should be able to identify the causal
incidence rate difference.

Identifiability conditions. We replace identifiability condi-
tion 3 with the following alternative:

3*. Common rate-change assumption on the additive
scale:

@A =10-—rluA=1

= T'post A=0)— Tpre A=0);

the difference between the counterfactual posttreat-
ment and pretreatment event rate among the treated
group under intervention to implement the control
strategy is equal to the difference of the factual post-
treatment and pretreatment event rate among the con-
trol group.

Furthermore, we retain assumptions 1, 2, and 4 but not
assumption 5 (i.e., we no longer need to assume that the
event rates are strictly positive).

Identification of the causal rate difference by PERD. As we
show in Web Appendix 2, under conditions 1, 2, 3*, and 4,
the causal incidence rate difference, IRDgxcausal(A = 1), is
identified by PERD,

PERD = {rposi (A = 1) — rpost (A = 0)}
—{re@=D—rre@=0}. (2

Identification results for the causal hazard ratio, using an
identification strategy similar to that for the causal incidence
rate ratio and difference, are presented in Web Appendix 3.

ESTIMATION

Using data from Table 1 we obtain the estimated rates in
Table 3. Using these estimated rates we can estimate PERR
and PERD by their sample analogs:

?post Aa=10 /;”post A=0)

PERR = - -
Tpre (A = 1)/rpre(A =0)

= 0.89

and
PERD = {?post A=1) —Fpost (A = 0)}

— {Fore (A =1) = Fpre (A = 0)}
= —3.83 events/1, 000 person-years.
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Table 3. Treatment Group and Period-Specific Population Rate
Estimates, Expressed as Events per 1,000 Person-Years?

Treatment Group Pretreatment Posttreatment
A=1 Fore(A =1) =62.07  Fpost(A = 1) = 61.41
A=0 Fore(A =0) = 2724 Fpost(A = 0) = 30.41

2 Data for this illustration is from Table 4 in Othman et al. (5).

Figure 1 is graphical representation of the identification
strategies underlying PERR and PERD and a visual sum-
mary of the estimation results in the illustrative example.

Because our analyses are based on published data, we
cannot obtain estimates of sampling variability that account
for possible dependence between the pretreatment and post-
treatment rates in the treatment and control groups. Such
estimates, however, are straightforward to obtain when pri-
mary data are available, for example, using standard estimat-
ing equation approaches (19) and the delta method (20).

SHOULD WE USE PERR OR PERD?

At this point, it is natural to wonder how to decide between
using PERR or PERD and whether it is reasonable to apply
both methods on the same data as a form of stability analysis.
As we show in Web Appendix 4, if the conditions that
are needed to endow both PERR and PERD with a causal
interpretation hold simultaneously, then it has to be that
Fpost(A = 0) = rpre(A = 0) OF rpre(A = 1) = rpre(A =
0). These conditions are testable using the observed data,
and thus if one of them is rejected by the data with high
confidence, then we could infer that at least one of the
conditions needed for both PERR and PERD to have a causal
interpretation does not hold. Such rejection does not imply
that either PERR or PERD has a causal interpretation; it
only implies that at most one of PERR or PERD can have
a causal interpretation in the particular application. In such
cases, it is not sensible to conduct both PERR and PERD
analyses on the same data. In fact, because neither of the
observed data conditions, rpost(A = 0) = rpe(d = 0) or
Fpre(A = 1) = rpre(A = 0), is likely to hold in practice, it
will usually be necessary to rely on background knowledge
to choose on which scale a rate-change condition is most
likely to hold and, thus, to decide whether PERR or PERD
analysis is most appropriate.

