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Abstract

Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic organic substances with 

diverse structures, properties, uses, bioaccumulation potentials and toxicities. Despite this high 

diversity, all PFAS are alike in that they contain perfluoroalkyl moieties that are extremely 

resistant to environmental and metabolic degradation. The vast majority of PFAS are therefore 

either non-degradable or transform ultimately into stable terminal transformation products (which 

are still PFAS). Under the European chemicals regulation this classifies PFAS as very persistent 

substances (vP). We argue that this high persistence is sufficient concern for their management as 

a chemical class, and for all “non-essential” uses of PFAS to be phased out. The continual release 

of highly persistent PFAS will result in increasing concentrations and increasing probabilities of 

the occurrence of known and unknown effects. Once adverse effects are identified, the exposure 

and associated effects will not be easily reversible. Reversing PFAS contamination will be 

technically challenging, energy intensive, and costly for society, as is evident in the efforts to 

remove PFAS from contaminated land and drinking water.
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Environmental Relevance

Recent scientific publications and regulatory actions suggest that PFAS should be managed 

as a class. This Perspective article supports a broad scope in restricting the use of PFAS in 

society based on the extremely high environmental persistence of all PFAS. Our previous 

work (cited below) has highlighted the particular concern of high environmental persistence 

and noted that high persistence is the root cause of most of the serious cases of 

environmental contamination in the last 50 years. The field of green chemistry also 

recognizes the particular issue with persistence and recommends that chemical 

manufacturers incorporate “design for degradation”. We are of the opinion that highly 

persistent PFAS are incompatible with green chemistry principles and future visions of 

sustainable development. Phasing out “non-essential” uses of PFAS from society and 

replacing them with suitable alternatives will benefit environmental and human health, now 

and into the future. Unfortunately, as PFAS are non-mineralizable, a reduction of 

environmental exposure to PFAS will be a slow process even if their uses are phased out.

Perspective article

The national authorities of five European states have agreed to prepare a joint REACH 

restriction proposal to limit the risks to human and environmental health associated with per- 

and polyfluoroalkyl substances (PFAS).1 The exact scope of the restriction proposal for 

PFAS will be determined during the development phase of the project, but it will initially 

aim for a broad inclusion of substances (the aim is to include “substances that contain at 

least one aliphatic -CF2- or -CF3 element”2) and uses to be restricted. A recent commentary 

by Kwiatkowski et al.3 outlined the scientific basis for managing PFAS as a chemical class. 

This was an important contribution towards efforts to regulate4, 5 and group6, 7 PFAS. In this 

Perspective article, we would like to voice our support of a broad scope in the restriction 

proposal for PFAS, based largely on concerns regarding their high persistence. A precedent 

for this exists in the recent action by the European Union (EU) to restrict intentionally added 

microplastics based largely on concerns regarding their high persistence.8
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PFAS are a class of fluorinated synthetic organic substances with diverse properties that 

have been used in a wide variety of industrial and consumer applications.6, 9 The 

Organisation for Economic Co-operation and Development (OECD)/United Nations 

Environment Programme (UNEP) compiled a list of PFAS with over 4700 CAS numbers 

that may have been on the global market.10 More recently, the United States Environmental 

Protection Agency (US EPA)11 has compiled a list of more than 8000 PFAS entries.12, 13 As 

noted in the Supplement to the recent paper by Johnson et al.,14 the PFAS class comprises 

distinct substances with very different structures and properties: high molecular weight 

polymers and low molecular weight non-polymers; neutral, anionic, cationic and 

zwitterionic substances; solids, liquids, and gases; highly reactive and non-reactive (inert) 

substances; soluble and insoluble substances; and volatile and involatile substances. In the 

environment, some PFAS are mobile15 and others immobile, and some bioaccumulate while 

others do not.

PFAS display a wide range of environmental and human health hazards. Some PFAS are 

considered of low health concern (e.g., certain fluoropolymers,16 perfluoroalkanes17 and 

perfluoroalkyl-tert-amines3, 17), whereas others (e.g. long-chain perfluoroalkyl carboxylic 

(PFCAs) and perfluoroalkane sulfonic (PFSAs) acids) are associated with adverse health 

effects in humans or wildlife at current environmental exposure levels.18 Other PFAS that 

are structurally similar to PFCAs and PFSAs (e.g. the perfluoroalkylether carboxylic 

(PFECAs) and sulfonic acids (PFESAs), perfluoroalkyl dicarboxylic acids (PFdiCAs), 

perfluoroalkyl phosphonic (PFPAs) and phosphinic acids (PFPiAs) and perfluoroalkane 

sulfinic acids (PFSiAs)) with similarly long perfluoroalkyl(ether) chains to long-chain 

PFCAs and PFSAs are expected to be of equivalent concern.7, 19 Even if some PFAS are 

considered of low health concern, there may be starting materials, breakdown products 

and/or other PFAS by-products of higher concern released during their lifecycle (e.g. in the 

case of certain fluoropolymers20) or they may be of high climate/environmental concern 

(e.g. in the case of perfluoroalkanes21 and perfluoro-tert-amines22).

