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Abstract

Poly- and perfluoroalkyl substances (PFASs) are persistent, bioaccumulative anthropogenic 

compounds associated with adverse health impacts on humans and wildlife. PFAS production 

changed in North America and Europe around the year 2000, but impacts on wildlife appear to 

vary across species and location. Unlike other mammal species, cetaceans lack the enzyme for 

transforming an important intermediate precursor (perfluorooctane sulfonamide: FOSA), into a 

prevalent compound in most wildlife (perfluorooctane sulfonate: PFOS). Thus, their tissue burden 

differentiates these two compounds while other mammals contain PFOS from both direct exposure 

and precursor degradation. Here we report temporal trends in 15 PFASs measured in muscle from 

juvenile male North Atlantic pilot whales (Globicephala melas) harvested between 1986 and 2013. 

FOSA accounted for a peak of 84% of the 15 PFASs around 2000 but declined to 34% in recent 

years. PFOS and long-chained PFCAs (C9-C13) increased significantly over the whole period 

(2.8% yr−1 to 8.3% yr−1), but FOSA declined by 13% yr−1 after 2006. Results from FOSA 

partitioning and bioaccumulation modeling forced by changes in atmospheric inputs reasonably 

capture magnitudes and temporal patterns in FOSA concentrations measured in pilot whales. 

Rapid changes in atmospheric FOSA in polar and subpolar regions around 2000 helps to explain 

large declines in PFOS exposure for species that metabolize FOSA, including seafood consuming 

human populations. This work reinforces the importance of accounting for biological exposures to 

PFAS precursors.
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Introduction

Poly- and perfluoroalkyl substances (PFASs) are widely used persistent anthropogenic 

chemicals that are accumulating in the global oceans.1–3 Long-chain PFASs bioaccumulate 

in aquatic food webs,4–5 posing risks to apex predators such as whales, seals and polar bears.
6–8 PFAS exposures have been associated with adverse health effects in humans and wildlife, 

including immunotoxicity, developmental disorders, and cancer.9–10 Global regulations and 

voluntary shifts in chemical manufacturing have changed the source regions and 

composition of PFASs and precursor compounds released to the environment.3, 11 However, 

impacts of changing emissions on biological PFAS concentrations and contributions of 

precursor compounds remain unclear.11–13

Exposure analyses focus on two major classes of PFASs, perfluoroalkyl sulfonic acids 

(PFSAs) and perfluoroalkly carboxylic acids (PFCAs) because of their persistence and 

ubiquity. Between 2000–2002, the most prevalent compound, perfluoroctane sulfonate 

(PFOS), and its precursors were voluntarily phased-out and eventually regulated in North 

America and Europe.3 Inconsistent temporal patterns in PFAS concentrations have been 

measured in marine mammals following this phase out.6, 14 Between 1984 and 2009, trends 

for perfluorooctane sulfonate (PFOS) and other PFSAs varied across geographical locations, 

while long-chained fluorinated carboxylates (PFCAs) in seals, porpoises and dolphins from 

the Arctic and Subarctic continued to increase by 7–15% per year.15–17

Temporal trends in biological concentrations can be confounded by differences in migratory 

patterns, dietary habits, gender and age of individuals sampled,18 as well as varying 

exposures to precursor compounds.12, 19–21 The suite of PFASs routinely targeted in 

analytical studies typically comprises a small fraction (<50%) of the environmental burden 

of total organic fluorine (TOF).22–24 Relative contributions of neutral volatile atmospheric 

precursors such as fluorotelomer alcohols (FTOH) and perfluoroalkyl sulfonamides (FASAs) 

to overall exposures of humans and wildlife are uncertain.25–29 For humans, the modeled 

fraction of total PFOS exposures contributed by precursors ranges between 8% and 60%.
19, 30 Gebbink et al.20 reported that precursors contribute minimally to recent (2013–2014) 
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bioaccumulation in a Baltic Sea food web. By contrast, a longitudinal study in fish from the 

Swedish coast between 1991 and 2011 suggested that exposures from precursors were 

greater than PFOS prior to year 2001.31

Biological exposures to precursor compounds are difficult to measure directly because in 
vivo biotransformation occurs in many animals, including humans.19, 21, 32 One exception is 

cetaceans, which are missing a key enzyme for metabolism of the commonly observed 

precursor, perfluorooctane sulfonamide (FOSA), into PFOS.33–35 FOSA is an intermediate 

degradation product of other precursors such as the FASA: N-ethyl-perfluorooctane 

sulfonamide (N-EtFOSA).4, 36–37 Lack of biotransformation of FOSA by cetaceans provides 

a unique opportunity to quantify the exposures attributable to this neutral atmospheric 

precursor.

