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Abstract

The study objective was to investigate the performance of a dedicated convolutional neural 

network (CNN) optimized for wrist cartilage segmentation from 2D MR images. CNN utilized a 

planar architecture and patch-based (PB) training approach that ensured optimal performance in 

the presence of a limited amount of training data. The CNN was trained and validated in twenty 

multi-slice MRI datasets acquired with two different coils in eleven subjects (healthy volunteers 

and patients). The validation included a comparison with the alternative state-of-the-art CNN 

methods for the segmentation of joints from MR images and the ground-truth manual 

segmentation. When trained on the limited training data, the CNN outperformed significantly 

image-based and patch-based U-Net networks. Our PB-CNN also demonstrated a good agreement 

with manual segmentation (Sørensen–Dice similarity coefficient (DSC) = 0.81) in the 

representative (central coronal) slices with large amount of cartilage tissue. Reduced performance 

of the network for slices with a very limited amount of cartilage tissue suggests the need for fully 

3D convolutional networks to provide uniform performance across the joint. The study also 

assessed inter- and intra-observer variability of the manual wrist cartilage segmentation 

(DSC=0.78–0.88 and 0.9, respectively). The proposed deep-learning-based segmentation of the 
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wrist cartilage from MRI could facilitate research of novel imaging markers of wrist osteoarthritis 

to characterize its progression and response to therapy.
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Engineering, Human study; Musculoskeletal; Applications

INTRODUCTION

MRI is a versatile tool for the detection of morphological and compositional cartilage 

abnormalities in degenerative diseases of joints1. MRI-based measurements of a joint space 

narrowing2,3,4 have been utilized to assess cartilage degradation in multiple locations 

including knee5 and wrist6. MRI has also been applied to quantify other morphometric 

features including cartilage cross-sectional area (CSA)7 and cartilage volume8,9. More 

recently, several quantitative MRI approaches have been proposed to assay proteoglycan and 

collagen components of the cartilage matrix10,11,12,13. It has been suggested that such 

biomarkers could be used for disease detection and treatment monitoring.

Analysis of structural and quantitative MRI data requires an accurate cartilage segmentation, 

whose automation for routine applications is challenged by the presence of other tissues with 

similar MR contrast (e.g, muscles, skin, edematous tissues). On that basis, a manual 

segmentation is considered as the gold-standard in cartilage assessment 

applications8,14,15,16,17. However, the manual segmentation is a highly time-consuming and 

tedious task and its reliability can be hampered by the inter-operator variability. To improve 

the speed and consistency of the cartilage segmentation, a wide variety of computer-assisted 

approaches has been proposed including semi-automated18,19 and fully automatic20,21,22,23 

segmentation methods. These approaches provide a very fast and reliable segmentation with 

a moderate penalty on the segmentation accuracy i.e. with Sørensen–Dice similarity 

coefficient (DSC)24 approaching 0.8020. Most recently, convolutional neural networks 

(CNN)25,26,27,28 have been successfully applied for the segmentation of knee MR images. 

The methods demonstrated improved DSC values of 0.8225 and 0.8826 for planar and U-

Net29 architectures, respectively. This highlighted an initial promise of the machine learning 

approaches for the fully automated segmentation of complex anatomical structures.

MRI has proven to be a promising approach for wrist OA evaluation demonstrating higher 

sensitivity to moderate changes of OA as compared to X-ray based assessment30. MRI-

based wrist joint assessment is potentially more suitable to follow changes over time and/or 

to assess the efficiency of therapy than CT arthrography given that harmful ionizing 

radiation and injection of a contrast material into the joint space are a part of the CT imaging 

procedure31. However, while most of automated segmentation methods have been developed 

for knee MRI, only a few7,9 techniques have been optimized for the wrist MR image 

segmentation, likely due to the more complex anatomy of the wrist joint. The automatic 

segmentation of the wrist joint cartilage from MRI images could facilitate research of novel 

imaging biomarkers of wrist OA and to characterize its progression and response to therapy.
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Given the outstanding performance of CNN-based approaches for the segmentation of the 

knee structures25,26, we hypothesized that deep-layered CNNs could be valuable in the 

design of an automatic segmentation of wrist cartilage. Therefore, in the present work, we 

developed, optimized, and evaluated a CNN-based method for a fully automatic 

segmentation of wrist joint cartilage. The network was trained using the manual labels 

produced by experienced radiologist and compared with several representative CNN-based 

methods26,32.

