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Abstract
The interaction between airway microbiome and host in chronic obstructive pulmonary disease (COPD) is poorly
understood. Here we used a multi-omic meta-analysis approach to characterize the functional signature of airway
microbiome in COPD. We retrieved all public COPD sputum microbiome datasets, totaling 1640 samples from 16S rRNA
gene datasets and 26 samples from metagenomic datasets from across the world. We identified microbial taxonomic shifts
using random effect meta-analysis and established a global classifier for COPD using 12 microbial genera. We inferred the
metabolic potentials for the airway microbiome, established their molecular links to host targets, and explored their effects in
a separate meta-analysis on 1340 public human airway transcriptome samples for COPD. 29.6% of differentially expressed
human pathways were predicted to be targeted by microbiome metabolism. For inferred metabolite–host interactions, the
flux of disease-modifying metabolites as predicted from host transcriptome was generally concordant with their predicted
metabolic turnover in microbiome, suggesting a synergistic response between microbiome and host in COPD. The meta-
analysis results were further validated by a pilot multi-omic study on 18 COPD patients and 10 controls, in which airway
metagenome, metabolome, and host transcriptome were simultaneously characterized. 69.9% of the proposed “microbiome-
metabolite–host” interaction links were validated in the independent multi-omic data. Butyrate, homocysteine, and palmitate
were the microbial metabolites showing strongest interactions with COPD-associated host genes. Our meta-analysis
uncovered functional properties of airway microbiome that interacted with COPD host gene signatures, and demonstrated
the possibility of leveraging public multi-omic data to interrogate disease biology.

Introduction

Chronic obstructive pulmonary disease (COPD) is one of
the most prevalent respiratory diseases and is characterized

by impaired lung function as a consequence of airway
inflammation, small airway obliteration, and alveolar
destruction [1, 2]. The composition of airway microbiome
in COPD has been well characterized. Increasing evidence
suggests that airway microbial communities differ between
health and COPD [3, 4], shift during episodes of disease
exacerbations [5–7] and associate with airway inflammation
[6]. It is thought that airway microbiome dysbiosis con-
tributes to airway inflammation, immune dysregulation, and
susceptibility to infection [8, 9].

Despite advances, our understanding of the precise role
of airway microbiome in COPD pathogenesis remains
limited. Several factors contribute to this knowledge gap.
First, a clear understanding of COPD-associated changes in
the airway microbiome is lacking, partly due to the incon-
gruence in the findings between previous airway micro-
biome studies [10]. Second, the functional capacity of the
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airway microbiome remains unknown. This is of impor-
tance, as the microbiome interacts with host through
metabolites that serve as ligands for host receptors. To date,
most studies have characterized taxonomic composition of
the airway microbiome through 16S rRNA gene-based
amplicon sequencing, yet few studies have used metage-
nomic [11] or meta-transcriptomic [12] sequencing to
explore the functional properties of airway microbiome in
COPD. While recent studies have highlighted a link
between individual microbial metabolites and inflammation
[13, 14], the broader community-level landscape on how
airway microbiome generates metabolites that modulate
host immunity in COPD remains unexplored.

The ever-increasing availability of public microbiome
and host multi-omic datasets presents an opportunity to
synthesize existing knowledge to uncover microbiome–host
interactions. Meta-analysis has demonstrated its power to
identify reproducible disease-associated microbiome sig-
natures at an unprecedented scale [15–17]. Here we applied
a large-scale, multi-omic meta-analysis approach to char-
acterize the functional signature of airway microbiome in
COPD. We retrieved all publicly available COPD airway
microbiome datasets, including 16S rRNA gene (n= 1640)
and metagenomic (n= 26) data and analyzed them using a
standardized pipeline. We identified disease-associated
microbiome shifts across datasets using statistical meta-
analysis to enhance statistical power against study-specific
biases. We inferred a microbiome-metabolite catalog and its
molecular links to host targets. Host–microbiome interac-
tions were then validated in a separate meta-analysis on
all public COPD airway host transcriptomic datasets, to
identify interactions that are associated with disease sig-
natures. Finally, the proposed host–microbiome interaction
links were validated in an independent multi-omic char-
acterization of COPD patients and healthy controls.
We demonstrated the value of the meta-analysis approach
in understanding host–microbiome interactions and inter-
rogating disease biology.

Material and methods

Microbiome datasets collection and processing

Detailed information on dataset collection, processing, and
meta-analysis are provided in the supplementary document.
All public COPD lung microbiome datasets were retrieved
from National Center for Biotechnology Information
(NCBI) by literature search in PubMed and dataset search in
SRA using the term “COPD microbiome”. Literature
citations were filtered based on criteria detailed in the
supplementary document. The datasets covered multiple
lower airway sites (sputum, bronchoalveolar lavage (BAL),

bronchial brushing). Only datasets on sputum samples from
stable COPD patients and/or controls were included. Both
16S rRNA gene and metagenomic datasets were included
and analyzed separately. The raw sequencing data were
downloaded from SRA or using links in the publications.

All 16S rRNA gene datasets were processed using a
standardized pipeline in QIIME 2.0 [18]. For each dataset,
demultiplexed sequencing reads were denoised to generate
amplicon sequence variants (ASVs) using DADA2 algo-
rithm [19]. Additional parameters were used to denoise 454
data, according to DADA2 protocol. A custom Naive Bayes
classifier was trained on the Greengenes 13_8 99% opera-
tional taxonomic units (OTUs) to assign taxonomy for each
dataset. PICRUSt2 analysis with ‘stratified’ mode was
performed using ASVs as input [20]. For metagenomic
data, raw sequencing reads were quality filtered using
cutadapt v1.18 [21] and human reads were filtered by
aligning reads to human genome GRCh37/hg19 using
Bowtie2 [22]. The remaining reads were subject to micro-
bial taxon and gene identifications using MetaPhlAn2 [23]
and HUMAnN2 [24].

For 16S rRNA gene datasets that involved controls,
differentially abundant taxa and inferred genes were iden-
tified for each dataset using a generalized linear model [25].
Demographic factors such as age, gender and smoking
history were included as covariates in the model, whenever
possible. The summary statistics (fold-change and P value)
of each taxa in each dataset were retrieved for a random
effect statistical meta-analysis using the MetaDE package in
R [26]. We chose to use the combined effect size method
for meta-analysis, which generates more conservative and
biologically consistent results than the p value combination
method [27, 28]. As an alternative, we also conducted
batch-effect adjustment for the 16S rRNA gene case-control
datasets using percentile normalization in Gibbons et al.
[29], and combined the batch-adjusted datasets for statistical
analysis.