Here we analyze temporal changes in 15 PFASs in juvenile male North Atlantic pilot whales 

(Globicephala melas) caught in the Faroe Islands between 1986–2013 (Figure S2). The 

Faroe Islands are located in the central North Atlantic (62°N, 7°W), and the traditional diet 

of the population includes pilot whale.38 PFASs are generally measured in the liver of 

marine mammals because contaminants often concentrate there, but measurements in muscle 

provide a more direct link to human exposure for marine food consuming populations. The 

main objectives of this work are: 1) To gain insight into the responsiveness of North Atlantic 

marine food-webs to the phase out in North American and European manufacturing of PFOS 

and its precursors around the year 2000,3 and 2) to better understand the role of the 

intermediate precursors in these temporal patterns. We compare measured and modeled 

temporal changes in FOSA to gain insight into the importance of precursor exposures for 

shifts in marine food web PFAS burdens.

Methods

Sample collection

Pilot whales exhibit a high degree of site-fidelity and have a relatively homogenous diet 

consisting mainly of squid.39–40 We selected muscle tissue for PFAS analysis from 86 pilot 

whales harvested in the Faroe Islands between 1994 and 2013 and archived by the Faroese 

Natural History Museum. In addition, we included PFAS data measured in the muscle of 38 

juvenile male pilot whales that were previously analyzed by the Faroese Environment 

Agency to extend our temporal analysis back to 1986.41 We also collected five squid 

(Todarodes sagittatus) in 2010 from a research vessel off the coast of the Faroe Islands. All 

samples were frozen after collection and stored in high-density polyethylene bags until 

analysis.

Muscle samples from 49 of the 86 pilot whales collected for this study were from juvenile 

males with ages ranging between 5 and 15 years based on length (Supporting Information 

(SI) Figure S1).42 To assess variability in PFAS concentrations related to gender and size, 

we also analyzed samples from 9 juvenile females, 20 adult females, and 8 adult males 

harvested in 2013 to compare to the 16 juvenile males from this year. Adults are defined by 

lengths >500 cm for males and >378 cm for females.42 Detailed information on the harvest 
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dates, size, age, and gender of whales included in this study are included in SI Tables S1 and 

S2.

PFAS extraction and analysis

All whale muscle and squid samples were analyzed for 15 PFASs at Aarhus University, 

Denmark. Duplicate squid samples were also analyzed by the Faroese Environment Agency, 

following methods for extraction and quantification described in Ahrens et al.43 PFASs 

quantified included: perfluorobutanesulfonic acid (PFBS, four carbon chain length: C-4), 

perfluorohexanesulfonic acid (PFHxS: C-6), perfluoroheptanesulfonic acid (PFHpS: C-7), 

PFOS (C-8), perfluorodecanesulfonic acid (PFDS: C-10), FOSA (C-8), perfluorohexanoic 

acid (PFHxA: C-6), perfluoroheptanoic acid (PFHpA: C-7), perfluorooctanoic acid (PFOA: 

C-8), perfluorononanoic acid (PFNA: C-9), perfluorodecanoic acid (PFDA: C-10), 

perfluoroundecanoic acid (PFUnA: C-11), perfluorododecanoic acid (PFDoA: C-12), 

perfluorotridecanoic acid (PFTrA: C-13), and perfluorotetradecanoic acid (PFTeA: C-14).

Approximately 5 g of wet tissue was homogenized and a 1 gram aliquot was weighed in a 

polypropylene tube and spiked with 10 ng of isotopically-labeled PFAS mixture (Wellington 

Laboratories; Guelph, ON, Canada) as an internal standard for quantification (SI Table S1). 

Tissues were extracted with 5 mL acetonitrile for 30 min in an ultrasonic bath at 30 °C. 

