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Abstract
Lakes play a pivotal role in ecological and biogeochemical processes and have been described as “sentinels” of environmental
change. Assessing “lake health” across large geographic scales is critical to predict the stability of their ecosystem services and
their vulnerability to anthropogenic disturbances. The LakePulse research network is tasked with the assessment of lake health
across gradients of land use on a continental scale. Bacterial communities are an integral and rapidly responding component of
lake ecosystems, yet large-scale responses to anthropogenic activity remain elusive. Here, we assess the ecological impact of
land use on bacterial communities from over 200 lakes covering more than 660,000 km2 across Eastern Canada. In addition to
community variation between ecozones, land use across Eastern Canada also appeared to alter diversity, community
composition, and network structure. Specifically, increasing anthropogenic impact within the watershed lowered diversity.
Likewise, community composition was significantly correlated with agriculture and urban development within a watershed.
Interaction networks showed decreasing complexity and fewer keystone taxa in impacted lakes. Moreover, we identified
potential indicator taxa of high or low lake water quality. Together, these findings point to detectable bacterial community
changes of largely unknown consequences induced by human activity within lake watersheds.

Introduction

Lake ecosystems have garnered a large amount of attention
from researchers and policy makers in recent years as “sen-
tinels” of climate change and human impacts [1] owing to
their central importance in biogeochemical cycles [2]. This
role arises from their pivotal position within watersheds from

which they receive nutrients and environmental contaminants.
Consequently, many anthropogenic activities in the watershed
threaten the ecosystem and freshwater services provided by
lakes. For example, intense agricultural activity, and specifi-
cally the use of fertilizers within watersheds, has been con-
nected to lake eutrophication [3, 4], in conjunction with the
bloom of certain species of cyanobacteria [5], decreases in
oxygen conditions [6], and increased methane emissions [7],
while watershed urban development has been connected to
overall water degradation caused by road salt runoff [8, 9] and
phosphorus export [10]. However, many important human
impacts with significant consequences for ecosystem function
are likely undetected and therefore cannot be addressed by
policy or monitoring programs.

Bacterial communities mediate essential biogeochemical
processes within lakes. Recent advances in microbial
molecular ecology have demonstrated high taxonomical and
functional diversity of lake bacteria and links between shifts
in community composition and activity and ecosystem-level
responses [11, 12]. Given the high bacterial diversity and
ability to respond rapidly to changing environments, these
communities may be powerful indicators of environmental
stressors (e.g., excess nutrient loading, acidification, sali-
nification, metal contamination). However, little is known
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about the variability of freshwater bacterial communities
across large spatial gradients of land use (but see [13]).

Canada is responsible for the stewardship of more than
1,000,000 lakes, which make up 20% of the world’s fresh-
water stocks and provide the main source of drinking water
for many major Canadian cities [14, 15]. While there is no
one standard definition of lake “health” [16], we have pre-
viously described it as the departure of the ecological state of
a lake from the pristine state; the further removed from the
pristine state the less healthy a lake is [15]. While large-scale
assessments of lake health have been conducted elsewhere
[17, 18], no such survey exists for Canadian freshwaters.
In this context, the LakePulse network has embarked upon a
continental-scale assessment of lake health across Canada in
relation to anthropogenic activity as determined from satellite
imaging and lake environmental variables collected in situ.
In this study, we connect the bacterial community structure to
watershed agriculture, forestry, pasture, and urban develop-
ment in more than 200 lakes covering over 660,000 km2 in
Eastern Canada (Fig. 1a).

Lake bacterial communities are shaped by a multitude of
current and past selective pressures as well as processes of
drift, and the lakes sampled in the context of this study are
located in vastly different ecozones with diverse geographies
and geological histories [19]. Moreover, land use is not
independent of geography (e.g., agriculture is more intense in
certain regions of Eastern Canada). Bearing this in mind, we
designed the study in order to sample lakes with varying
degrees of human impact in their watershed to investigate
potential human-mediated community changes beyond the
scope of spatial variation due to geography and geology [15].

We aim to untangle the underlying proximate environ-
mental variables that cause the community shifts observed,
as well as describe how anthropogenic impacts change
bacterial interaction networks. Lastly, we use the scope of
our dataset to investigate the relative strengths of different
processes of community assembly such as drift and selec-
tion. We found that bacterial community diversity, richness,
and composition correlated with watershed anthropogenic
activity, specifically agriculture and urban development,
which themselves were related to variation in lake salinity.
Moreover, highly impacted watersheds harbored more
fragmented bacterial communities with fewer keystone taxa,
which could affect ecosystem function and resilience.