PATIENTS AND METHODS

Subjects

The study was approved by the local ethics committee. Eleven subjects were enrolled into 

the study after obtaining the written informed consent. These included eight healthy 

volunteers (no previous wrist trauma, six males and two females, age range 23–38, mean 

29.6) and three patients (two 63 and 77-year-old females with confirmed OA diagnosis, and 

one 62-year-old female with articular pain). All data were acquired in the dominant wrist.

MR-imaging

MR images were acquired at 1.5T Magnetom Espree system (Siemens GmbH, Erlangen, 

Germany). The same wrist was scanned twice, first with a conventional “birdcage”-type 

transmit/receive extremity coil and then with a home-made wireless coil providing a higher 

signal-to-noise ratio (SNR)33. In two subjects, one of the scans was not completed due to 

technical or cooperation reasons thereby bringing the total number of MRI scans to 20. 3D 

coronal T1-weighted gradient echo (VIBE - Volumetric Interpolated Breath-hold 

Examination) images with water-selective excitation for fat suppression were acquired to 

achieve an optimized contrast-to-noise ratio for the cartilage7. The relevant parameters were: 

TR/TE = 18.6/7.3 ms, flip angle = 10°, FOV = 97×120 mm2, matrix size = 260×320, voxel 

size = 0.37×0.37×0.5 mm3, number of coronal slices = 88. Total acquisition time was 6 min.

Data preparation

3D regions of interest (ROIs) were manually outlined to encompass all cartilage tissues in 

the acquired volumes. Every other slice was selected from all 3D ROIs to form an 

intermediate dataset containing 420 images with cartilage. Then, the dataset was augmented 

by an additional set of 140 slices that did not contain cartilage tissue, with a final dataset 

comprising 560 images.

Dataset labeling—Image processing was performed using MATLAB (MathWorks, 

Natick, Massachusetts). Cartilage tissue was segmented by an expert radiologist (O1 - V.F.) 

using a software-assisted manual approach. In detail, the wrist joint ROI delineated for each 

slice by manual contouring (Fig. 1 a) was first roughly segmented by intensity thresholding, 

with threshold value optimized by the observer in iterative fashion on per slice basis. Next, 

the resulting binary masks (Fig. 1 b) were manually corrected to ensure that only cartilage 

pixels were included into the labels.
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Data splitting and CNN training approaches—The labeled images were split into 

several subsets to be used for training (n=260), development (n=20), testing (n=260), and 

method validation (n=20) stages (Fig. 2). We utilized an “hold-out” training approach, in 

which training and development datasets included data from healthy volunteers #1 to #5 

(MRI scans #1 to #10) and test dataset included data from subjects #6 to #11 (MRI scans 

#11 to #20). For each subject, the medial coronal slice chosen from the 3D dataset was used 

for the validation of our method and comparison to the manual one. To ensure these images 

are unseen by CNN, these slices were excluded from the training, development, and test 

datasets.

To assess the CNN robustness with respect to the anatomical heterogeneity of the training 

dataset, several CNN variants were trained using different training subsets containing: 1) 

5%, 10%, 20%, 33%, 50%, 66% of the total number of slices (n=260) randomly selected 

from the training dataset; 2) images of particular subjects, starting from subject #1 and then 

subsequently adding other subjects’ data.

Additionally, we performed cross-validation studies for three patients and three healthy 

volunteers included in the testing dataset to estimate the best achievable network 

performance in the presence of a limited number of subjects. In these studies, the network 

was trained using 6 different samples of 10 subjects (6-fold analysis) and tested on the 

remaining subjects (from #6 to #11).

For each CNN instance, the performance was evaluated by comparing the CNN-based and 

the manual segmentations using DSC values for 3D images or for planar slices 

independently. The signal-to-noise ratio was measured as the ratio between the cartilage 

tissue signal and the standard deviation of the noise within a signal-free area.