It must be noted that our current understanding of PFAS toxicity and other hazards is based 

on a relatively small number of compounds, and little is known about the properties and 

behaviour of most of the thousands of PFAS as individual chemicals or as the much more 

commonly present complex mixtures. It is likely that additional environmental and human 

health concerns will be identified as research continues on this class of chemicals.19 New 

findings will undoubtedly be made in toxicology that will change the current hazard and risk 

perspective of certain PFAS. For example, over the last two decades advances in the 

understanding of the human toxicology of perfluorooctanoic acid (PFOA) has caused US 

state level drinking water guidelines to be steadily lowered (from 100,000 ng/L in West 

Virginia in 2002 down to 10 ng/L in multiple states in 2019).23

The diversity in PFAS structures, properties and behaviour is often used by the PFAS 

manufacturing industry24,25 to argue that PFAS cannot be treated as a single class. We 

acknowledge the diversity of PFAS in terms of properties, behaviour, hazards and risks, and 

that statements such as “all PFAS are bioaccumulative and toxic” are overgeneralized and 

debatable. However, despite their diversity, PFAS do share one common structural feature 

that makes them highly problematic, namely the presence of perfluoroalkyl moieties, 
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resulting in their shared resistance to environmental and metabolic degradation.19 The vast 

majority of PFAS are either non-degradable or degrade to form terminal products (which are 

still PFAS; e.g. n:2 fluorotelomer alcohols - CnF2n+1CH2CH2OH - degrade ultimately to 

perfluoroalkyl carboxylic acids - CnF2n+1COOH).19 The extreme resistance to degradation 

of the perfluoroalkyl moiety is due to; (i) the strength of the C-F bond, which is the strongest 

single bond in organic chemistry,26 (ii) multiple C-F bonds (“perfluorination”) on the same 

geminal carbon, leading to the shortening (i.e., increased strength) of the C-F bond,26 (iii) 

the strength of the C-F bond and high electronegativity of fluorine prevents nucleophilic 

attack26 and (iv) the strong electron withdrawing effect of the fluorines in perfluoroalkyl 

moieties also strengthens the skeletal bonds in the carbon chain.27 For example, the C-C 

bond in hexafluoroethane is 29 kJ/mol stronger than that in ethane.28 The high stability of 

perfluoroalkyl moieties is the reason that many of the applications of PFAS are for uses in 

high temperature and/or corrosive environments.27

The phrasing “the vast majority of PFAS can be classified as highly persistent” was used in 

the preceding paragraph because there are a few specific structural combinations that may 

result in specific groups of PFAS that are mineralizable. Merck, for example, have published 

a patent29 for structural combinations of novel fluorosurfactants that they believe may lead 

to the development of biodegradable commercial products. In this patent,29, 30 multiple 

structural combinations are protected that contain per- and polyfluoroalkyl moieties 

connected to a heteroatom, namely O, S or N (i.e., end groups such as CF3O, (CF3)2N, 

CF3S, and many more). To date, only the novel fluorosurfactant 10-

(trifluoromethoxy)decane-1-sulfonate), which is a PFAS, has been shown to be 

mineralizable.31 Furthermore, independent to Merck’s efforts, a novel fluorosurfactant, 3-

hydroxy-2-(trifluoromethyl) propanoic acid,32 developed for the emulsion polymerization of 

vinylidene fluoride (VDF) has also been reported to be easily degradable. It is emphasized 

that these structural combinations that result in non-persistent PFAS are rare.

Environmental persistence is often expressed by half-lives of a chemical in various 

environmental media based on the kinetics of dominant abiotic and biotic degradation 

processes.33 Although the concept of environmental persistence is simple to understand, its 

assessment for a given chemical in a given environmental medium can sometimes be a 

challenging task because of the difficulty in measuring and estimating environmental 

degradation half-lives for chemicals.34 But this challenge does not exist in the case of PFAS 

because scientists have reached consensus that the vast majority of PFAS are resistant to 

complete mineralization under natural conditions.19 Indeed, to our knowledge, PFAS are the 

most environmentally persistent substances among organic chemicals, and have thus earned 

the moniker in the popular press of “forever chemicals”.35 Therefore, under the REACH 

definition of persistence, which includes persistent transformation products, the vast 

majority of PFAS are very persistent (vP).36 Unfortunately, not all jurisdictions include 

persistent transformation products in their definition of persistence, and this has given the 

manufacturing industry some basis to claim that not all PFAS are persistent by neglecting 

their transformation products.

In a recent paper by Cousins et al.37, the concerns regarding the high persistence of 

chemicals were explained. In summary, these concerns are:
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• The continuous release of highly persistent chemicals will necessarily lead to 

widespread, long-lasting, and increasing contamination.

• Increasing concentrations will result in increased exposures and therefore 

increased probabilities for known and unknown health effects, be it by individual 

PFAS and/or in a mixture with other substances.

• Once adverse effects are identified, it will be technically challenging, energy 

intensive, and thus costly, to reverse the chemical contamination and therefore 

effects. Even with extensive efforts, removal will be only partially effective, and 

some level of contamination and some adverse effects will be irreversible.