Extraction procedures were repeated, and the combined extract was reduced to 2 mL under a 

stream of nitrogen and 50 μL acetic acid was added. Supelclean ENVI-Carb® cartridges 

(100 mg, 1 mL, 100–400 mesh, Supelco, USA) were used for cleanup. The cartridges were 

conditioned with 2 mL acetonitrile followed by 1 mL 20% acetic acid in acetonitrile. The 

sample extract and 3 mL of methanol were added to the cartridge and directly collected into 

another vial. The extracts were reduced to dryness under a nitrogen stream and re-dissolved 

in 1 ml methanol/2mM ammonium acetate (50:50, v/v).

Table 1 provides a complete list of the PFASs analyzed and corresponding detection limits 

for this study. Analysis was performed by liquid chromatography tandem-mass spectrometry 

(LC-MS/MS) with electrospray ionization in negative mode.29 Chromatographic separation 

was performed using a C18 Kinetex column (2.1 × 150 mm, Phenomenex, Torrance, CA, 

USA) and an Agilent 1200 Series HPLC (Agilent, Palo Alto, CA, USA). Duplicate squid 

samples were analyzed on a BEH C-18 column in Water Acquity I-Class UPLC and Waters 

Xevo TQ-S for improved sensitivity. The ions monitored for each compound can be found in 

SI Table S3. Each batch of samples was analyzed with a procedural blank. Method detection 

limits (MDL) were calculated as three times the standard deviation of procedural blanks. 

Recoveries ranged from 75% to 128%, which is comparable to previous work (SI Table S4).
35, 44 The relative standard deviation (RSD) of samples run in duplicate ranged from 5–24%. 

RSDs for PFTeA and PFTrA were higher (44%−47%) because of the tendency of longer-

chained PFASs to sorb to surfaces during sample preparation and analysis.

For pilot whale data from the Faroese Environment Agency,41 sample extraction and 

analysis methods are provided in Rotander et al.15 Samples were analyzed in two batches 

and their corresponding detection limits are listed in Table 1. The first batch contained 

muscle tissue from whales sampled between 1986–2010. For this batch, detection limits 

were higher and frequencies lower than this study for PFBS, PFHxS, PFHpS, PFDS, 
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PFHxA, PFHpA, and PFOA. We therefore excluded these data from subsequent statistical 

analyses. The second batch included the years 2001/2006 and all compounds had 

comparable detection limits and frequencies to this work and so were included. Neither 

batch reported FOSA levels.

Statistical analysis

All statistical analyses were performed in R version 3.2.2. Five compounds (PFBS, PFHpS, 

PFDS, PFHpA and PFHxA) were infrequently detected (6%−52%) and thus removed from 

subsequent statistical analyses. Detection frequencies for the remaining 10 compounds were 

all >80%. For compounds that contained samples below the detection-limit (DL), maximum-

likelihood estimation was used for inclusion in summary statistics, ANOVA, and regression 

analyses, as implemented by the NADA package in R.45 For plotting purposes non-detects 

are shown as the detection limit multiplied by 1/√2.46

We investigated the occurrence of statistically significant changes in PFAS composition over 

time using methods for compositional data analysis described in Aitchisen47 and 

implemented in the R package compositions.48 This method removes spurious correlations 

and other constraints inherent in compositional data by applying a log-ratio transformation 

prior to additional analysis. One-way ANOVA for each compound was used to investigate 

concentration differences resulting from gender and age as a four-level categorical variable 

(juvenile/adult, male/female) in whales harvested in the year 2013. We log-transformed 

concentrations to correct for the observed distribution of PFASs and estimated annual 

changes in concentrations in juvenile males by the slope of linear regression models for 

individual compounds.