For random forest analysis, microbiome relative abun-
dances were arcsine-square root-transformed and scaled to
unit variance. Random forest analysis was performed for the
significant genera in the meta-analysis using Weka v3.8.3
[30]. Cross-validations were performed within dataset using
sevenfold cross-validation, and between datasets using the
leave-one-study-out strategy. Datasets were further split at
the country-level, to perform leave-one-country-out cross-
validation across five countries.

Metabolic inference of COPD airway microbiome

Genes with congruent direction of changes in COPD versus
controls in PICRUSt2 analysis and in metagenomic dataset
were retained for metabolic inference. For each gene,
we retrieved its associated enzymatic reaction from the
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MetaCyc [31] database using enzyme Commission (EC)
number as query. Metabolic substrates and products were
derived from the enzymatic reactions based on the reaction
equation and its reversibility. Compounds without Pub-
Chem or ChEBI IDs and without known structures were
excluded from further analysis.

The metabolite–host interaction was obtained from
STITCH v5.0 [32], a database for interactions between
chemical and proteins that integrates various resources
including PubChem, ChEMBL, and Reactome. Interactions
with confidence score >0.9 and with known functional
effects (activation or inhibition) were retained. Tissue spe-
cificity of host genes was examined in the GTEx portal [33].
Pathway enrichment analysis was performed using Meta-
Base R v6.30.68780 (Clarivate Analytics, FDR P < 0.01,
enriched genes ≥ 10).

The relative turnover of metabolites in COPD versus
controls was calculated using the predicted relative meta-
bolomic turnover (PRMT) method as described previously
[34, 35]. Briefly, a stoichiometric matrix describing the
quantitative relationship between microbial genes and
metabolites was constructed based on metabolic reactions in
the MetaCyc database [31]. The resulting matrix composing
of m metabolites and n bacterial genes was then used for
multiplication with a vector containing log2 fold-change of
the n bacterial genes in COPD versus controls in the meta-
analysis, to generate a vector of PRMT scores for m
metabolites. It is important to note that the PRMT scores do
not predict the net abundance of a metabolite in a dataset
per se but only its relative turnover between different groups
(here COPD versus controls).

To identify significant taxonomic contributors for the
inferred metabolites, we performed a leave-one-genus-out
(LOGO) analysis. Briefly, the PRMT score of each meta-
bolite was recalculated when each genus was excluded one
at a time from the microbiome data. The relative contribu-
tion of each genus to the metabolite was calculated as the
deviation of the PRMT score when removing that genus,
normalized by the standard deviation of PRMTs calculated
when removing all genera one at a time (similar as a z-score
index). A taxa was considered as significant contributor to a
metabolite if the absolute z-score was greater than 2.0
(equivalent to P < 0.05).

Host transcriptome datasets collection and
processing

The public COPD airway host transcriptomic datasets were
retrieved from NCBI Gene Expression Omnibus database
and were filtered based on the criteria as detailed in the
supplement. Raw microarray data were processed using a
standardized pipeline to generate gene-set-level expression
matrix data [36]. For RNA-Seq data, the quality-filtered

sequencing reads were mapped to the human reference
genome GRCh37/hg19 using STAR [37]. The gene count
and FPKM matrices were generated using Subread [38]. We
used the log2-transformed FPKM data to ensure con-
sistency on downstream analytical methods with microarray
datasets. Inter-study batch-effect adjustment was performed
using ComBat prior to meta-analysis according to previous
studies [28, 39]. Differentially expressed genes (DEGs)
between COPD and controls were identified using limma
package in R [40]. The random effect meta-analysis was
performed using combined effect size method using
MetaDE in R [26].

A metabolite can have disease-promoting or disease-
ameliorating effect through influencing the expression of
its targets in disease. For instance, a disease-promoting
metabolite could achieve its role through collectively
activating genes that were upregulated in disease (i.e.,
pro-inflammatory genes), and/or inhibiting genes down-
regulated in disease (i.e., anti-inflammatory genes).
Accordingly, the disease-modifying effect of an inferred
metabolite on host transcriptome can be assessed using
the average fold-change of all its host targets in the
transcriptome meta-analysis, adjusted by activating or
inhibitory effects of the metabolite to the targets, using the
equation:

EF ¼ 1
m

Xm

i¼1

ESi � 1
n

Xn

j¼1

ESj;

where EF is the predicted disease-promoting effect (or
disease-alleviating effect if it is negative) of a metabolite on
host transcriptome, ES is the combined effect size of each of
its host targets in the meta-analysis, and m and n are the
number of genes activated or inhibited by the metabolite,
respectively.

Multi-omic analysis on independent COPD cohort

Induced sputum samples were collected from 18 stable
COPD patients and 10 healthy controls in the First
Affiliated Hospital of Guangzhou Medical University.
The study was approved by the ethics committee of the
First Affiliated Hospital of Guangzhou Medical Uni-
versity (No. 2017–22). Patients with antibiotic usage
within 4 weeks were excluded. Bacterial genomic DNA
was extracted from selected sputum plugs using Qiagen
DNA Mini kit (along with negative controls) and subject
to metagenomic sequencing using Illumina NovaSeq.
The remaining sputum was subject to sputum cell and
supernatant isolation according to previous protocol [41].
RNA was extracted from sputum cell using Qiagen
RNease Mini kit for RNA-Seq using Illumina NovaSeq.
Two-hundred microliters of sputum supernatant was
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subject to untargeted metabolomic characterization using
Xevo G2-XS QTOF (Waters, UK).

The raw sequencing reads for metagenome and host
transcriptome were processing using the same analytical
pipeline in the meta-analysis. For metabolome, ion features
(monoisotopic m/z, charge, retention time, peak size) were
extracted using Progenesis QI v2.2. Low quality ions or
ions with relative standard deviation greater than 30% were
filtered from downstream analysis [42]. Identification of
metabolites was performed by searching HMDB [43],
METLIN [44], and KEGG databases [45]. Metabolomic
data analysis was performed using MetaboAnalystR [46].
The microbial contributors to metabolome were analyzed
using the paired metagenome and metabolome data using
MIMOSA2 [47].