Methods

Lake selection

Lakes were selected across Eastern Canada as described in
detail in [15]. Briefly, lakes were picked in a random
sampling design with ecozone, lake size and human impact

index (HII) as stratifying factors. Canadian ecozones
(represented by AH: Atlantic Highlands, AM: Atlantic
Maritime, BS: Boreal Shield, and MP: Mixedwood Plains,
all in in south-eastern Canada) represent regions with dis-
tinct geological, climatic and ecological features [19]. For
each lake within 1 km of a road the watershed was deli-
neated as described in [15] and briefly in the Supplementary
methods section. Independence of the watersheds of all
lakes was confirmed. Within the watershed, each pixel was
assigned a human impact value between 0 and 1 depending
on their category (urban development/road: 1; mines/oil: 1,
agriculture: 1, pasture: 0.5, forestry (recent clear-cuts [20]):
0.5, natural landscapes: 0) and the average HII for the lake
calculated across the watershed. Across the ecozones of
Eastern Canada, the mines/oil category was found to be
negligible in magnitude (only five lakes total with >1%
mining within their watershed and only one lake with >5%
mining) and was thus not explicitly considered in the ana-
lyses of specific land use classes herein. Overall, nearly
80,000 watersheds were delineated, and lakes were chosen
for sampling such that they represented different ecozones,
sizes, and HIIs [15].

Surface water sampling

The surface water of 220 lakes (Fig. 1a) was sampled during
the time of maximum summer lake stratification between
July and September 2017 at the deepest point of each lake
(as measured on site using a sonar). The depth of the
euphotic zone was determined as twice the Secchi disk
depth and an integrated epilimnion sampler (detail in the
Supplementary methods section) was used to sample to that
depth, or to a depth of 2 m, whichever was shallower.
Surface water samples mostly comprised the lake epi-
limnion (change of temperature along the depth of the
sampling tube <1 °C), except in ~2% of cases in which we
also sampled the upper edge of the metalimnion in stratified
or partially stratified lakes (Supplementary Table 1). Water
samples were immediately transferred and stored in the cold
and dark until subsequent processing with a maximum
delay of 3 h. Water samples were filtered on site through a
Durapore 0.22 µm membrane filter (Sigma-Aldrich, St.
Louis, USA) using a Gast Pressure pump (Fisher Scientific,
Quebec, Canada) and the filters immediately frozen at −80
°C until analysis. We aimed to filter 500 ml of water for
each sample but stopped filtration at a lower volume if the
filter clogged. If the filter showed no color at 500 ml, we
filtered larger volumes until a coloration of the filter was
observed. For each lake we used the same water sample to
determine dissolved organic and inorganic carbon
(DOC and DIC (mg/l), Supplementary material), total
nitrogen (TN (mg/l) [21]), concentrations of the ions mag-
nesium, potassium, sodium [22], chloride, and sulfate [23]
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Fig. 1 Bacterial community composition of four ecozones across
Eastern Canada. a Map of Eastern Canada showing 210 sampled
lakes colored by their human impact index (HII) and underlying
regional land use. b–e Detailed maps for the four ecozones studied
here. Lakes are numbered by increasing HII values within each

ecozone. Stacked bar charts surrounding each ecozone map show
the relative abundance of phyla for each lake (sorted by HII value).
The five most common phyla across all lakes are colored according to
the legend, all other phyla are shown in dark gray.
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(all in mg/l). The average concentration of dissolved oxygen
(DO, mg/ml) over the same sampling depth was measured
by averaging the values from a multiparameter probe profile
(RBR Maestro3 profile, RBR Ltd., Ottawa, Canada;
with a fast oxygen probe Rinko III, JFE Advantech Co.,
Nishinomiya, Japan) over that depth.

DNA extraction and sequencing

DNA was extracted from filters with PowerWater kits
(Mobio Technologies Inc., Vancouver, Canada) and the V4
region of the 16S rRNA gene PCR-amplified using the
standard primers U515_F and E786_R before sequencing
on an Illumina MiSeq machine. DNA extraction and
sequencing succeeded for 212 of the 220 samples. Details
of PCR and sequencing reactions can be found in the
Supplementary material. Sequences are deposited under
accession number PRJEB38100 in the European Nucleotide
Archive (www.ebi.ac.uk).