Environmental partitioning and bioaccumulation model for FOSA

We developed a model for FOSA partitioning and bioaccumulation in whales to simulate 

expected temporal trends in this neutral precursor compound and quantify the importance of 

different uptake pathways. Changing atmospheric FOSA concentrations are driven by shifts 

in chemical production over time, but are poorly constrained based on emissions inventories 

and direct measurements.3, 12 Three cruises between 2007–2008 measured FOSA in the 

North Atlantic marine boundary layer.49 We estimated temporal shifts in atmospheric FOSA 

levels at northern latitudes by linearly scaling the average concentrations from these cruises 

by changes in FOSA deposition in the Devon Ice cap, Devon Island, Nunavut, Canada50 

between 1994 and 2007 (SI Table S5). Temporal changes in seawater FOSA concentrations 

were estimated from a measured air-water partition coefficient (log Kaw = −3.7).51 We 

compared these values to open ocean measurements from the migratory territory of North 

Atlantic pilot whales indicated by satellite telemetry data (SI Figure S2).40

Pilot whale stomach contents suggest their diet consists mainly of European flying squid 

(Todarodes sagittatus).39 We modeled squid FOSA concentrations assuming simple 

equilibrium partitioning with the ocean surface mixed layer (SI Table S6). Partitioning of 

FOSA from seawater to squid is based on an octanol-water partition coefficient (log Kow = 

5.8),52 measured lipid content (1.4%), and protein content (16%).53
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We parameterized the time-dependent bioaccumulation model for neutral organic pollutants 

developed by Arnot and Gobas54 for FOSA in the North Atlantic pilot whale food web (SI 

Tables S7 and S8). This model has previously been applied to a wide-range of food-webs, 

including marine mammals.54–57 The model quantifies chemical uptake and elimination in 

biota based on dietary uptake, respiration, fecal egestion, urination, and growth dilution. We 

assumed metabolism of FOSA by pilot whales is negligible based on prior work.33–35 

Ingestion rates for pilot whales were based on a cetacean specific allometric equation.58,59 

Respiration rates were quantified from breathing frequency and tidal lung volume derived 

from allometric equations for marine mammals.60–61 We assumed a 100% uptake efficiency 

in the lungs, following previous exposure analyses for FOSA.19, 62 Growth rates and body 

composition were based on data from over 3,400 pilot whales from the Faroe Islands.42, 59 A 

complete description of the bioaccumulation model is provided in the SI (Tables S7 and S8).

Temporal changes in FOSA reported here are for juvenile males between the ages of 5 to 14 

years (mean 6–9 years) (Figure S1).18 To reproduce these measurements with the 

bioaccumulation model, we simulated birth cohorts born between 1980 and 2025 and FOSA 

exposure across the lifetime of each pilot whale individual given changes in environmental 

concentrations. We sampled the expected FOSA concentrations in whales at ages five, 10 

and 15 years from each simulation to reproduce cross-sectional body burden-age trends 

(CBATs).18 We evaluated the simulation by comparing modeled means and changes over 

time to measured FOSA concentrations and slopes of the regression model for temporal 

changes in observations.

Results and Discussion

Contemporary PFAS levels in pilot whale muscle

Concentrations of different PFASs in pilot whale muscle in 2013 were highest for FOSA, 

PFOS and the PFCAs with chain lengths between 9–14 carbons (Figure 1, Table 1). The 

largest fractions of total measured PFASs consist of PFOS (23%) and its neutral precursor 

FOSA (34%). Prior cetacean studies report concentrations of FOSA to be as high or greater 

than PFOS,5, 63–65 but underlying mechanisms for accumulation have not been explored.

The lack of statistical correlation between FOSA and other PFASs in Figure 2 highlights its 

contrasting origin and timescales for environmental cycling.66 Most PFASs were correlated 

with each other, indicating similarity in production sources and/or cycling in the ocean 

(Figure 2). Their lifetimes in surface seawater, where biological exposures occur, are thought 

to be long (decades)12, 67–68 relative to the atmospheric half-lives of precursors such as 

FOSA (50–80 days for FTOHs and even less for water-soluble FASAs).12, 67–68

For whales sampled in 2013, odd numbered long-chain PFCAs (PFTrA, PFUnA, PFNA) 

were comparable in magnitude to PFOS and FOSA, but other compounds (PFHxS, PFOA, 

PFDS and PFHpS) were all at least an order of magnitude lower (Figure 1). The enhanced 

propensity for PFOS and other long-chained PFASs to bioaccumulate in aquatic food-webs 

has been demonstrated in many other studies.69–70 Sturm and Ahrens14 suggest enrichment 

of the odd numbered PFCAs in many marine mammals is consistent with atmospheric 

fluorotelomer alcohol (FTOH) degradation as an important exposure source. Greater 
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bioaccumulation of the longer chain (odd numbered) compounds is expected when there is 

equal production of odd and even PFASs during degradation of precursors such as 8:2 FTOH 

and 10:2 FTOH.14

We found significant differences (one-way ANOVA, p<0.05) across life stage and gender for 