Results

Taxonomic and functional profiles of COPD airway
microbiome

The overall strategy of the multi-omic meta-analysis is
shown in Fig. 1. To begin, we searched PubMed using the
term “COPD microbiome”, which returned 231 publications
(accessed January 2020, Table S1). We restricted the sam-
ple type to sputum which included the largest number of
studies and samples. This resulted in 11 16S rRNA gene
and one metagenomic datasets. We obtained two additional
16S rRNA gene and one metagenomic datasets from the
Sequence Read Archive (SRA) database. Although unpub-
lished, the two 16S rRNA gene datasets showed comparable
quality control statistics with published datasets (Table S2),
indicating their reasonable data quality to be included for
downstream analyses. Altogether, the search yielded a total
of 13 16S rRNA gene and two metagenomic datasets,
comprising of 1517 COPD and 123 control samples from
16S rRNA gene datasets and 16 COPD and 10 control
samples from metagenomic datasets, together from 10
countries across Europe, Asia, and America (Fig. 1a and
Table 1).

We profiled microbial composition for the 16S rRNA
gene datasets using DADA2 algorithm [19]. ASVs were
generated for each dataset separately. Notably, these data-
sets were confounded with different sample origins,
hypervariable regions and sequencing platforms. To assess
data heterogeneity, we first performed 99% close-reference
clustering for ASVs for each dataset so they can be com-
pared with each other. Principal coordinate analysis on all
samples based on 99% OTUs showed a clear separation of
samples by study (PERMANOVA R2= 0.45, P < 0.001,
Fig. S1), indicating study-specific batch effects. Among
all confounding factors, hypervariable region showed the

strongest association with variation of microbial composi-
tion (Canonical correspondence analysis (CCA), F= 5.629,
P= 0.0035, Fig. S2), followed by country (F= 3.243, P=
0.019) and sequencing platform (F= 2.781, P= 0.026). To
alleviate impact of these batch effects, previous studies
chose to perform microbiome meta-analysis at the genus-
level, which sacrificed the sensitivity in detecting finer-level
variation in exchange for less data heterogeneity [15, 48].
A total of 490 genera were identified across all samples, of
which 304 genera were shared by at least two datasets and
were retained for further analysis. 26 genera had an average
relative abundance greater than 0.001 across all samples
(Fig. 2a). Among the 26 genera, Streptococcus, Haemophilus,
Veillonella, Prevotella, Neisseria, Rothia, Capnocytophaga,
Actinomyces, Leptotrichia and Fusobacterium also had
average relative abundance >0.001 across all 13 16S rRNA
gene datasets. Nineteen genera had an average relative
abundance >0.001 across 12 out of 13 16S rRNA gene
datasets (except for Moraxella, Lactobacillus, Campylo-
bacter, Oribacterium, Treponema, Stenotrophomonas and
Ralstonia). Streptococcus, Veillonella, Rothia, Prevotella,
Haemophilus, and Actinomyces were core genera present in at
least 90% of all samples. Examining distribution of each
genus in each dataset revealed a clustering of datasets largely
by hypervariable regions (Fig. S3), indicating different
regions of 16S rRNA gene surveyed may contribute to
the divergence of taxa observed between studies. The cross-
dataset heterogeneity was alleviated when analyzed at the
genus-level, as indicated both in PERMANOVA and CCA
results (Figs. S1, 2). Hypervariable region remained of
borderline significance in the genus-level CCA (F= 2.318,
P= 0.047).

The vast majority of samples (1640 out of 1666 sam-
ples, 98.4%) belonged to the 16S rRNA gene datasets.
For 16S rRNA gene datasets, we performed functional
inference using PICRUSt2. This resulted in 2341 EC gene
families (referred as PICRUSt2-inferred genes). For the
26 samples from the metagenomic datasets, we performed
functional profiling using HUMAnN2 [24]. A leaner cat-
alog of 1236 gene families were obtained, of which 1124
genes overlapped with the PICRUSt2-inferred genes
(Table S3). The 1124 genes were involved in a diverse
range of functional processes and covered 289 of 305
pathways predicted by PICRUSt2 (Fig. S4), indicating its
functional diversity. Of the 1124 genes, 299 were core
genes present in 90% of COPD metagenomic samples
(Table S3). The relative abundances of genes in the
metagenomic datasets were correlated with their corre-
sponding abundances inferred from 16S rRNA gene
datasets, irrespective of them being core or accessory
genes (Spearman’s R ≥ 0.60, Fig. S5), indicating con-
gruent functional profiling between the two different types
of data.
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COPD airway microbiome
COPD airway host transcriptome

America

Europe

Asia

UK
- 7 studies
- 7 cities
- 1222 microbiome
  samples

- 18 studies
- 7 countries
- 15 cities
- 1437 microbiome
  samples
- 196 host transcript
  ome samples - 3 studies

- 4 countries
- 5 cities
- 189 microbiome
  samples
- 189 host transcript
  ome samples

- 10 studies
- 4 countries
- 8 cities
- 40 microbiome
  samples
- 955 host transcript
  ome samples

Microbiome 
dataset collection

- ‘COPD Microbiome’
- NCBI PubMed (n=231)

- NCBI SRA (n=3)

Microbiome 
dataset selection
- NCBI PubMed (n=12)

- NCBI SRA (n=3)

16S-based metagenomics
- DADA2/QIIME2 (n=13)

- PICRUSt2 (n=13)
- MetaPhlAn2 (n=2)
- HUMAnN2 (n=2)

- 304 microbial genera
- 2341 functional genes

- 280 microbial genera
- 1236 functional genes

Metabolic inference
- Metabolites (MetaCyc)

- Human host interactors (STITCH)

- 1391 interaction links
- 25 microbial genera 

- 67 metabolites
- 244 host targets

Host transcriptome
dataset collection
- ‘COPD’, ‘Homo sapiens’,

‘Expression profiling by array
or by sequencing’ (n=142)

Host transcriptome
dataset selection

- Microarray (n=17)
- RNA-Seq (n=2)

a

b

Random effect
meta-analysis

- Differential analysis (glm)
- Meta-analysis (MetaDE)

- 12 differential genera
- 759 functional genes

- Leave-one-genus-out analysis (PRMT)

COPD Multi-omic
validation cohort

- COPD patients (18 samples)
- Healthy controls (10 samples)

Multi-omic analysis
- Metagenome (HUMAnN2)

- Metabolome (MetaboAnalystR)
- Host transcriptome (STAR)

Excluded (n=123)
- not related to COPD 

host transcriptome (n=80)
- COPD non-airway 
transcriptome (n=16)

- no healthy controls (n=18)
- duplicated datasets (n=4)

- other factors (n=5)

Excluded (n=219)
- not related to COPD airway

microbiome (n=109)
- review articles (n=70)