CNN-assisted segmentation

Patch-based (PB) CNN architecture—The design of our network was based on our 

preliminary experiments, which indicated that the state-of-the-art U-Net-based CNN26 did 

not perform satisfactory, likely as a result of the small size of our training dataset (260 

images) and the large number of trainable parameters (2,8*106). On that basis and in order 

to minimize the risk of overfitting, we selected a planar network architecture with a smaller 

number of trainable parameters and a patch-based (PB) training approach, which proved to 

be adequate for limited amount of annotated data32,34,35. The network parameters including 

the number of convolutional layers, the number and the size of filters were optimized by the 

grid search. The final PB-CNN architecture (Figs. 3 and A1) had five convolutional layers 

with 44 filters of size 3×3. The patch size was further optimized for this architecture. 

Gaussian noise and drop-out regularization layers were added to reduce the generalization 

error and to minimize risk of overfitting. The network was trained during 20 epochs with a 

20000 batch-size. Ten percent of training data were used for the training validation (i.e., for 

the calculation of loss value). The stopping criterion during the training phase was defined as 

the absence of loss value decrease for 5 epochs. A RMSProp optimizer (https://keras.io/

optimizers/) with a default learning rate value of 0.001 was used.
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PB-CNN input and output—We used a sliding-window approach25 to select patches 

surrounding the pixels to be classified. In detail, for each pixel of interest, a 28×28 patch 

centered on the pixel was applied to provide a network input. For each image, the network 

output a probability map, which was thresholded to obtain cartilage binary masks. The 

threshold value was optimized during the development stage to maximize DSC coefficient 

with respect to the development dataset. Overall, datasets for method development and 

validation contained 1.3*106 patches. For the “hold-out” approach, both training and testing 

datasets contained a total of 17.6*106 patches.

For the subject-based cross-validation, the training and testing samples were varying for 

every step of the 6-fold analysis. The number of patches in the training dataset varied from 

15.9 *106 to 16.7*106, depending on how many times (1 or 2) each subject had been 

scanned. The networks were tested on one or two separate 3D image (1.8*105 patches) of 

subjects that were not included in the trained dataset.

State-of-the art neural networks—We compared our proposed network with several 

alternative architectures such as image-based26 and patch-based32 U-Net CNNs trained and 

tested with the “hold-out” approach. These CNNs are detailed in Appendix 1 (Fig. A2 and 

Fig. A3).

Hardware and software—The training was performed on a server with four processors 

(Intel Xeon E5–4617 2.90 GHz) and 512 Gb RAM. To provide realistic estimates of the 

network execution speed, all methods were tested on a PC with more common 

characteristics (Intel Core i5–7640X processor, 32 Gb of RAM). CNNs were built using 

Python 3.6.4, TensorFlow 1.7.0, and Keras 2.1.5 open-source neural network library.

Data analysis

Reproducibility of the manual segmentation procedure—A reproducibility of the 

manual segmentation procedure used to create labels from the training dataset was assessed 

from the segmentation results for the method validation dataset obtained by three observers, 

each with more than 10 years of experience in musculoskeletal segmentation. The first 

observer (O1 – V.F.) segmented the wrist cartilage twice. The segmentation sessions were 

separated by one week. The segmentation results from the first session were considered as 

the ground truth for the purposes of the method evaluation. Two other experts (O2 - A.E., O3 

- R.F.) segmented images once.

Cartilage CSA was calculated as a product of the number of pixels within the binary mask 

and the pixel area (0.37×0.37 mm2). For each observer, the averaged cartilage CSA was 

calculated among the method validation dataset and compared statistically using Student’s t-

tests. To determine the variability of the manual segmentation procedure, the inter- and intra-

observer DSC=2|X∩Y|/(|X|+|Y| )24 values were calculated, where X is a binary mask 

segmented by O1 in the first session, and Y – segmented either by O1 in the second session 

(intra-observer study) or by O2 and O3 (inter-observer study).

PB-CNN-based cartilage segmentations—Performances of the trained networks were 

evaluated based on a comparisons with the ground truth i.e. the manual segmentation as 
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described above. For the “hold-out” approach, DSC value was calculated independently for 

each 3D volume from the test dataset and then averaged. The layer-to-layer analysis of the 

segmentation accuracy for the developed PB-CNN was performed according to two stages. 

Four cartilage zones along the slice selection direction in each 3D image were initially 

identified. Then the cartilage volume in each zone was normalized with respect to the 

volume of the medial slice in the corresponding 3D image i.e. the image containing the 

largest amount of cartilage, which was assumed as 100%. The identification of the cartilage 

zones was designed to account for differences in wrist joint thickness among different 

volunteers. Zone #1 encompassed slices with no cartilage, zone#2 - slices with a relative 

amount of cartilage up to 33%, zone#3 - slices with an intermediate amount of cartilage - 

from 34 to 66%, and zone#4 - slices with an amount of cartilage ranging from 67 to 100%. 