PFOS, PFUnA, PFNA, PFDA, PFDoA, and PFHpS in pilot whales sampled in 2013 (Figure 

1). For all compounds except FOSA, median concentrations were highest in nulliparous 

juvenile females (Figure 1). Juvenile females were significantly higher than adult females 

for PFNA, PFDA, PFUnA, PFDoA, and PFHpS (one-way ANOVA, p<0.05 and post-hoc 

Tukey test). Juvenile males were statistically elevated (p<0.05) compared to adult males and 

females for PFOS, but not statistically different for other compounds.

Observed differences between PFAS concentrations in juvenile and adult females are 

consistent with prior work showing that birth and lactation are large elimination pathways 

for PFASs in mammals.71–75 FOSA is the only neutral compound and is known to partition 

differently than the other PFASs across tissues.21 In pilot whales, female calves nurse longer 

than males and juvenile females are also known to consume a wider range of prey.39 For 

these reasons, juvenile males were selected for temporal trends analysis in this study to 

minimize impacts of life stage and gender related variability.

Temporal patterns in juvenile male pilot whales

Between 1994 and 2013, FOSA accounted for a large but declining fraction of the 15 PFASs 

(ΣPFASs) measured in juvenile male whale muscle tissue (Figure 3A). The fraction of 

ΣPFASs consisting of FOSA peaked in 1999 at 84% and declined after the phase out in 

chemical production of PFOS and its precursors around the year 2000 to a low of 34% in 

2013 (Figure 3A). By contrast, long chain PFCAs (C9-C14) have continued to increase in 

relative importance over this same period from between 7–14% for 1994 to 2000, up to 40% 

of the ΣPFASs in 2013 (Figure 3A). All reported changes in composition were statistically 

significant based on Aitchison compositional regression. Declining concentrations of FOSA 

between 1994 and 2013 were offset by increases in other compounds over the same time-

period, resulting in no significant change in ΣPFASs between 1994 and 2013 (Figure 3B). 

Peak ΣPFAS concentrations occur in 1998 (31 ng g−1 wet weight: ww) and levels in 1994 

are comparable to 2013 (21 ng g−1 ww).

Figure 4 shows statistically significant temporal trends for six PFASs (PFOS, FOSA, PFNA, 

PFDA, PFUnA, PFTrA) between 1986 and 2013 inferred from log-linear regression models. 

All compounds show increases for the entire period except FOSA, which declined by 13% 

yr−1 after 2006. Increases since 1986 observed for the other five compounds range from 

2.8% yr−1 (PFOS) to 8.2% yr−1 (PFDA) (Figure 4). We calculated crude trends as well as 

trends adjusted for pilot whale length as a proxy for age. Length was only statistically 

significant for PFOS, but the effect size was minimal as shown in SI Table S9.

Increases in long-chained PFCAs in juvenile male pilot whale muscle reported here fall 

within ranges previously reported for other marine mammals. Swedish sea otters (6–11% yr
−1) and Alaskan beluga whales (9–14% yr−1) show greater increases and Norwegian ringed 

seals are comparable (5–9%) to pilot whale changes observed here. However, increases in 
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polar bears from east Greenland through 2006 (2–3% yr−1) and decreases since 2006 are 

lower than pilot whale trends.16–17, 66 Varying rates of change likely reflect species-specific 

differences in metabolism and environmental exposures, as discussed in other work.14

We find that increases in PFOS concentrations in pilot whales are smaller than those for 

long-chained PFCAs, consistent with shifting emissions away from PFOS. This has been 

confirmed by results across several wildlife species.16–17, 66 We speculate that relatively 

rapid decreases in PFOS reported in other studies such as for harbor seals from the German 

Bight (2002–2008),76 ringed seal from the Canadian Arctic (2000–2005),77 and ringed seals 

and polar bears from Greenland (2006–2010)16 may reflect decreases in FOSA exposure 

that has been biotransformed into PFOS. Previous studies have alluded to a potential role for 

precursors affecting biological trends,6, 12 but did not specifically identify FOSA as a major 

intermediate compound.