It was argued in Cousins et al.37 that high persistence alone should be established as a 

sufficient basis for management of a chemical, which was termed the “P-sufficient 

approach”. Logic dictates that evidence of bioaccumulation or some type of effect 

(biological or otherwise) is not required, given that the occurrence of an effect is of 

increasing probability and ultimately inevitable if emissions continue. Using current 

technology, it is not feasible to develop full hazard profiles for all PFAS. Managing these 

compounds as a highly persistent class is a clear benefit to society because otherwise a large 

number of resource-intensive and time-consuming toxicity and other tests would need to be 

conducted. On the basis of plausible reasoning, for continually released, highly persistent 

organic chemicals, a harmful effect (known or unknown) is likely in the future based on ever 

expanding exposures. This view may be controversial for some. For example, major 

regulatory bodies such as the US EPA are instead following the traditional risk assessment 

paradigm of testing as many PFAS as possible for adverse effects. Because traditional 

animal testing is costly and considered unethical, the US EPA is instead conducting a large 

number of high-throughput toxicity tests (in vitro assays) on 150 novel and emerging PFAS 

for multiple endpoints.38 Such approaches are, however, uncertain and not comprehensive in 

their coverage of chemical or biological space and are not, therefore, reliably protective of 

human and environmental health. A preventative approach of not using highly persistent 

synthetic organic substances is more protective and also overall less costly for society, both 

in terms of fewer tests and reduction in externalized societal costs including the expected 

costs of health care, loss of biodiversity, loss of ecosystem services, loss of property values 

and remediation.

The arguments for not using highly persistent organic chemicals in society are not new and 

have been made for nearly 50 years, early on by Jensen in 197239 and Stephenson in 197740 

and reformulated later in concepts such as “late lessons from early warnings”,41 “planetary 

boundary threats from chemical pollution,”42–44 “poor reversibility” of exposure for 

persistent pollutants45, 46 and recently in the “P-sufficient approach”.37 As well as not being 

new, the arguments have always been simple to understand for scientists and non-scientists 

alike, and have never been convincingly challenged. Arguments against the “P-sufficient” 

approach often point to inert substances such as some inorganic minerals that are also highly 

persistent and often in a non-bioaccessible form (e.g. sand and rocks). However, apart from 

their similar high persistence, PFAS are distinct from inert inorganic minerals in that PFAS 

(i) are synthetic organic substances and not naturally present (ii) continue to be 

manufactured, leading to ongoing accumulation in the environment, and (iii) are often 
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bioaccessible. It is noteworthy that only about 20 biogenic organofluorine substances have 

been identified and PFAS are not among those listed.47 Muir et al.48 speculate that the 

substantial quantities of trifluoroacetic acid found in the deep ocean (estimate of 63 to 187 

million tonnes) originate from deep-sea vents (i.e. a geogenic source), but this has not been 

proven.

There are finally encouraging signs that regulators are taking notice of the problems with 

high persistence (e.g. in the case of intentionally added microplastics) and that the European 

Green Deal will hopefully introduce regulatory provisions for highly persistent substances. It 

is further encouraging that in recent years concepts such as “green chemistry”49 and “cradle-

to-cradle”50 are gaining momentum. For example, one of the 12 principles of green 

chemistry is: “design for degradation”,49 i.e. chemical products should be designed so that at 

the end of their function they break down into innocuous transformation products and do not 

persist in the environment. Highly persistent substances such as PFAS are incompatible with 

green chemistry principles and future visions of sustainable development (e.g. the European 

Green Deal). The concept of essentiality has been put forward as a tool for guiding the phase 

out of hazardous substances such as PFAS51 and efforts have already begun to address this 

challenging, but not insurmountable, task in the EU and elsewhere. We are of the opinion 

that the EU restriction proposal1 for PFAS should have a wide scope grounded in the one 

completely consistent feature of PFAS: their persistence, based on the arguments presented 

in this Perspective article.

Regulation alone is not sufficient to phase out PFAS. Innovation will also be needed by 

chemical and product manufacturers to develop safer chemical alternatives to PFAS and 

technological innovation that would make the function obsolete or the use of PFAS 

unnecessary. There is cause to be optimistic about the future, given the innovations and 

changes implemented in recent years (e.g. the transition to fluorine-free aqueous film 

forming foams in South Australia52 and elsewhere, the wider availability of fluorine-free 

durable water repellent outdoor equipment,53 the banning of fluorinated ski waxes in 

international competition,54 the phasing out of PFAS in cosmetics by multiple retailers,55 the 

banning of PFAS in paper and board used in food contact materials in Denmark56), but the 

work is far from finished.

In summary, although PFAS have diverse structures and behaviour, the high persistence of 

PFAS is sufficient cause of concern for all “non-essential” uses of PFAS to be phased out. 

Unfortunately, there has until very recently been no legal precedent in any jurisdiction for 

regulation on high persistence alone. Promisingly, the idea of regulating highly persistent 

chemicals and intentionally added microplastics is being explored within the EU. We hope 

that this idea will spread around the world.
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