Sequence data processing

Read files were demultiplexed using idemp [24] and Illu-
mina adapters removed with cutadapt [25]. Reads were
processed using the DADA2 package in R [26]: Reads were
trimmed, merged, chimeras removed, and taxonomy of
amplicon sequence variants (ASVs) assigned to the genus
level using the freshwater-specific Fresh Train taxonomic
database [27] or, if no classification with the freshwater-
specific database was possible, the SILVA database (ver-
sion v128align) [28] to obtain an ASV table. Further ana-
lysis of the ASV table was done using the phyloseq package
in R [29]. ASVs from chloroplasts were removed before
rarifying the data to a common read depth of 15,000 reads
after removing two lakes with <15,000 reads. A phylogeny
of the remaining 11,510 ASVs was created using FastTree
[30]. Bacterial diversity (Shannon–Weaver and Inverse
Simpson indices) or richness (Chao1 index) of each lake
was calculated as implemented within the phyloseq
package.

Processing of environmental and spatial data

To describe the complex dataset in a concise way and
include both spatial and environmental effects we used a
dimension reduction approach that included both spatial
eigenvectors and environmental variables. To describe
spatial effects, we calculated Moran’s eigenvector maps
(MEMs) based on distances between lakes (in km) (ade-
spatial R package; [31]). MEMs allow the modeling of
complex geographic patterns of higher order (e.g., non-
linear) than simple distance–decay relationships. For
example, MEMs can model “plateaus” where lakes are quite

similar even though they are far apart in space (as could
occur within a homogenous ecozone for example), as well
as describe spatial decay over varying scales. We visually
inspected the MEM eigenvalue distribution and chose the
first six MEMs to describe spatial structure within our
system as they encompass most of the spatial variation.
Maps of the first six MEMs are shown in Supplementary
Fig. 1. We extracted the six MEMs’ coordinates and com-
bined them with data on the lake area, lake depth, DOC,
DIC, TN, DO, magnesium, potassium, sodium, chloride,
and sulfate. Lakes with missing data for any of these vari-
ables were removed, leaving 167 lakes.

To reduce dimensionality and ensure independence
between environmental and spatial variables a PCA (after
scaling of the environmental variables) was performed for
the remaining lakes (rda function, vegan R package [32]).
The first seven principal component axes (PCs) were chosen
for further analysis as they represented more variation than
the mean. Factor loadings for these PCs are shown in
Supplementary Table 2. We considered factor loadings ≥|
0.43| to be significant [33]. Ecozone, HII, and size class
membership, as well as environmental data for each lake
can be found in Supplementary Table 1.

Linear modeling of diversity and community
composition analyses

We first tested the overall impact of geographic variation (in
the form of either ecozone or longitude and latitude) on
bacterial diversity and richness using the anova and lm
functions as implemented in R [34]. To examine whether
there was an impact of human alteration of watersheds on
bacterial diversity and richness, we modeled the impact of
the HII variable in conjunction with ecozones, as well as
percent land use types (see Supplementary Table 1) in the
watershed on different bacterial diversity and richness
measures using linear models, generalized least squares
models (GLS models; nlme R package [35]) and linear
mixed models (LMM; lme4 package [36]). LMM addi-
tionally contained ecozone as a random effect, but in most
cases either fit worse than the corresponding GLS model or
failed to converge.

To further explore the connection between HII, envir-
onmental and spatial factors, and bacterial diversity and
richness, we performed structural equation modeling (SEM)
(lavaan R package [37]). We considered the impact of HII
onto the first seven environmental and spatial PCs, as well
as the impact of the PCs and HII directly onto ranked
diversity. In addition, we modeled the impact of land use
classes on the environmental PCs directly (Supplementary
material). Models were only considered to fit better than the
null model if the chi-square p value was >0.05 and the
comparative fit index >0.95.
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We investigated geographic variation in beta diversity
using PERMANOVA tests (adonis function, vegan R
package [32]) with either ecozone or longitude and latitude
as explanatory variables. To investigate the impact of the
environmental and spatial factors (coded as PCs) on com-
munity composition, we utilized a PERMANOVA test [32].
In addition, we performed forward selection distance-based
redundancy analysis (db-RDA) to determine how MEMs
and watershed land use impact community composition
(capscale function; vegan R package [32]). In db-RDA,
taxa are first transformed into synthetic, uncorrelated vari-
ables and then explanatory variables are added one after
another to the model to assess their ability to explain var-
iation within the response matrix. In addition, we performed
a corresponding NMDS analysis (function metaMDS [32])
and performed a post hoc fitting of land use and spatial
variables.