SENSITIVITY ANALYSIS

Even if investigators can pick the most appropriate scale to
work on, the relevant rate-change assumption is unlikely to
hold exactly. In other words, the validity of PERR or PERD
analyses depends critically on the relevant rate-change
assumption, which is not testable from the data and will often
be controversial in applications. Thus, investigators should
perform sensitivity analyses to examine how assumption
violations of different magnitudes might affect study results.
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Figure 1. Graphical depiction of identification using the prior event rate ratio (PERR) and the prior event rate difference (PERD). Observed
incidence rates, denoted by circles for the control group and triangles for the treated group (connected by solid lines to highlight the change
between the pretreatment and the posttreatment periods), are identical in both panels. The observed incidence rate in the control group (A = 0)
increased from 27.24 in the pretreatment period to 30.41 in the posttreatment period. A) On the multiplicative scale, that is an increase by a
factor of 1.12. Using PERR, the counterfactual posttreatment rate in the treated group is estimated to be the observed pretreatment rate, 62.07,
increased by the same factor: 62.07 x 1.12 = 69.29 (dashed lines highlight the change between the pretreatment rate and the counterfactual
posttreatment rate). B) On the additive scale, the increase in the control group is 3.17. Using PERD, the counterfactual posttreatment rate in the
treated group is estimated to be the observed pretreatment rate, 62.07, increased by 3.17, that is 62.07 + 3.17 = 65.24. All rates are expressed

as events per 1,000 person-years. Data for this illustration is from Table 4 in Othman et al. (5).

Violation of the common rate-change assumption on
the multiplicative scale

Suppose that the common rate-change assumption on the
multiplicative scale does not hold, so that

Tpost A=0
T'pre A=0) .

post (A =1
A=1

pre

When that is the case, the identification results presented
above do not hold, and the PERR analysis does not have a
causal interpretation. A convenient way to parameterize the
violations of the assumption is to assume that

post (A 1y __ Tpost A=0) < u
rgreO(Azl) rpre(A—O) ’

where u is a positive bias parameter. Under this sensitivity
analysis model, we can express the causal incidence rate
ratio among the treated as a function of u,

rpost(Azl) 1 1
rposl(A:O) - -
e X = PERR X~ (3)
rpre(A:O)

IRR ausal (U, A = 1) =

When u = 1, we recover the result as when the rate-
change condition holds exactly; when 0 < u < 1, PERR
underestimates the causal incidence rate ratio by a factor of
1/u (i.e., the causal incidence rate ratio is 1/u times larger
than PERR); when u > 1, PERR overestimates the causal
rate ratio by the same factor.

Because u cannot be identified using the observed data,
sensitivity analysis can be conducted by repeating the analy-
ses while using a sufficiently broad set of values. Figure 2A
shows the results of sensitivity analysis for our illustrative
example, varying u from 0.8 to 1.2 and estimating all quan-
tities in equation 3 by their sample analogs.

Violation of the common rate-change assumption on
the additive scale

Similarly, when the common rate-change assumption on
the additive scale does not hold, we can write

pos[ (A = l)_ pre (A - 1) # Vpost (A - O)_rpre (A - 0)
and parameterize the violations of the assumption as

rt A=1) =320 (A=1) = rpost (A=0) = rpre (A=0) +d,
where d is a bias parameter representing the magnitude of the
assumption violation. Under this sensitivity analysis model,
we can express the causal incidence rate difference as a

function of d:

IRDcaysal (d,A = 1) = {rpost A=1— Fpost (A= 0)}
- {rpre A=1 —rpe (A= 0)} —d
= PERD —d. @

When d > 0, PERD overestimates the causal rate dif-
ference by d; conversely, if d < 0, PERD underestimates

Am J Epidemiol. 2021;190(1):142-149
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Figure 2. Sensitivity analysis for prior event rate ratio (PERR) (over different values of u) and prior event rate difference (PERD) (over different
values of d). In the PERR analysis, values for u range between 0.8 and 1.2; u = 1 represents the primary analysis without adjustment for
violations of the common rate-change assumption on the multiplicative scale, and estimates below the gray horizontal line denote benefit from
proton pump inhibitors. In the PERD analysis, values for d range between —5 and 5 events per 1,000 person-years; d = 0 represents the primary
analysis without adjustment for violations of the common rate-change assumption on the additive scale, and estimates below the gray horizontal
line denote benefit from proton pump inhibitors. For the PERD analysis, incidence rate differences are expressed as differences in events per
1,000 person-years. A) Estimated incidence rate ratio (IRR) denotes the estimated IRRcaysq(A = 1); B) estimated incidence rate difference
(IRD) denotes the estimated IRD¢aysa1(A = 1). Data for this illustration is from Table 4 in Othman et al. (5).

the causal rate difference by the same amount. Figure 2B
shows the results of sensitivity analysis for our illustrative
example, varying d from —5 to 5 events per 1,000 person-
years and estimating all quantities in equation 4 by their
sample analogs.