Temporal patterns of FOSA exposure in pilot whales

Figure 5a shows reconstructed atmospheric trends in FOSA from ice core measurements and 

ship cruise data (SI Table S5), and corresponding concentrations in seawater and squid based 

on simple equilibrium partitioning calculations. Results suggest FOSA levels peaked 

between 1997 to 2001 at ~22 pg m−3 in the atmosphere, ~110 pg L−1 in seawater, and ~1355 

pg g−1 wet weight in European flying squid. By 2010, modeled levels suggest declines to 

~2.2 pg m−3 in the atmosphere, ~11 pg L−1 in seawater, and ~138 pg g−1 in squid.

By comparison, a mean atmospheric FOSA concentration of 1.2 pg m−3 was measured at a 

remote high elevation site in Switzerland in 2010.78 A variety of studies report seawater 

FOSA concentrations from the North Atlantic and Arctic between 2005 and 2009 but results 

varied widely (1–300 pg L−1) depending on sampling methods, reported detection limits, 

and proximity to the coast (and thus point sources).27, 79–85 Measurements from the offshore 

North Atlantic Ocean in 2005 were all <17 pg L−1 and in the Norwegian Sea in 2007 were 

all <60 pg L−1.80–81 For squid (n=5) collected for this study in 2010, measured FOSA 

concentrations ranged between 177–386 pg g−1 (Table S10).

Given the simplicity of our partitioning modeling approach, approximations based on 

atmospheric FOSA appear to reasonably capture the magnitude of concentrations and 

differences across media. We slightly underestimate available observations in recent years 

(post-2005), but are generally within a factor of two difference, which is acceptable given 

spatial variability in measurements. Reported ranges from prior modeling studies on PFOS 

and its precursors are within a factor of five of observations.12

Reasonable agreement between observed and modeled FOSA concentrations suggests that 

changes in atmospheric FOSA levels and equilibration with the surface mixed layer ocean 

on timescales of less than one year are driving changes in biological concentrations. Such a 

response is more rapid than predicted for PFOS and PFOA in the ocean by prior work due to 

lag times introduced by penetration into subsurface waters and accumulation of legacy 

releases.12, 67
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Modeling results for pilot whales further confirm that the relatively rapid atmospheric 

decline in FOSA accounts for the observed changes in pilot whales between 1986 and 2013 

(Figure 5b–c). To correct for the confounding influence of age on temporal trends, we 

modeled FOSA in pilot whale cohorts born between 1980 and 2020 (Figure 5B). To capture 

the distribution of measured values, we modeled low, moderate, and high scenarios (Figure 

5C) that correspond to birth cohort simulations between 5 and 15 years. Modeled mean 

values (3–8 ng g−1) agree well with average measured FOSA between 2011–2013 of 7.3±1.9 

ng g−1. Modeled FOSA prior to 1998 (6–10 ng g−1) falls slightly below observed 

concentrations (mean: 14.6±2.8 ng g−1) but is generally within a factor of two of 

measurements.

Modeling results suggest a 9%−10% yr−1 increase in FOSA concentrations in pilot whales 

between 1994–2002 (Figure 5C), which is slightly greater than the observed increase of 

7.4% yr−1 (Figure 2). Modeled declines in FOSA after 2006 range from approximately 6% 

to 10% yr−1 while observations suggest an average of 13% yr−1 (Figure 2). These 

differences are consistent with the underestimate in seawater and squid data based on 

partitioning calculations (Figure 5). Increasing whale age from five to 15 years results in up 

to a doubling of FOSA tissue burdens, depending on the timing of exposure. The greatest 

difference is during the period of declining environmental concentrations because the oldest 

whales had high exposures during their early life. In summary, we find that FOSA declines 

in pilot whale muscle can be generally reproduced by accounting for changing atmospheric 

concentrations, and simple equilibrium partitioning between the atmosphere, surface ocean 

and prey items. This implies that changing atmospheric burdens of FOSA exerted a major 

influence on biological exposures in the Arctic and Subarctic regions.