Networks of lake bacterial communities

To examine whether human alteration within watersheds
qualitatively influences the structure of bacterial interac-
tions, we performed network analysis. Lakes were assigned
to a low (HII 0–0.1, 91 lakes), medium (HII > 0.1 and ≤0.5,
96 lakes), or highly impacted (HII > 0.5, 23 lakes) class.
Within each network dataset, we excluded ASVs that were
not present in at least 10% of the samples, resulting in 826
ASVs in low-HII lakes, 775 ASVs in medium-HII, and 764
ASVs in high-HII lakes. We followed a combinatorial
approach to determine significant connections between
ASVs using both the maximum information criterion (MIC)
[38] and sparse inverse covariance estimation (spiec.easi)
[39] as detailed in the Supplementary material. To deter-
mine significant co-occurrence patterns using MIC, we
bootstrapped matrices 999 times and recalculated MIC
values. We obtained quasi p values by counting the number
of permutated MIC values larger than the observed “real”
MIC value and dividing this number by 999. Quasi p values
were corrected for multiple testing using the false discovery
rate (fdr) method as implemented in R and only edges with
a corrected p value below 0.05 retained.

We determined order influence within high, moderate, and
low-impact networks by dividing the total number of edges of
each order by the number of nodes belonging to the order
(excluding orders only represented by a single ASV or absent
in any of the networks) [40]. Moreover, we dropped all ASVs
that could not be identified to the order level.

Indicator species of lake health

High or low-HII environments may be characterized by the
presence of specific taxa which can thus serve as indicators
of environmental quality. We investigated potential

indicator species of high and low-impact lakes based on
abundance changes of taxa in pairs of lakes that were
geographically similar but varied with respect to their HII.
The log-ratio of ASV abundance change between paired
lake communities was compared to control lake pairs
(which were pairs of geographically similar lakes that were
either both low or both highly impacted). To control
for geographic variation as much as possible, all lakes
compared were chosen from within the same ecozone. In
addition, we screened all ASVs for rank changes of at least
33% between paired impacted and pristine lakes as descri-
bed in detail in the Supplementary material.

Community assembly processes of lake bacterial
communities

We defined generalist and specialist taxa within our
dataset as follows: ASVs present in 158 lakes or more
(at least 75% of the dataset) were considered generalists,
while ASVs present in ten lakes or less (5%) and with a
total relative abundance higher than 2% across all
lakes were considered specialists [41]. We investigated
distance–decay curves between community dissimilarity
(determined as the Bray–Curtis dissimilarity as calculated
using the vegdist function in vegan [32], and the distance
between the lakes (in km)) using Mantel tests with 9999
permutations (p values corrected using the “holm” method
as implemented in R [34]).

We followed the null model method as proposed by
Stegen et al. [42] to determine quantitative estimates for the
strength of selection, dispersal limitation, and ecological
drift in the lake communities on a subsetted dataset in which
rare taxa (abundance <500 across all lakes) were removed
(679 ASVs remaining) as detailed in the Supplementary
methods.

Results

Bacterial diversity patterns across geography and
land use gradients

An overview of the relative abundances of the five most
common phyla across all lakes sorted by increasing HII
values, as well as the spatial location of lakes are shown in
Fig. 1. We first investigated the impact of geographic var-
iation on bacterial diversity and richness. Geographic var-
iation coded as longitude and latitude did not significantly
impact Shannon–Weaver diversity or the inverted Simpson
index (all p > 0.05, slopes and effect sizes in Supplementary
Table 3), but did impact Chao1 richness (latitude: slope:
19.702, p= 0.0047; longitude: slope: −3.459, p= 0.0399,
R2-estimate 0.612, Cohan’s f= 0.0652). Correspondingly,
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ecozone did not significantly impact Shannon–Weaver or
inverted Simpson measures, though ecozone was nearly
significant in the case of the inverted Simpson index (Sup-
plementary Fig. 2A, B, Shannon–Weaver index: p= 0.23,
R2-estimate 0.0205, Cohan’s f= 0.021; inverted Simpson
index: p= 0.0525, R2-estimate 0.0366, Cohan’s f= 0.038).
In contrast, ecozone significantly impacted Chao1 richness
measures (p= 0.0009, R2-estimate 0.0766, Cohan’s f=
0.093, Supplementary Fig. 2C).

Next, we investigated the relationship between the HII,
ecozone variation, and bacterial diversity and richness (all
model details in Supplementary Table 3) of lake communities.
Overall, we detected a significantly negative impact of HII,
but not ecozone on Shannon–Weaver diversity (p values:
0.035, 0.226, R2-estimate 0.0416, Cohan’s f= 0.0434).
In contrast, neither HII nor ecozone were significant for
the inverted Simpson index (though ecozone was marginal:
p values: 0.292, 0.0524, R2-estimate 0.0419, Cohan’s f=
0.0437), and only ecozone impacted the Chao1 index sig-
nificantly (p values: 0.414, 0.0009, R2-estimate 0.0796,
Cohan’s f= 0.0865; Supplementary Table 3).