An averaged DSC index was calculated for each zone of the 3D images.

In the cross-validation analysis, the trained networks were tested on 3D images (1 or 2) of 

the subjects not included in the training dataset. Corresponding DSC values were calculated 

for each 3D image as a whole and on the layer-to-layer basis.

The evaluation of the network trained using the “hold-out” approach was performed as 

follows: DSC was calculated individually for 20 medial coronal slices from the method 

validation dataset and compared with the human inter- and intra-observer study results. A 

radiologist with more than 10 years of experience in musculoskeletal MRI (O4 – A.L.) 

performed a 10-point visual evaluation of the PB-CNN-based segmentations. Several factors 

of a segmentation quality were assessed; their presence in the cartilage mask led to a 

reduction of the initial score of 10 by:

3 points

• segmentation of bone tissue pixels

• segmentation of pixels of pathological zones in bones

• segmentation of pixels out of the wrist joint

2 points

• significant amount of non-segmented cartilage tissue on articular surfaces of 

wrist joint

1 point

• non-segmented cartilage tissue in three or more bones articulation

• deviations of the thickness of segmented cartilage

• segmented non-cartilage pixels in wrist joint.
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RESULTS

Manual segmentation procedure

The averaged cartilage CSA determined by the first observer and considered as the ground 

truth was 237.6 ± 39.8 mm3. The corresponding result obtained by O2 (240.1 ± 38.1 mm3) 

was not significantly different (p>0.05), whereas O3 reported a significantly higher CSA 

(269.3 ± 39.1 mm3, p=0.015).

The average rate for the manual segmentation was 20 slices/hour (i.e. 5 min per slice). Intra-

observer DSC was 0.90±0.04 whereas inter-observer DSC values were lower (0.88±0.04 for 

O1 vs O2 and 0.78 ± 0.06 for O1 vs O3). The corresponding statistics for the manually 

performed segmentation procedure are summarized in Table 1. While the SNR of images 

differed from one subject to another due to the differences related to coil load, the SNR was 

systematically higher (p>0.05) with the home-built coil. The paired t-test (p > 0.05) for the 

data of subjects scanned twice did not provide any significant difference in the segmentation 

accuracy both for intra- and inter-observer studies.

CNN-assisted segmentation

Performances of CNNs and Sensitivity analysis—Figure 4 shows the results of the 

sensitivity analysis from the “hold-out” training/testing stage. DSC value for the 

development dataset raised continuously up to DSC = 0.86 when the data of each subject 

was subsequently added to the training dataset. When the slices for training were randomly 

selected from the whole dataset in different proportions, DSC raised in a similar manner. 

The DSC improvement was less than 6% while the training sample size increased from half 

to full training dataset (i.e., twice). Training duration on a full training dataset was 74.4 

hours. The segmentation time was 15 s per slice.

Figure 4 additionally demonstrates the performance of state-of-the-art networks on a 

development dataset in comparison with the proposed here PB-CNN. For the classical 

image-based U-Net CNN, DSC was much lower (0.64). The segmentation time was 0.75 s 

per slice. For the patch-based variant of the U-Net CNN, the training time per epoch was 23 

times longer than for our PB-CNN, which deemed it infeasible to train the network in an 

acceptable time. Therefore, the network was trained using a reduced training patch database 

(~1/20 of the full one) to stay within the feasibility limit. The corresponding DSC value was 

0.44 and the segmentation time was 2.05 min per slice.

PB-CNN performance validation—Results to the CNN-based cartilage segmentation 

procedure accuracy for the method validation phase are summarized in Table 1. The 

averaged DSC was 0.81±0.05. The averaged cartilage CSA (266.5± 34.3 mm3) was 

significantly higher (p = 0.019) than the corresponding value quantified by the expert (237.6 

± 39.8 mm3). According to the paired t-test (p > 0.05), the segmentation accuracy was not 

influenced by the coil selection.

Examples of CNN-based segmentations of different accuracies are displayed in Figure 5. 