- exacerbation only (n=4) 
- no sequencing data (n=7)
- data not available (n=16)
- not sputum samples (n=8)
- duplicated datasets (n=5)

- 1,511 microbial genes
- 2,021 metabolites
- 19,142 host genes

Metabolite-target
validation

- Spearman correlation

Microbiome-
metabolite validation

- MIMOSA2 analysis

- 190 interaction links
- 16 microbial genera 

- 28 metabolites
- 44 host targets

Host transcriptome
data processing

- Quality filtering (Cutadapt)
- Reads mapping (STAR)

1 2

3

Host transcriptome
data normalization

-  FPKM data matrix
- Log transform and scaling

Random effect
meta-analysis

- Differential analysis (limma)
- Meta-analysis (MetaDE)

- 964 meta-DEGs
(log2ES>1, FDR P<0.05)

Metabolite-host
interaction

- Pathway analysis (MetaCore)
- PRMT correlation analysis

- 296 interaction links
- 19 microbial genera 

- 37 metabolites
- 50 host targets

Microbiome meta-analysis Host transcriptome meta-analysis Multi-omic validation

Fig. 1 The multi-omic meta-analysis pipeline for the COPD airway
microbiome. a Geographical distribution of collection sites for 1666
airway microbiome samples (1640 samples from 16S rRNA gene
datasets and 26 samples from metagenomic datasets) and 1340 host
transcriptome samples included in the meta-analysis. b Flowchart of
the integrative meta-analysis for microbiome and host transcriptome

datasets, as well as the independent multi-omic cohort validation. Each
data analysis step is shown in the gray box, with the analysis method
and software described within. In the steps of dataset collection and
processing, n represents the number of studies/datasets involved in
each step. The output of key steps is shown in the pink box.
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Meta-analysis on the airway microbiome in COPD
versus controls

For the two 16S rRNA gene datasets that included controls
(SRP066375 and SRP136124, Table 1), we performed a
statistical meta-analysis to identify bacterial taxa and genes

consistently altered in COPD versus controls across data-
sets. The two datasets had the same sequencing platform
and hypervariable region, further eliminating confounding
effects. We identified significant microbial taxa in COPD
versus controls within each dataset, adjusting demographic
factors such as country, age, gender, and smoking history as

Table 1 List of airway microbiome and host transcriptome datasets included in the meta-analysis.

Dataset Sample type PMID Sequencing reads per sample Country Platform Data type Samples

COPD Control

SRP102480 Sputum 29269441 54,100–355,368 UK Miseq V4 445 0

SRP102629 Sputum 29386298 37,359–155,862 UK Miseq V4 423 0

SRP073159 Sputum 29101284 10,636–220,475 UK Miseq V3–V4 134 0

SRP065072 Sputum 26917613 4231–31,326 UK 454 V3–V5 106 0

ERP108788 Sputum 31234826 9633–95,264 Spain Miseq V3–V4 95 0

Dyrad.5GC82 Sputum 28851370 10,210–150,821 Norway Miseq V3–V4 81 0

SRP066375 Sputum NA 13,866–159,955 Peru, Nepal, China,
Bangladesh

Miseq V4 74 107

SRP136124 Sputum 31170986 85,087–343,461 UK Miseq V4 52 16

ERP003401 Sputum 25253795 6406–14,573 Spain 454 V1–V2 31 0

ERP014054 Sputum NA 5566–15,687 UK 454 V6–V8 28 0

SRP124904 Sputum 29518088 24,172–106,899 USA Miseq V3–V4 26 0

SRP107187 Sputum 29579057 5859–12,506 Canada 454 V6–V8 14 0

SRP075523 Sputum 27428540 25,345–83,640 China Miseq V4 8 0

ERP010088 Sputum 26872143 5,291,496–100,983,368a UK Hiseq MetaG 8 10

ERP110331 Sputum NA 4,460,248–98,972,436a Germany NextSeq MetaG 8 0

GSE47460 Lung 27609773 NA USA Agilent HostT 219 108

GSE76925 Lung 28287180 NA USA Illuminab HostT 111 40

GSE57148 Lung 25834810 8,888,399–22,119,664 South Korea Hiseq HostT 98 91

GSE37147 Bronchial 23471465 NA Canada Affy HostT 87 82

GSE103174 Lung NA NA Spain Affy HostT 37 10

GSE73395 BAL 30141961 NA Germany, Italy,
Belgium

Affy HostT 29 28

GSE38974 Lung 21940491 NA USA Agilent HostT 23 9

GSE11906 Small airways 19852842 NA USA Affy HostT 20 72

GSE12472 Bronchial 20832896 NA Netherlands Agilent HostT 18 10

GSE37768 Lung NA NA Spain Affy HostT 18 9

GSE8581 Lung 18849563 NA USA Affy HostT 16 19

GSE106986 Lung NA NA Germany Agilent HostT 14 5

GSE86064 Large airways 29581847 12,623,264–24,609,574 USA Hiseq HostT 13 30

GSE13896 Alveolar
macrophage

19635926 NA USA Affy HostT 12 24

GSE56341 Small airways 24298892 NA Canada Affy HostT 8 14

GSE11784 Small airways 21829517 NA USA Affy HostT 7 31

GSE119040 Lung NA NA Argentina Affy HostT 6 4

GSE16972 Alveolar
macrophage

21430361 NA Hungary Affy HostT 5 5

GSE112260 Sputum 30074017 NA Poland Affy HostT 4 4

MetaG metagenome, HostT host transcriptome.
aThe number of non-human reads.
bIllumina Human HT-12 V4.0 microarray.
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covariates whenever available. We then pooled evidence of
differential abundance across datasets by combining effect
size using random effect statistical meta-analysis. Instead of
pooling raw data directly, such meta-analysis technique by
pooling summary statistics from each dataset is more robust to
the between-study data heterogeneity [49]. A total of 12
genus-level taxa were significant in the meta-analysis (false
discovery rate (FDR)-adjusted P < 0.05, Table S4). Haemo-
philus, Streptococcus, Moraxella, and Lactobacillus were
enriched in COPD, while Selenomonas, Leptotrichia, Dial-
ister, Porphyromonas, Peptostreptococcus, Campylobacter,
Catonella, and Prevotella were depleted (Fig. 2b). These taxa
were consistent in direction of changes across the two 16S
rRNA gene datasets, as well as in the metagenome dataset

(Fig. 2b). As an alternative, we also performed batch-effect
correction for the two datasets using the percentile normal-
ization method in Gibbons et al. [29] and combined the batch-
corrected data for multivariate analysis. Nineteen genera were
significant using the combined dataset (FDR P < 0.05,
Table S4), including 11 of the 12 genera identified by random
effect meta-analysis (except forMoraxella which had an FDR
P value of 0.08). However, the precise combined fold-change
of genera can no longer be assessed here due to information
loss in percentile conversion.