Land use is not evenly distributed across ecozones
(Fig. 1) and we therefore investigated whether differences in
land use could be correlated with the patterns observed.
Modeling Shannon–Weaver diversity as a function of dif-
ferent land use classes, we found the percentage of forestry
(defined as forest cuts within the last 6 years) within a
watershed to have a significantly positive impact (slope:
1.26, p= 0.0066), while the percentage of urban develop-
ment had a nearly significant negative impact (slope: −0.67,
p= 0.0565, total model: R2-estimate 0.137, Cohan’s f=
0.158). We obtained similar results using the other diversity
or richness indices (Supplementary Table 3).

To further investigate the relationship between HII and
diversity and to try to untangle geographic from anthro-
pogenic effects, we performed SEM to investigate the
relationship between HII and the first seven PCs (including
the spatial MEMs as well as environmental variables) and in
turn the impact of the PCs onto ranked Shannon–Weaver
diversity (Fig. 2) and other diversity or richness measures
(Supplementary Table 4). The SEM (χ2= 5.684, DF= 21,
p= 1.00, CFI= 1.00) showed a significant positive
impact of PC2 (p < 0.001) and PC6 (p= 0.006) on
Shannon–Weaver diversity. PC2 is negatively loaded with
lake depth, while PC6 carries the spatial eigenvector
MEM2. PC6 was in turn significantly positively impacted
by the HII variable (p= 0.031). In addition, we detected a
nearly significant negative impact of PC1 (p= 0.056) on
diversity. While PC1 did not carry significant loadings, it is
strongly negatively loaded with the ions Mg+2, K+, Ca+2,
and Cl−. PC1 was strongly positively impacted by the HII
variable (p < 0.001). Lastly, the HII variable also directly
impacted ranked diversity (p= 0.008). All parameter

estimates, exact p values, and effect sizes of this and other
models can be found in Supplementary Table 4.

Thus, HII was associated with increased lake ion con-
centrations, which in turn led to a decrease in bacterial
diversity (Fig. 2). Moreover, diversity was impacted or
correlated with lake depth. The link between HII, PC6
(loaded with a spatial eigenvector), and diversity may
indicate correlation with an unmeasured environmental
variable. Lastly, HII also negatively impacted diversity
independent of the environmental PCs considered here,
suggesting unknown environmental or spatial variables.

To understand the cause of the impact of the HII vari-
able, we examined the underlying land use classes and
investigated their relationship with ranked diversity and the
seven environmental PCs in an additional SEM (Supple-
mentary methods, Supplementary Fig. 3). We found PC1 to
be significantly positively associated with agriculture, urban
development, and pasture within the watershed. Similar
results were obtained when using the ranked Inverse
Simpson index or Chao1 richness as dependent variables in
SEMs (Supplementary Table 5).

Community composition across geography and land
use gradients

We investigated the impact of geographic variation on
community structure using PERMANOVA tests. Both
longitude and latitude significantly impacted community
composition but explained only a small amount of the

Fig. 2 Graphical representation of the structural equation model
testing the impact of human impact index (HII) on environmental
principal components (PCs) and in turn on Shannon–Weaver
diversity. All paths were tested, but only those showing significant
(p < 0.05, solid lines) or nearly significant (p < 0.1, dashed lines)
correlations are shown. Positive interactions and loadings are shown in
black, negative interactions in gray. Entries into PC boxes indicate
significant factor loadings, except for PC1, where no environmental
factor had a significant loading. Positive factor loadings are shown in
black, negative ones in grey. Instead we report the highest loading
non-significant factors for this PC. Numbers associated with arrows
show the correlations between each explanatory and response variable.
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variation observed (latitude: p= 0.001, R2= 0.02; long-
itude: p= 0.001, R2= 0.04). Similarly, a model with eco-
zone as an explanatory variable significantly correlated with
community composition, but only explained ~8.5% of the
variation observed (p= 0.001, R2= 0.085).

To decompose geographical from anthropogenic effects,
we conducted PERMANOVA with the first seven environ-
mental and spatial PCs as explanatory variables. All PCs
except PC7 were found to significantly impact community
composition (all p < 0.05). PC1, carrying ion concentration
loadings, showed the highest R2 value in the model (0.062),
but all factors included in the model only explained a relatively
small amount of the total variation (~18%, Cohan’s f= 0.217).