The CNN-based segmentation of the validation dataset was qualitatively assessed by an 

independent radiologist who scored 7.00±1.51 for controls and 4.60±1.14 for patients (Table 
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1). The scores were consistent with the average DSC values for these cartilage masks 

(0.82±0.03 and 0.76±0.04, for healthy volunteers and patients, respectively).

Performance of PB-CNN across 3D volume—Table 2 shows DSC scores for a layer-

to-layer experiments, which involved analysis of different plane locations in 3D. DSC values 

averaged across the 3D images of the testing dataset were 0.69 ± 0.06 for the whole group, 

0.73 ± 0.03 for the healthy subjects, and 0.65 ± 0.05 for the patients. The averaged DSC 

value in the cross-validation analysis was 0.70±0.05 (0.73±0.02 and 0.67±0.05 for controls 

and patients, respectively). The layer-based analysis showed that the DSC was lower for the 

slices located far away from the medial cross-section both for “hold-out” and cross-

validation (in brackets) tests: zone#1: 0.21±0.21 (0.25±0.20), zone#2: 0.60±0.09 

(0.61±0.09), zone#3: 0.63±0.06 (0.65±0.05), zone#4: 0.73±0.05 (0.74±0.05).

DISCUSSION

The aim of the present study was to investigate the performance of a dedicated CNN for the 

segmentation of the wrist cartilage from structural MR images, to compare the 

corresponding results with manual and existing CNN-based segmentation approaches, and to 

assess the dependence of the network’s performance on the amount and heterogeneity of the 

training data.

Our results demonstrated that the presented PB-CNN architecture significantly outperformed 

the classical image-based U-Net in the wrist cartilage segmentation task (DSC=0.86 and 

0.64, respectively). This improvement came at the expense of the computational time (15 s 

for our PB-CNN vs 0.75 s for the image-based U-Net CNN). The decreased accuracy of the 

image-based network may be explained by the relatively low number of training samples, 

which, however, did not result in reduced performance of our patch-based method. Our PB-

CNN also outperformed significantly the patch-based U-Net architecture under identical 

training conditions (Fig. 4). Interestingly, our network was much faster than PB-U-Net, 

which may be explained by much lower number of parameters in our planar PB-CNN and 

the need for full patch mask for PB-U-Net training. It should be noted that we utilized basic 

U-net architectures that were not fine-tuned for the wrist joint cartilage segmentation on MR 

images. Overall, our PB-CNN provided a fast and reliable segmentation of wrist cartilage in 

MR image.

The performance of our PB-CNN agreed well with that of the manual segmentation, as 

evidenced by the comparable DSC values (0.81±0.05) with those from the inter-observer 

assessement (0.88±0.04 for O1 vs O2 and 0.78 ± 0.06 for O1 vs O3 in medial slices). At the 

same time, it was lower as compared to the intra-observer study (0.90±0.04) thereby 

indicating that the PB-CNN did not fully reproduce the manual segmentation strategy of 

Observer 1 (one must keep in mind that the same observer (O1) segmented the wrist 

cartilage for training and for the intra-observer study). Yet, the DSC values were comparable 

to those previously reported for CNN-assisted knee cartilage segmentation (0.82–0.88)25,26, 

which demonstrates a promise of CNN-based methods for more challenging wrist cartilage 

segmentation.
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Our network demonstrated robustness regarding many anatomical structures and joint 

abnormalities that have appearances or contrast similar to cartilage, as illustrated by 

representative examples in Figure 5 (e.g., a vessel in the capitate bone of a healthy volunteer 

(Fig. 5 a) and cyst and cortical bone erosions in patients Figs. 5 e, f). At the same time, the 

analysis indicated an elevated number of false positive pixels in images of patients, mostly 

due to misclassification of skin tissue as cartilage (Fig. 5 d). Our cross-validation study 

demonstrated that PB-CNN segmentation accuracy of patients’ data benefited from larger 

heterogeneity of the training dataset. Further, despite the fact that relatively few subjects and 

MRI scans were included in our study, the segmentation accuracy growth saturated quickly 

with increasing size of the training dataset (Fig. 4). This suggests that the biological 

variability may be a more important characteristic of the training dataset as compared to its 

size. Hence, clinical implementation of the technique may require additional training of the 

network on a more heterogeneous dataset. The enhanced training would benefit from 

including patients with varying age and body mass, the biological factors contributing to 

structural and image contrast variabilities. Further, the method’s performance in clinical 

cases may be potentially improved by explicit inclusion of lesions and anatomical structures 

other than cartilage into the labeled training database as previously described27.