The 12 genera noted above had an area under curve
(AUC) of 0.773 and 0.828 in classifying COPD from
controls for each dataset alone using random forest with
within-dataset cross-validation (Fig. 2c). The AUCs were
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Fig. 2 Statistical meta-analysis of the COPD airway microbiome
datasets. a Heatmap showing COPD microbiome composition at the
genus-level for all 16S rRNA gene datasets. The 26 genera with
average relative abundance greater than 0.001 across all samples were
shown. The number of COPD samples were indicated in the par-
enthesis besides each dataset identifier. b The relative abundances in
COPD versus controls for the 12 genera significant in the meta-ana-
lysis, along with their log2 fold-changes in the two case-control 16S
rRNA gene datasets, combined effect sizes, and the log2 fold-changes
in the case-control metagenomic dataset. The 12 genera showed

congruent direction of changes in COPD versus controls among all
case-control studies. c Receiver operative characteristic (ROC) curves
for the random forest models in classifying COPD and controls using
within-dataset and between-dataset cross-validations. The area under
curve (AUC) for each prediction was shown in the lower right corner
of the plot. d The positive correlation between the fold-changes of
1124 genes in COPD versus controls in the two 16S rRNA gene
datasets as inferred by PICRUSt2. The subset of 759 genes that also
had congruent direction of changes in COPD versus controls in the
metagenomic dataset were highlighted in dark red.
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0.804 and 0.729 when applying between-dataset cross-
validation in which classifier was trained on one dataset and
validated on the other (Fig. 2c). This indicated the gen-
eralizability of these markers when extrapolated across
datasets. The two datasets included COPD patients and
controls from five different countries. Applying a leave-one-
country-out cross-validation yielded an average AUC of
0.723 (range: 0.648–0.804, Fig. S6).

We next sought to identify functional genes altered in
COPD versus controls. We restricted our analysis to the 1124
gene families present both in PICRUSt2 inference and
metagenomic datasets. We first performed a multivariate
analysis to identify differentially abundant genes in COPD
within each case-control study, adjusting for demographic
covariates. The 1124 genes showed an overall correlation in
their PICRUSt2-inferred fold-changes in COPD versus con-
trols between the two 16S rRNA gene datasets, with 891
genes having the same direction between datasets (Fig. 2d and
Table S5). Of the 891 genes, 759 genes further showed the
same direction of fold-changes in the case-control metage-
nomic dataset (Fig. 2d and Table S5). These 759 genes with
congruent alternations across all 16S rRNA gene and meta-
genomic case-control studies were retained, and their com-
bined effect sizes in the random effect meta-analysis of all
three datasets (two 16S rRNA gene and one metagenome)
were used as proxy for their associations with COPD. Of the
759 genes, 17 genes in xenobiotic, carbohydrate, pepti-
doglycan, and amino acid metabolism were significantly
enriched in COPD versus controls in the meta-analysis
(Fig. S7, Table S5, FDR P < 0.05), whereas 9 genes in bio-
synthesis of secondary metabolites, lipid, and fatty acid
metabolism were significantly depleted. Haemophilus,
Streptococcus, and Moraxella were top contributors to the 17
enriched genes, consistent with their increased abundances in
COPD. On the other hand, commensal genera such as Veil-
lonella and Prevotella that were decreased in COPD, were top
contributors to the 9 depleted genes (Fig. S7).

Metabolic potential of the COPD airway microbiome

To infer the metabolic potential of the COPD airway
microbiome, we mapped the 759 microbial genes onto the
MetaCyc database. This step yielded a total of 575 possible
metabolites with known structures as products from enzy-
matic reactions. Surveying all literatures resulted in two
COPD airway metabolomic studies with 294 metabolites
reported in their supplementary data [14, 50]. Two-hundred
eleven out of 575 inferred metabolites (36.7%) were
observed in the list of 294 metabolites. Three hundred forty-
six metabolite–target interactions with known functional
effects were further obtained between 67 metabolites and
244 human host genes in the STITCH database, using a
confidence score of 0.9 (“highest confidence” group, Fig. 3a

and Table S6). Forty-six of these 67 metabolites (68.7%)
were observed in the public metabolomic data (Table S6).

We adapted the PRMT method by Larsen et al. [34] to
estimate the relative turnover of metabolites in COPD versus
controls, based on the combined effect sizes of their associated
genes in the microbiome meta-analysis. PRMT method utilizes
a stoichiometric matrix describing the quantitative relation-
ships between microbial genes and metabolites, to provide an
estimate on the impact of the metagenome on the accumula-
tion or depletion of metabolites. For the 67 metabolites with
host interactors, palmitate and N-acetyl-D-mannosamine had
the highest PRMT scores thus were inferred to be most
COPD-enriched, while D-aspartate had the lowest PRMT score
(Table S6 and Fig. 3b). Extension to the entire pathways
further revealed consistent alternations of metabolites across
some pathways. For instance, six of eight metabolites in pal-
mitate pathway were inferred to be elevated in COPD
(Fig. 3c). All metabolites in nitric oxide pathway except for
nitrate were predicted to be COPD-depleted (Fig. 3c). Calcu-
lating the PRMT scores based on fold-changes in the meta-
genomic data alone indicated highly consistent results with
those based on the combined effect sizes in the meta-analysis
of both 16S rRNA gene and metagenome data (Fig. S8).

We identified key microbial drivers to metabolites
through a LOGO analysis. The relative contribution of each
genus to each metabolite was estimated by assessing the
deviation of PRMT scores that resulted from removing it
from the analysis (as a z-score index). A total of 25 genera
were considered as significant contributors to the 67 meta-
bolites (absolute z-score>2.0, P < 0.05, Fig. S9), among
which Streptococcus, Haemophilus, and Veillonella con-
tributed to most number of metabolites (Fig. 3d). For pal-
mitate that was predicted to be COPD-enriched, Rothia
contributed most to its enrichment (z= 7.52). On the other
hand, Prevotella contributed most to the depletion of D-
aspartate in COPD (z=−4.50).