We utilized db-RDA to select watershed-scale variables
impacting community composition. A full model containing
the spatial eigenvectors, lake morphometric parameters
(lake depth and area), and land use data was found to be
significant (p= 0.001), so we proceeded with forward
selection. Overall, a model containing the land use classes:
natural landscapes, forestry, agriculture, pasture, and urban
development in the watershed, as well as the first four
MEMs, and lake depth was selected as the best model
(Fig. 3). However, the model only explained ~15% of the
variation observed (Cohan’s f= 0.175). An NMDS analysis
showed qualitatively similar results (Supplementary Fig. 4).

Land use impact on community interactions

To determine how anthropogenic impact may alter the
structure of bacterial interactions, we constructed networks

of high, moderate, and low-HII lake communities. These
co-occurrence networks describe the tendency of specific
taxa to either co-occur or exclude each other in lakes of a
specific HI class compared to randomized interactions.
Low-HII lake communities showed significant co-
occurrence patterns for 179 nodes (taxa) with a total of
193 edges (co-occurrence connections). Moderate impact
communities had significant co-occurrence networks for
145 nodes and 163 edges, while high impact communities
had 220 nodes and 174 edges. Networks were more frag-
mented under high human impact (low: 24 components,
moderate: 13 components, high: 59 components) and the
clustering coefficient as well as the centralization value
decreased with increasing HII (Fig. 4). Both low and
moderate impact lake communities were characterized by
ASVs having similar average numbers of neighbors (low:
2.16, medium: 2.25) and keystone taxa (with over five
connections each: low: 13, moderate: 11), whereas ASVs in
highly impacted lake communities had on average fewer
neighbors (1.58). Lastly, highly impacted lakes only had
two keystone taxa (taxa with >5 edges, Fig. 4). Keystone
species mostly belonged to common, cosmopolitan fresh-
water taxa and comprised nine ASVs belonging to the order
Acidimicrobiales, six ASVs belonging to the Burkholder-
iales and five ASVs belonging to the Frankiales (Supple-
mentary Table 6).

We determined whether specific bacterial orders varied
in their influence in high, moderate, or low-HII lakes by
dividing their number of total edges by the number of nodes
of a given order. We identified 17 orders, which were
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represented in all three sets of networks (Supplementary
Table 7). Four of these orders changed consistently between
low, moderate, and high lake networks. Burkholderiales
ASVs, Frankiales ASVs, and Rhizobiales ASVs had
decreasing influence from low to moderate to high impacted
networks, while verrucomicrobial OPB35 ASVs’ influence
increased. Furthermore, Acidimicrobiales and Planctomy-
cetales ASVs were of relatively low influence in high
impact networks, but of higher influence in moderate and
low impacted networks.

We investigated potential indicator species, i.e., species
that can be used as ecological indicators for specific envir-
onmental conditions due to their niche preferences, for high or
low-impact lakes using log-ratio and rank abundance changes
of ASVs. Overall, no strong indicator patterns emerged,
demonstrating the high variability of freshwater communities
under both pristine and impacted conditions. Log-ratio
changes in treatment (pristine–impacted), but not control
(pristine–pristine or impacted–impacted), lake pairs were
detected for six ASVs in AH, two in AM, nine in BS, and ten
in MP. In total, 26 ASVs showed significant log-ratio chan-
ges, but these ASVs rarely overlapped between ecozones.
Taking into account ASV taxonomy, we found ASVs
belonging to the Burkholderiales betI-A clade and of the
cyanobacterial Synechococcales to be associated with low-
impact lakes across three and two ecozones, respectively
(Supplementary Table 8).

Ninety-five ASVs were found to show significant rank
abundance changes between high and low-impact lakes, but
not between control lake pairs (17 ASVs in AH, 19 in AM,
46 in BS, 25 in MP, Supplementary Table 9). Specific taxa
were associated with changing lake conditions across eco-
zones. For example, the Burkholderiales betI-A clade
(represented by six ASVs) was associated with low-impact
lakes in all four ecozones, except for one ASV, which was a
high impact indicator in AH.

Evolutionary and ecological processes shaping lake
bacterial communities

We did not detect any low-occupancy (present in <5% of
lakes), high-abundance (total abundance across all lakes
more than 2%) specialists within our dataset. In contrast, we
identified 25 generalists, which were present in 75% or
more of lakes. The most common generalist lineage was the
actinobacterial acI lineage (9 ASVs), followed by the
betaproteobacterial betI lineage (5 ASVs). Other lineages
represented included actinobacterial acIV (2 ASVs), beta-
proteobacterial betIV (2 ASVs), and Bacteroides bacI
(2 ASVs) (Supplementary Table 10).