The current study considered computer-assisted manual segmentation as a ground truth for 

the dataset labeling purposes. Our results demonstrate that the implemented procedure was 

sufficiently reproducible, with an inter-observer DSC reaching 0.88±0.04 (O1 and O2). This 

performance is similar to the inter-observer DSC reported for the manual segmentation of 

knee cartilage (0.8836), which is less challenging to segment than cartilage in wrist due to 

higher thickness and anatomical complexity of the former. Yet, the agreement between O1 

and O3 was somewhat lower (DSC = 0.78±0.06). The discordance may be partially 

explained by differences in training and inter-institutional differences (Observer 3 was 

affiliated with a different institution than Observers 1 and 2). At the same time, the 

observation suggests that merging multi-institutional labeled datasets into a single training 

dataset could be an appropriate training strategy to avoid the bias caused by the 

segmentation practices adapted by each individual observer and/or the research site.

Our study demonstrated an heterogenous performance of the segmentation with respect to 

the slice location (Table 2). The best performance was achieved for medial cross-sections of 

the wrist, in which cartilage tissue is characterized by the most well-defined and inter-

connected geometry. The worst performance was observed in the slices located away from 

the medial cross-section, in which amount of cartilage is low and it may become less 

recognizable by the network due to poorly defined morphological features. Considering that 

the cross-validation did not significantly improve the segmentation quality at the periphery 

relatively to the medial zone (Table 2), we suggest that increasing the number of subjects 

included in the training dataset may not be the most efficient strategy to improve 

performance in those locations. At the same time, it is worth noting that increasing the 

number of slices chosen from each 3D image was not studied separately for lateral slices and 

should be a subject for a further investigation. The major improvement may come from 

exploiting 3D pecularities of cartilage, which are different compared to skin or vessels. 

Exploting such spatial correlations would require expanding the network architecture into 

3D37. However, the challenges of such modification are related to a very high computation 
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and memory cost of the 3D-patch-based approach38 and implementation of 3D image 

labeling.

CONCLUSIONS

The proposed here patch-based CNN-based segmentation of wrist cartilage from MR images 

provided a time-efficient alternative to the manual segmentation. The proposed architecture 

outperformed a state-of-the art image-based U-Net architecture and its patch-based variant 

when trained on a limited amount of subjects’ data. Our results highlight the importance of 

including sufficient number of patients in the training dataset. The accuracy of the proposed 

approach might be further increased with a more heterogeneous multi-institutional training 

sample and using a 3D CNN architecture.
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Abbreviations used

CNN convolutional neural network

DSC Sørensen–Dice similarity coefficient

OA osteoarthritis

CSA cross-sectional area

VIBE Volumetric Interpolated Breath-hold Examination

O1 observer 1

O2 observer 2

O3 observer 3

O4 observer 4
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FIGURE 1. 
Illustration of the manual segmentation results. (A) Preliminary delineation of the wrist joint 

area. (B) Final binary mask obtained after thresholding and manual correction
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FIGURE 2. 
Schematic representation of data splitting for the different stages of the CNN development 

for the “hold-out” training/testing approach. DICOM, Digital Imaging and Communications 

in Medicine
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FIGURE 3. 
Configuration of PB-CNN optimized for wrist cartilage segmentation
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FIGURE 4. 
Dependence of DSC value on the training data amount and sample selection (“hold-out” 

training/testing approach). Blue dots correspond to consecutive inclusion of the data of each 

subject (from #1 to #5) to the training dataset (TD). Orange dots correspond to a random 

selection of slices for training in the indicated proportions from the whole TD (full TD). PB-

U-Net, patch-based U-Net
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FIGURE 5. 
Illustrations of performance of the proposed PB-CNN (red: correctly segmented pixels [true 

positives]; green: pixels incorrectly assigned to the background [false negatives]; and blue: 

pixels incorrectly assigned to the cartilage [false positives]). (A) Representative 

segmentation example (healthy subject, medial slice, DSC = 0.86, visual evaluation score = 

8); zoomed-in cartilage area is shown in (B). The green arrow points to a vessel that had 

contrast and geometry similar to cartilage but was not assigned to this type of tissue by our 

PB-CNN. (C) Additional segmentation example (healthy subject, medial slice, DSC = 0.81, 

visual evaluation score = 6). (D) Example of segmentation of patient data with diminished 

performance (medial slice, DSC = 0.69, visual evaluation score = 3). The yellow circles 

show the skin tissue considered by CNN as cartilage. (E, F) Additional illustrations of CNN 

performance on the images of patients. The yellow arrows point to the high signal intensity 

lesions, which were correctly excluded by the proposed PB-CNN from the segmented mask
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Table 1.