The 244 host targets of microbial metabolites exhibited a
high degree of lung tissue specificity. Among all human
tissues, lung had the highest average expression levels for
the 244 genes (GTEx, Fig. S10). Functional enrichment of
the 244 genes revealed 75 significant MetaBase pathways
(FDR P < 0.01, enriched genes>10, Table S7). Many top
pathways were related to inflammatory signaling such as IL-
8, CCL2, TNF-alpha and RAGE signaling in respiratory
diseases such as asthma and COPD (Fig. 3a). This suggests
that the identified host–microbiome interactions could have
a plausible role in COPD pathogenesis.

Assessing metabolic effects in human transcriptome
meta-analysis

To assess whether the 244 host targets are implicated in
COPD host response, we performed a separate meta-
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analysis on all public host airway transcriptome datasets
in COPD. In total, we included 19 host airway tran-
scriptome datasets with samples from 745 stable COPD

patients and 595 controls across multiple anatomical sites
(lung, bronchial brushings, alveolar macrophage, small
or large airways, sputum and BAL) (Tables 1 and S8).
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To assess anatomical-site heterogeneity, we conducted a
meta-analysis on datasets from each site separately.
Study-specific batch effect was adjusted using Combat
prior to random effect meta-analysis (Fig. S11). An
averaged 73.2% of DEGs from each site were also present
in at least one other sites (Fig. S12a). At the pathway
level, 63 MetaBase pathways were shared by at least four
of five sites, many of which were related to immune
processes (Fig. S12b and Table S9). These results suggest
that despite site heterogeneity, there are common
immune-related host transcriptome signatures that can be
potentially revealed by a combined random effect meta-
analysis.

To quantify potential impacts of microbial metabolites
on host gene expression, we calculated the average fold-
change of their host targets in the combined tran-
scriptomic meta-analysis, adjusted by the activating or
inhibitory effects of the metabolites. We found that for
most metabolites, their disease-promoting or alleviating
effects on host transcriptome were concordant with their
predicted relative turnover in COPD airway microbiome
(Spearman’s R= 0.459, Fig. 4a). For example, palmitate
was inferred to be elevated with PRMT score of 4.34 in
the COPD microbiome. Mirroring this observation, eight
of ten genes activated by palmitate were significantly
upregulated in COPD host transcriptome, collectively
with a disease-modifying score of 2.89. In contrast,
D-aspartate was predicted to be decreased in COPD versus
controls (PRMT=−4.31). In concordance, it showed a
potential disease-ameliorating effect by activating two

genes (GRIN2A and GRIA1) significantly downregulated
in COPD (disease-modifying score=−3.89). Our results
suggest a synergistic response between microbiome and
host in COPD.

Meta-analysis on the combined datasets identified 474
and 490 host genes significantly up- or downregulated in
COPD versus controls (referred as meta-DEGs, log2 fold-
change>1, FDR P < 0.05, Fig. S12c, Table S10). The meta-
DEGs were enriched for 54 host pathways (FDR P < 0.01).
Of them, 16 pathways (29.6%) overlapped with pathways
for the 244 gene set, indicating these pathways could be
modulated by microbiome metabolites (Table S10). Fifty
meta-DEGs overlapped with the 244 gene set and were
linked to 37 metabolites, which presumably contained
disease-specific metabolite–host interaction links (Fig. 4b,
Table 2). A total of 19 genera were significant microbial
contributors to these 37 metabolites (absolute z-score>2.0),
which together constituted a total of 296 “microbiome-
metabolite–host” interaction links to be further investigated
(Table S11).

Validation of host-microbiome interaction in
independent multi-omic cohort

To validate the “microbiome-metabolite–host” interaction
links inferred from the meta-analysis, we conducted a pilot
multi-omic study on 18 stable COPD patients and 10
healthy controls. Sputum metagenome, metabolome and
host transcriptome were simultaneously characterized,
resulting in a profile of 218 genera, 1511 microbial EC gene
families, 2021 metabolites and 19,142 host genes (Fig. 5a).
Of them, 9 genera, 61 microbial genes, 33 metabolites, and
469 host genes were significantly altered in COPD versus
controls (FDR P < 0.1, Table S12). For the 12 signature
genera in the meta-analysis, they all showed consistent
direction of changes in COPD versus controls in our cohort,
and Streptococcus and Prevotella were statistically sig-
nificant (FDR P < 0.1). The 1511 microbial genes included
1074 of the 1124 genes in the meta-analysis, indicating high
specificity of this gene catalog. The 469 host DEGs were
enriched for 60 pathways (FDR P < 0.01), of which 238
genes (50.7%) and 32 pathways (53.3%) overlapped with
the 964 meta-DEGs, suggesting overall congruent tran-
scriptomic signatures. Among all 575 inferred metabolites
in the meta-analysis, 320 (55.7%) were detected in the
metabolome. The detection rate varied across categories of
metabolites, with the highest rates for vitamins and lowest
for inorganic compounds (Fig. 5b). For the 37 metabolites
targeting meta-DEGs, 34 (91.9%) were present in the
metabolome (Table S13). Twenty-six of them further
exhibited the same direction of changes in COPD versus
controls with their PRMT scores, indicating accuracy of
PRMT scoring in inferring trends of metabolic turnover

Fig. 3 Metabolic inference of the COPD airway microbiome.
a Sankey diagram delineating all interaction links between microbial
genera, metabolic reactions, inferred metabolites, and host targets.
Metabolic reactions were grouped by the MetaCyc pathway categories.
Metabolites were grouped by their classes in PubChem. Host genes
were grouped by the enriched pathways and only genes in the top
pathways (FDR P < 1e−8) are shown. Pathways were highlighted in
red and in asterisks if they overlapped with the 54 pathways sig-
nificantly enriched for differentially expressed genes in the host tran-
scriptome meta-analysis. b The inferred metabolites ranked by their
PRMT scores. The 20 metabolites with at least 5 interactions with host
targets were shown for display purpose. The metabolite was high-
lighted in asterisks if it was present in the public COPD airway
metabolomic data. c The biosynthesis pathways for palmitate and
nitric oxide. Each metabolite was colored by its PRMT score and each
corresponding gene was colored by its most predominant microbial
contributor. d Heatmap showing significant microbial contributors to
the 20 metabolites in (b) in the leave-one-genus-out (LOGO) analysis
(absolute z-score > 2.0, P < 0.05). The z-score of each species to each
metabolite was indicated in the heatmap. A positive z-score means that
the biosynthesis or degradation of the metabolite by the taxa con-
tributes to its relative enrichment in COPD, whereas a negative z-score
means the biosynthesis or degradation of the metabolite by the taxa
contributes to its depletion in COPD. The microbial genera were
colored by their corresponding phyla. The PRMT score was shown for
each metabolite beside the heatmap.
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(Fig. 5c, Spearman’s R= 0.581, Table S13). Among them,
xylulose-5-P, D-mannopyranose, palmitate, and L-ornithine
were significant (FDR P < 0.1).