Overall, we found bacterial communities to be less
similar the further apart in space they were sampled (Mantel
test, p < 0.001, Supplementary Fig. 5A). Specifically, across
all communities investigated, lakes sampled up to ~350 km
apart were significantly more similar than expected by
chance (Mantel correlogram analysis of spatial correlation
values as a function of distance, p= 0.004, Supplementary
Fig. 5B). To determine the causes for this structure, we
performed a quantitative analysis of the community
assembly processes shaping lake communities to estimate
the relative strength of selection and drift processes in our
dataset. Following [42], we utilized two measures to
quantify the strength of selection and drift within our sys-
tem. β-mean-nearest taxon distance (βMNTD) quantifies the
phylogenetic distance between each ASV in a community
and its closest neighbor in a different community. High
values of βMNTD may indicate heterogeneous (or diversi-
fying) selection while low values may indicate homo-
geneous (or purifying) selection. βMNTD is expressed as
the deviation from a null model (based on randomly shuf-
fling species identities and abundances) as the β-nearest
taxon index (βNTI). βNTI values lower than −2 indicate
lower than expected phylogenetic turnover (e.g., due to

Low
HII: 0-0.1

Moderate
HII: 0.1-0.5

High
HII: > 0.5

Centralization: 0.056
Clustering coef.: 0.119
Av. # neighbors: 2.16

24 fragments
13 keystone taxa

Centralization: 0.041
Clustering coef.: 0.09
Av. # neighbors: 2.25

13 fragments
11 keystone taxa

Centralization: 0.03
Clustering coef.: 0.031
Av. # neighbors: 1.58

59 fragments
2 keystone taxa

Fig. 4 Co-occurrence networks
of high, moderate, and low-
impact lake communities.
Nodes are colored by their
degree (from yellow
representing only a single
connection over green to dark
blue indicating a large number
of connections). Smaller
visualizations under the main
network show network
fragments in the dataset.
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homogeneous selection), while βNTI values above two
indicate higher than expected phylogenetic turnover (e.g.,
heterogeneous selection) [42]. Secondly, we assessed the
magnitude of drift in our system using an extended
Raup–Crick (RC) index, which takes into account relative
abundances of ASVs. A null model of RC values was
constructed by calculating the Bray–Curtis dissimilarity of
999 probabilistically assembled communities based on ASV
prevalence and relative abundance. The deviation between
the empirical and permutated RC values was standardized to
vary between −1 and 1 and is referred to as RCBray. RCBray

between −0.95 and 0.95 indicate that the observed turnover
is consistent with the action of drift, while values higher
than 0.95 or lower than −0.95 indicate dispersal limitation,
or, respectively, homogenizing dispersal [42].

Firstly, we determined whether we could detect a phy-
logenetic signal within our data (i.e., whether closely related
species had similar niches) by testing for a correlation of
phylogenetic distance, based on the cophenetic distance
from a phylogenetic tree of the 16S rRNA amplicons, with
ecological distance (differences in abundance patterns
expressed as Bray–Curtis dissimilarity). Overall, we found a
significant decay of phylogenetic distance with ecological
distance (Mantel test: p < 0.05, Supplementary Fig. 5C).
Specifically, and as expected, we detected a phylogenetic
signal over relatively short phylogenetic distances (cophe-
netic distance > 0.365), indicating that the βNTI, which
indicates the impact of selection on community composi-
tion, is an appropriate metric in our dataset to measure
phylogenetic turnover [42].

Within the 21,945 community comparisons possible with
our data, we found selection to be responsible for 12.3% of
the observed community turnover (βNTI > |2|). Most selection
increased community similarity (homogeneous selection
βNTI <−2: 9.6%), while only 2.7% of community turnover
was consistent with heterogeneous selection (βNTI > 2). Of
the remaining 87.7% variation, 16% was governed by dis-
persal limitation (βNTI <| 2| and RCBray > 0.95), whereas
39.1% was attributable to homogenizing dispersal (βNTI < |2|
and RCBray < 0.95). This leaves 32.6% of community turnover
attributable to ecological drift (e.g., stochastic processes)
alone (Supplementary Fig. 5D). Environmental PCs asso-
ciated with either selection or drift processes are described in
the Supplementary results section.