The average FOSA:PFOS ratios in juvenile male pilot whales peaked at 7.5 in 1998–2002 

and declined to 1.6 by 2013 (Table 1). This implies that for species that biotransform FOSA 

to PFOS, observed decreases in PFOS may refelect a decline in exposure to precursors even 

if direct exposure to PFOS remained unchanged. This would help to explain inconsistent 

trends across species from different remote locations. Biological PFOS concentrations are 

expected to decline more rapidly in locations where precursors historically represented a 

larger exposure source (i.e., high latitude locations). An example of this can be seen in two 

distinct populations of beluga whales (Delphinapterus leucas) harvested off the northern and 

southern Alaskan coasts. FOSA:PFOS ratios in beluga whales from northern Alaska were 

higher and decreased more rapidly compared to those from southern Alaska.66 The authors 

suggest that these patterns could reflect greater direct exposures to PFOS in southern Alaska 

from Anchorage and potentially higher precursor contributions in the northern Alaskan 

Arctic.

Implications for future exposures

We find that shifts in PFASs released to the environment have led to large changes in the 

composition of PFAS exposures in pilot whales, but not necessarily to overall decreases in 

concentration. Declines in FOSA, the most prevalent PFAS around the year 2000, has been 

offset by increasing levels of long-chained PFCAs. Despite the phase-out of both PFOS and 

FOSA before 2002, PFOS concentrations have continued to increase, highlighting the 
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relatively longer timescales of removal through ocean transport. If current trends continue, 

long-chained PFCAs will likely become the dominant compounds in pilot whales and total 

PFAS exposures may also increase. Production of long chain PFCAs (>C7) by eight major 

global manufacturers was phased-out in 2015 as part of the U.S. Environmental Protection 

Agency’s PFOA Stewardship Program.11 However, new manufactures in Asia have 

continued production of these compounds.11 The slow response of PFOS to its phase out 

prior to 2002 suggests declines in long-chained PFCAs may lag production by decades, 

depending on the ages, sizes and foraging depths of biota.

FOSA levels in pilot whale muscle reported here indicate that precursors are important 

exposure sources for marine food webs. While we know that whales cannot biotransform 

FOSA to PFOS, we do not know their metabolic capacity for the other precursor 

compounds.21 For this reason, FOSA levels in samples described here could represent an 

integrated signal of overall precursor concentration, a subset of precursors that degrade to 

FOSA, or FOSA itself. Measuring total organic fluorine (TOF) and identifying novel 

precursors would provide much needed insights on the contribution of fluorinated precursors 

to ongoing biological exposurs.23 Rapid observed declines in FOSA suggest atmospherically 

derived PFAS exposures in remote locations will be more responsive to changes in emissions 

than those originating from coastal discharges and ocean circulation.

While results from this study apply primarily to the marine environment, they may also point 

to a potential pathway for declining human exposures. Rapid decreases in measured 

concentrations of PFOS observed in humans globally86–89 since 2000 may be due in part to 

the large decrease in atmospheric precursors.90–91 Furthermore, increases in PFOS and other 

long-chained PFCAs in whales, which are consumed by the population of the Faroe Islands, 

implies a continued source of exposure to these contaminants from marine food 

consumption.
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Figure 1. 
Effects of life stage and gender on measured PFAS concentrations in pilot whale muscle 

(Globicephala melas) sampled in 2013. Median concentrations for each group are 

represented by the horizontal black line in box/whisker plots. Notches represent 25th and 

75th percentile concentrations, whiskers extend to 1.5 times the interquartile range and 

outliers are shown as circles. Compounds that differ significantly between groups based on 

one-way ANOVA (p < 0.05) are shaded yellow, and common letters above each box indicate 

groups with no significant difference in between group comparisons in post hoc analysis 

using Tukey’s test. Compounds from Table 1 that are not shown here were infrequently 

detected. For compounds denoted by ‘*’ non-detects are shown as the detection limit 

multiplied by 1/√2.46
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Figure 2. 
Correlation matrix for PFASs measured in pilot whale muscle tissue (Globicephala melas) in 

2013. Numbers indicate Spearman correlation coefficients for a two-sided statistical test. 

The intensities of blue and red show the strength of positive and negative correlations, 

respectively. Significant correlations are denoted by asterisks (* = p<0.05; **=p<0.005, 

***=p<0.0005).
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Figure 3. 
Temporal patterns in PFAS concentrations in juvenile male pilot whale muscle tissue 