Statistics for manual and PB-CNN-assisted segmentation procedures. Quantitative and qualitative validation of 

methods.

# of scan SNR Intraobserver 
DSC

Interobserver DSC 
(O1 – O2)

Interobserver DSC 
(O1 – O3)

Intermethod DSC 
(O1 – CNN)

Visual 
evaluation 

score for CNN

1 14.0 0.91 0.92 0.83 0.83 8

2 19.0 0.94 0.84 0.75 0.81 7

3 12.4 0.89 0.90 0.83 0.83 7

4 15.7 0.90 0.86 0.73 0.77 4

5 14.5 0.85 0.83 0.75 0.84 7

6 19.6 0.92 0.81 0.75 0.82 7

7 13.8 0.87 0.92 0.81 0.88 9

8 20.8 0.93 0.88 0.82 0.84 7

9 13.7 0.97 0.91 0.81 0.86 8

10 18.9 0.98 0.87 0.77 0.83 9

11 12.0 0.82 0.89 0.66 0.82 7

12 14.2 0.96 0.89 0.74 0.84 9

13 20.6 0.89 0.89 0.83 0.81 5

14 10.2 0.91 0.86 0.64 0.74 5

15 15.1 0.87 0.94 0.85 0.81 6

16 13.4 0.90 0.91 0.79 0.79 6

17 21.0 0.83 0.89 0.82 0.75 5

18 18.6 0.93 0.92 0.83 0.80 4

19 12.5 0.86 0.81 0.83 0.77 5

20 15.4 0.96 0.82 0.72 0.69 3

HV group 
Mean± SD 15.57±3.37 0.91±0.04 0.88±0.03 0.77±0.06 0.82±0.03 7.00±1.51

P group Mean
± SD 16.18±3.57 0.90±0.05 0.87±0.05 0.80±0.04 0.76±0.05 4.60±1.14

All Groups 
Mean± SD 15.7±3.34 0.90±0.04 0.88±0.04 0.78±0.06 0.81±0.05 6.40±1.76

HV - healthy volunteers (MRI scans #1-#15), P - patients (MRI scans #16-#20), DSC – Dice coefficient, SD – standard deviation, CNN – 
convolutional neural network, SNR – signal-to-noise ratio, O1 – observer 1, O2 – observer 2, O3– observer 3, O4 – observer 4.
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Table 2.

Results of layer-to-layer analysis of CNN segmentation performance - DSC averaged over zones for “hold-

out” and cross-validation (in brackets) studies

Subjects group No cartilage Zone#1 1% – 33% Zone#2 34% – 66% Zone#3 67% – 100% 
Zone#4

3D DSC

Averaged over HV 
group ±SD

0,24 (0.28) ±0,20 
(0.20)

0,66 (0.66) ±0,04 
(0.04)

0,67 (0.68) ±0,05 
(0.05)

0,76 (0.77) ±0,03 
(0.03)

0,73 (0.73) ±0,03 
(0.02)

Averaged over P group 
±SD

0,18 (0.22) ±0,24 
(0.21)

0,54 (0.56) ±0,08 
(0.11)

0,58 (0.61) ±0,03 
(0.03

0,69 (0.72) ±0,05 
(0.05)

0,65 (0.67) ±0,05 
(0.05)

Averaged over all scans 
±SD

0.21 (0.25) ±0.21 
(0.20)

0.60 (0.61) ±0.09 
(0.09)

0.63 (0.65) ±0.06 
(0.05)

0.73 (0.74) ±0.05 
(0.05)

0.69 (0.70) ±0.06 
(0.05)

HV - healthy volunteers (MRI scans #11-#15), P - patients (MRI scans #16-#20), DSC – Dice coefficient, CNN – convolutional neural network, SD 
– Standard deviation.
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