DISCUSSION

This work describes the assumptions needed for the causal
interpretation of PERR, an increasingly popular rate-change
method that addresses confounding by unmeasured time-
fixed covariates when the event of interest is recurring. We
show that PERR can be viewed as a form of difference-in-
differences analysis on the multiplicative scale and show
how an analog of PERR on the additive scale corresponds
to the usual difference-in-differences approach that is pop-
ular in econometrics. Interestingly, we show that adopting
the assumptions needed to endow both PERR and PERD
estimates with a causal interpretation has testable implica-
tions for the observed event rates that are unlikely to hold
exactly in applications. Because the rate-change assump-
tions for both PERR and PERD analyses are unlikely to
hold simultaneously, use of such analyses in applications
requires substantive knowledge about the underlying data-
generating mechanism to identify the scale on which a rate-
change identifiability condition is likely to hold. This result
relates to issues that arise in difference-in-differences anal-
yses when using different transformations of the outcome
(21); our result involves assumptions about the relationship
between the expectation of the factual and counterfactual
outcomes (i.e., the event rates) on different scales, but not
transformations of the outcome itself.

Am J Epidemiol. 2021;190(1):142-149

Even if investigators are able to select the most appro-
priate scale, the relevant rate-change assumption is unlikely
to hold exactly so we sketch simple sensitivity-analysis
methods for PERR and PERD. A benefit of our approach
to sensitivity analysis is that investigators need not have
detailed background knowledge about the unmeasured time-
varying confounding variables or their relationship with
the observed data (22). A potential limitation is that the
elicitation of the range of the bias parameters from domain
experts might be challenging.

For simplicity, we assumed no censoring or competing
risks and that incidence rates were reasonable measures of
event occurrence. These assumptions will often be tenable
over short periods of time, but in practical applications more
refined methods will be needed to address censoring and
competing risks or to allow more flexible modeling of time.
Furthermore, we did not discuss conditioning on baseline
(time-fixed covariates). As shown in Web Appendices 1.4
and 2.3, however, such conditioning can be handled easily
with minor modifications of our approach (in fact, the main
text of our paper can be read as pertaining to a single stratum
of covariates that is sufficiently narrow to justify the required
causal assumptions but not so narrow as to violate the pos-
itivity conditions). Most methodological literature on rate-
change methods on the multiplicative scale has focused on
the hazard ratio measure, rather than the incidence rate ratio
measure. Conceptually, our identification analysis applies
with little modification to the hazard ratio measure (or
the less commonly used odds ratio measure) and, when
conditioning on covariates, we avoid difficulties due to the
noncollapsibility of some effect measures, such as hazard or
odds ratios. Nevertheless, for completeness, we considered
identification of the causal hazard ratio among the treated
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by the prior event hazard ratio (PEHR) using proportional
hazards models (Web Appendix 3).

Our main message is that a causal interpretation of rate-
change methods, even in a simplified scenario, requires
strong and untestable assumptions. As is well-known (17),
conventional methods that rely on conditioning on baseline
covariates to address confounding also require strong and
untestable assumptions, most notably that measured covari-
ates are adequate to render the treatment and control groups
exchangeable. Arguably, interest in rate-change methods,
and PERR in particular, is motivated by the belief that the
variables in routinely collected data sources do not meet
this stringent requirement. Whether this belief is true must
be examined on a case-by-case basis. Similarly, whether
PERR or PERD methods are a viable alternative depends
critically on the plausibility of their respective rate-change
assumptions and thus also must be examined on a case-
by-case basis. A priori preference for rate-change methods
over exchangeability-based methods or vice versa is not
defensible without reference to a particular scientific ques-
tion; thus, researchers might want to consider strategies to
detect potential violations of exchangeability assumptions
(e.g., using negative control outcomes (23)) or rate-change
assumptions (e.g., by using external data on time-varying
factors that affect the outcome and might differentially affect
the treated and control groups).

We hope that our results will help researchers to make
informed choices when considering alternative identifica-
tion strategies.
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