We investigated the 296 inferred “microbiome-
metabolite–host” links from meta-analysis in our multi-
omic data. We excluded links involving two gaseous
metabolites, nitric oxide and nitrous oxide, which were
impossible to be observed in our samples. This resulted in
272 links. For the links between metabolites and host
targets, we examined their correlation patterns in paired
metabolome and host transcriptome profiles. In total,
78.1% (57 out of 73) of the metabolite-target pairs showed
correlation patterns (positive or negative) in the multi-
omic data in agreement with the predicted mode of action
from meta-analysis (activation or inhibition, Table S14).
To validate microbial contributors for metabolites, we

performed a MIMOSA2 analysis for paired metagenome
and metabolome data. MIMOSA2 utilized the PRMT
metrics to estimate the metabolic potential scores from
metagenome and correlate with the actual abundance of
metabolites in the metabolome [47]. It then decomposed
the model fit into contribution from each microbial taxa,
similar as our LOGO analysis. For 85.2% (104 out of 122)
of the microbiome-metabolite pairs, the microbial genera
were also among the contributors to the variation of the
metabolites in the MIMOSA2 analysis, supporting their
metabolic associations.

Collectively, 190 of the 272 (69.9%) proposed “micro-
biome-metabolite–host” links in the meta-analysis were
validated in our pilot multi-omic data, involving 16
microbial genera, 27 metabolites, and 37 host genes.
Among them, 91 interaction links further involved
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Fig. 4 Microbiome metabolites target genes in COPD host tran-
scriptome signature. a Scatterplot showing the predicted disease-
modifying effects of metabolites on host transcriptome (x-axis) and
their PRMT scores in COPD airway microbiome (y-axis). The direc-
tion of disease-modifying effects were concordant with that of the
PRMT scores for 44 out of 58 metabolites (Spearman’s R= 0.507,
P < 1e−4). Metabolites were colored in red if they had concordant
disease-promoting effects, in blue if they had concordant disease-
ameliorating effects, and in gray if they had discordant effects. The

size of the circles in the plot are proportional to the number of pre-
dicted host interactors for the metabolites. b Heatmap for the 41 meta-
DEGs that were linked to at least one microbial metabolites. Only
metabolites linked to at least two host genes were shown for display
purpose. Each link between a metabolite and a gene indicate their
interactions colored by activation or inhibition as obtained from the
STITCH database. Metabolites were colored similarly as in (a). The
number of samples were indicated in the parenthesis besides each
sample type.
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metabolites or host genes significantly altered in COPD
versus controls in the multi-omic data (Fig. 5d, Tables 3,
S14, FDR P < 0.1), suggesting these interactions were likely
disease-specific. The strongest associations were butyrate-

SOD2, followed by homocysteine-MMP9 and palmitate-
ACSL1 (Fig. 5e). Fusobacterium, Streptococcus, and
Rothia were top microbial contributors to these metabolites
respectively (Fig. 5e).
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Discussion

Here we present a large-scale, integrative meta-analysis on
public multi-omic datasets to characterize the functional
signatures of airway microbiome in COPD. The statistical
meta-analysis enabled us to identify microbial taxa that had
subtle but consistent changes in COPD versus controls that
may not be significant in analysis of each individual study
alone [29]. The reproducibility of the 12 genera in segre-
gating COPD patients versus controls across-countries
implicates the possibility of a global microbiome classifier
for COPD diagnostics. The vast majority of COPD airway
microbiome datasets in the public databases are 16S rRNA
gene-based, from which microbial gene contents were
inferred using PICRUSt analysis. PICRUSt analysis is
capable of inferring core microbial functions in a commu-
nity but may not be well resolved for accessory genes
resulting from genomic variations within genus or species,
and thus tends to overestimate the gene pool. To mitigate
this risk, we generated COPD airway microbial gene cata-
log by overlapping genes predicted by PICRUSt2 with
those present in metagenomic datasets. These genes covered
a diverse range of microbial pathways, and largely

Fig. 5 Validation of “microbiome-metabolite–host” interaction
links in the independent COPD multi-omic cohort. a A schematic
illustration for the sample processing steps to simultaneously obtain
metagenome, metabolome and host transcriptome from sputum sam-
ples. b The proportion of the 575 inferred metabolites detected in the
actual metabolome in each category. The number of inferred meta-
bolites in each category were indicated in the parenthesis. c Scatterplot
showing the overall concordance between the PRMT scores of the 31
metabolites and their log2 fold-changes in COPD versus controls in
the metabolome. The sizes of the circles in the plot are proportional to
the number of predicted host interactors for the metabolites. Metabo-
lites were colored similarly in Fig. 4. Significant metabolites in COPD
versus controls (FDR P < 0.1) were highlighted in asterisks. d The 91
“microbiome-metabolite–host” interaction links that were validated in
the COPD multi-omic cohort and involved at least one metabolite or
host targets significant in COPD versus controls (FDR P < 0.1). The
microbial genera were colored by their corresponding phyla. The
metabolites and host targets were colored by their direction of changes
in COPD versus controls with the strength of the color representing
their absolute fold-change. The links between metabolites to host
targets were colored by the activation or inhibition effects and the
strength of the links are proportional to the absolute Spearman cor-
relation coefficient between the paired metabolome and host tran-
scriptome. The strength of the links between microbial taxa and
metabolites are proportional to the contribution scores of the genus to
the metabolite between the paired metagenome and metabolome in
MIMOSA2 analysis. The significant metabolites and host targets were
highlighted in asterisks (FDR P < 0.1). e The scatterplot for the top
three metabolite–host target correlations in (d). Samples were colored
by COPD or controls. The distribution of metabolites and host targets
in COPD and controls were shown in the boxplots. The significant
genera, metabolites and host targets were highlighted in asterisks
(FDR P < 0.1). For significant genus-level contributors to the meta-
bolites, their contributions to variance in MIMOSA2 analysis were
shown on the right side.
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overlapped with the metagenomic genes in our pilot cohort,
adding credibility for their presence in human airways. It is
further reassuring that for the majority of PICRUSt2-
inferred genes consistently up- or downregulated in COPD
in 16S rRNA gene datasets, they also had the same direction
of changes in the metagenomic data. These microbial genes
with congruent disease associations were retained for
metabolic inferences.