(Globicephala melas) between 1994 and 2013. Compounds are grouped into categories 

reflecting one or more compound: perfluorooctane sulfonamide: FOSA, the neutral 

atmospheric precursor to perfluorooctane sulfonate (PFOS); perfluorooctanoic acid: PFOA; 

perfluorosulfonic acids: PFSAs; perfluorinated carboxylic acids: PFCAs. Panel (A) shows 

the changing composition of PFASs over time. Panel (B) shows the sum of the 15 detectable 

PFASs measured in this study.
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Figure 4. 
Temporal trends in concentrations of selected PFASs in juvenile male North Atlantic pilot 

whale muscle tissue (Globicephala melas) between 1986 and 2013. All trends (shown as 

percent annual changes) are significant at the p<0.05 level based on linear regression of log-

transformed concentrations. Shaded areas represent 95% confidence intervals of the mean. 

Triangles are pilot whale analyzed for this study and circles are analyzed by the Faroese 

Environment Agency.41 For compounds denoted by ‘*’ non-detects are represented in plots 

as the detection limit multiplied by 1/√2.46, but slopes are based on maximum likelihood 

estimates for non-detect values.45
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Figure 5. 
Modeled concentrations of perfluorooctane sulfonamide (FOSA) in air, water, squid 

(Todarodes sagitatus), and pilot whales (Globicephala melas) compared to temporal 

measurements collected in this study. Panel A shows reconstructed concentrations in air 

based on historic ice core data26, 50, and corresponding concentrations in surface seawater 

and squid based on equilibrium partitioning. Panel (B) shows modeled concentrations of 

FOSA in different pilot whale birth cohorts based on environmental levels (Panel A). Panel 

(C) shows average concentrations of FOSA in juvenile male pilot whales for ages ranging 

between 5 to 15 years to match the bounds of observations. Measured values from this study 

shown as black circles in Panel (C).
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Table 1.

Median concentrations (ng g−1 wet weight) and number of samples above detection limit (DL) in parentheses 

for 15 PFASs measured in juvenile male pilot whale muscle (Globicephala melas) between 1986 and 2013 

from this study and from the Faroese Environment Agency (FEA).41

Compound 1986–1988 1994–1997 1998–2002 2006–2009 2010–2013 DL (this study) DL (FEA)

PFBS <DL (0/5) <DL (0/11) <DL (0/10) <DL (0/29) 0.01 0.09

PFHxS 0.13 (5/5) 0.19 (11/11) 0.11 (5/10) 0.14 (29/29) 0.05 0.03

PFHpS <DL (1/5) <DL (2/8) 0.01 (15/29) 0.05

PFOS 2.0 (13/13) 2.3 (11/11) 3.7 (15/15) 2.8 (15/15) 4.0 (33/33) 0.01 0.01

PFDS 0.06 (5/5) 0.06 (6/11) <DL (4/10) 0.06 (16/29) 0.01 0.15

FOSA 16 (5/5) 22 (8/8) 19 (7/7) 7.4 (29/29) 0.05

PFHxA <DL (0/5) <DL (0/11) 0.14 (7/10) <DL (0/29) 0.006 0.06

PFHpA <DL(0/5) <DL (0/11) 0.03 (5/10) <DL (10/29) 0.01 0.06

PFOA 0.17 (5/5) 0.13 (11/11) 0.10 (9/10) 0.06 (29/29) 0.006 0.18

PFNA <DL (3/13) 0.14 (6/11) 0.22 (13/14) 0.29 (13/14) 0.51 (32/33) 0.02 0.06

PFDA <DL (1/13) 0.18 (5/11) 0.22 (14/15) 0.27 (13/15) 0.73 (32/33) 0.006 0.01

PFUnA 0.5 (9/11) 0.59 (9/11) 0.91 (13/13) 1.6 (15/15) 2.0 (33/33) 0.006 0.02

PFDoA 0.19 (5/5) 0.20 (11/11) 0.46 (10/10) 0.38 (29/29) 0.02 0.02

PFTrA 0.53 (1/6) 1.2 (7/7) 1.1 (12/13) 1.4 (13/13) 3.5 (30/31) 0.02 0.01

PFTeA <DL (0/6) 0.32 (5/7) 0.35 (9/13) <DL (5/13) 0.84 (28/31) 0.10 0.02
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