The multi-omic meta-analysis revealed a synergistic
response between microbiome and host in COPD. This was
demonstrated by an impressive proportion of overlap
between microbiome and host signatures at the pathway
level, as well as a concordance between the disease-
modifying effects of metabolites and their predicted turn-
over in the microbiome. About 70% of the proposed
host–microbiome interactions were further validated in the
independent multi-omic cohort. Based on these findings,
possible mechanistic routes of host–microbiome interac-
tions that were co-perturbed in disease may be uncovered.
In COPD, members of Proteobacteria, Actinobacteria, and
Firmicutes are main contributors to the biosynthesis of
palmitate, homocysteine, and urate that are postulated to
have disease-promoting effects. Palmitate is a known pro-
inflammatory agent associated with enhanced inflammation
[51] and oxidative stress [52] by activating inflammation-
related enzymes such as ACSL1 [53], and was reported to
be increased in COPD airways in previous studies [13, 50]
as well as in our cohort. Homocysteine, reported as elevated
in COPD and related to its severity [54], may achieve
its role through activating pro-inflammatory agent MMP9
via ERK1/2 pathway [55]. Urate could also have pro-
inflammatory effects via activation of CCL2 and NLRP3
inflammasome [56]. On the other hand, metabolites such as
butyrate, glutathione, aspartate, and glutamate, which ten-
ded to be enriched in Firmicutes and Bacteroidetes,
could have disease-ameliorating effects via protecting
SOD2-mediated oxidative stress [57], blunting CXCL1-
induced neutrophilic recruitment [58], controlling NLRP3
inflammasome-mediated IL-1β signaling [59], and sup-
pressing TLR4 and NOD signaling pathways [60, 61].

The main strength of this study is the development
of a comprehensive statistical framework to identify
host–microbiome interaction links leveraging the power of
public omic datasets through meta-analysis, and to validate
these links in the independent multi-omic data. We
demonstrated that there were common microbiome and host
signatures that can be revealed from public datasets when
analyzed properly, and those signatures that showed
coherent associations with disease across omics may con-
tain biologically meaningful links that can provide insights
into potential mechanisms of host–microbiome interaction.
This is helpful for generating testable hypotheses in parti-
cular in areas such as COPD airway microbiome where

paired multi-omics data remained scarce. More importantly,
the meta-analysis framework is set to provide a quantitative
context for host–microbiome interaction to facilitate biolo-
gical interpretation and prioritization for the associations
observed in the multi-omic data. This analysis is the first to
integrate disease-centric public omics data at the host-
microbiome interface and highlights the importance of
making raw data and associated patient metadata available
to enable more comprehensive meta-analysis.

It is important to recognize that the sequential inference
from microbial taxa, genes, metabolites to host targets, as
employed in our meta-analysis, came with inherent uncer-
tainties. For example, the microbial taxa to genes inference
can have uncertainties originated from a series of steps
including 16S rRNA gene sequence placement, phyloge-
netic hidden state prediction, and gene content prediction,
due to sequencing errors, incomplete nature of reference
database, insufficient resolution of 16S rRNA gene
sequence in species or strain-level discrimination and gene
content divergence at these finer taxonomic levels. Asses-
sing uncertainties in microbial gene-metabolite inference
would then require an in-depth understanding of the
expression of microbial genes in the ecosystems and their
regulatory mechanisms (i.e. with meta-transcriptome data),
the protein biosynthesis pattern (i.e. with meta-proteome
data), and the enzyme activities in catalyzing processes of
metabolite production. In light of these uncertainties, the
multi-omic inference using meta-analysis can only be
regarded as a hypothesis-generating tool that is subject to
extensive validation using independent omics data before
consideration for experimental exploitation. We note that
91.9% of metabolites inferred to interact with COPD-
associated host genes were identified in our metabolomic
data, possibly reflecting their central roles in host-
microbiome interactions and disease pathophysiology.
This suggests that utilizing host gene signature may increase
the confidence of microbiome metabolic prediction.

There are some limitations to our study. First, we inte-
grated microbiome and host transcriptome datasets across
studies, to enhance statistical power and identify disease-
associated signatures robust to inter-study variation. It is
important to note that, while we tried to account for data
heterogeneity, the microbiome data are not directly com-
parable across studies due to confounded effects of
experimental procedures, amplification regions and
sequencing platforms. As there is currently no optimal way
to correct for inter-study batch effects for microbiome data
[29, 62], we chose to limit our microbiome analysis to the
genus-level according to previous studies of the same kind
[15, 48], which effectively alleviated certain heterogeneity.
In the statistical meta-analysis, instead of directly pooling
raw datasets, we pooled summary statistics from each
individual dataset into a random effect model, which is a
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more statistically conservative approach but effective in
mitigating data heterogeneity [49]. Second, despite efforts
to integrate multi-omic data in the public domain, the cur-
rent study may still be under-powered, in particular due to
the lack of COPD airway metagenomic and metabolomic
datasets to generate highly robust disease signature.
Therefore we considered the results of this study encoura-
ging but preliminary in fully capturing the diversity and
functionality of the airway microbiome especially given the
heterogeneity nature of COPD. Third, in our analysis, only
two 16S rRNA gene and one metagenomic studies with
publicly available data had a case-control design, which
somewhat limited the power of meta-analysis. The field of
COPD airway microbiome has shifted from cross-sectional
case-control profiling to longitudinal follow-up of micro-
biome during disease progression, to gain insights into
microbiome’s temporal variability and possible cause–effect
relationship with disease [63]. We argue that additional
large-scale, case-control studies on COPD airway micro-
biome, preferably with a multi-omic focus, are still needed
to boost power for a robust identification of disease-
associated microbiome and host signatures. Last, our ana-
lysis was limited to the bacterial microbiome, yet myco-
biome and virome are key members of airway microbial
community whose roles are only beginning to be elucidated.

In summary, our multi-omic meta-analysis identified
functional signatures of COPD airway microbiome and
uncovered novel microbiome-metabolite–immunity inter-
actions that could be implicated in COPD pathogenesis.
Our analysis demonstrates the possibility of leveraging
integrated meta-analysis on public multi-omic datasets
to interrogate disease biology. Results in this study
may provide hypotheses for future mechanistic studies
toward understanding airway host–microbiome interactions
in COPD.

Data availability

The processed public 16S rRNA gene, metagenomics,
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Archive (CNSA) under accession code CNP0000837.
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