Discussion

In our dataset, encompassing over 200 lakes located across
Eastern Canada, we sampled across large spatial scales and
lakes are thus characterized by diverging geological his-
tories and large-scale geographic variation, which are
roughly represented by the ecozone concept [15]. This

large-scale spatial variation had a relatively small, but sig-
nificant impact on lake bacterial communities both with
respect to alpha diversity and richness measures, as well as
community composition. The present study was designed in
order to determine the impact of land use (and specifically
land use associated with human activities within the
watershed) on lake bacterial communities across Eastern
Canada. However, land use is not independent of geo-
graphy, requiring us to separate, as much as possible,
general geographic effects from those that may be caused
by anthropogenic impact. Overall, we were able to detect
correlations between watershed anthropogenic activity and
surface water bacterial community composition. Despite a
large fraction of unexplained variation in the dataset, we
found that models containing land use explained more
variation than those only containing factors encoding geo-
graphic variation. Thus, human-mediated land use appeared
to be related to lake bacterial communities above and
beyond the effects of geographic variation alone, but the
large amount of unexplained variation in our dataset war-
rants further investigation.

Human impact on bacterial diversity and
community composition

The HII variable was found to be associated with surface
water communities with significantly lower diversity. Spe-
cifically, high-HII values were associated with high chlor-
ide, calcium, magnesium, and potassium values, which in
turn were associated with reduced diversity. Salinity has
been shown to be a major factor structuring bacterial
diversity in a range of environments [43–45], but the effect
of salinity on diversity in lake systems is less clear [46, 47].
Importantly, these findings point to a significant impact of
salt contamination on the bacterial community even at
relatively low levels of salinity (and well below the chronic
pollution thresholds for chloride ions at 230 mg/l) and thus
suggests that bacterial ecosystem services in lakes may be
vulnerable to salt contamination.

Even though our sampling design does not allow us to
separate natural variation in salinity from salt contamina-
tion, PC1 was found to be impacted by agriculture, pasture,
and urban development within the watershed, indicating
road salt (including rock salt (NaCl) and other de-icers such
as potassium chloride, calcium chloride, and magnesium
chloride) as one likely source for the environmental vari-
ables loaded onto the PC. Chloride concentrations in
streams and lakes have been previously shown to be driven
by the application of road salt [48, 49] and even relatively
low road cover within a watershed (~1%) has been linked to
increased chloride concentrations within lakes [9].

Another possible source for some of the ions loading
onto PC1 are fertilizers, including potassium from potash
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and calcium as part of phosphate and nitrate-based fertili-
zers. Most studies focus on the impact of nitrogen and
phosphate in fertilizers on bacterial blooms and phyto-
plankton communities [50–52], but the impact of fertilizer
cations is less clear. However, calcium has been shown to
influence the bioavailability of phosphorous in lakes [53].

Community composition was also structured by
landscape-scale variables. Lake communities were impacted
by nearly every factor explored here, ranging from lake
morphometry to most land use classes and spatial compo-
nents. However, although most factors that we included in
our models were significant, our models were only able to
explain a small proportion of lake community composition
overall (~9–18%). Thus, despite the inclusion of over 30
partially nested variables in the models, we acknowledge
that we still fall short of describing the majority of the
prokaryotic community diversity observed in this system.

Human impact on bacterial interaction networks

Overall, anthropogenic activity is associated with shifts in
bacterial community composition. To relate these shifts to
community stability and functionality, we investigated how
communities in lakes with high, moderate, or low human
impacted watersheds were altered in their interactions and
co-occurrences. As we were interested in overall community
structure rather than specific group interactions (e.g., [54]),
we treated all interactions (positive and negative) as undir-
ected, to facilitate analysis. As all lake communities
belonging to a specific impact class were used to calculated
occurrence patterns within the low, moderate, or high HII
network, we are not able to replicate the networks
themselves within each broad impact category. Thus, all
comparisons between networks are qualitative, while
co-occurrence links within networks are those deemed
significant across all lakes within the category. Significant
co-occurrence within a network may indicate that taxa are
directly interacting but may also show taxa as co-occurring
due to overall niche similarity (or competitive exclusion in
the case of negative co-occurrence). While lake networks
constructed from communities from low and moderately
impacted watersheds were similar, we detected altered
structure and topology in networks from highly impacted
lakes. Even though communities from highly impacted lakes
had the highest number of taxa involved in significant co-
occurrences (220 taxa), the number of significant connec-
tions did not scale up proportionally, resulting in, on aver-
age, less neighbors per node in these communities than in
moderate or low impacted communities. In turn, this resulted
in less highly connected keystone taxa and thus a more
fragmented network. This higher number of fragments cor-
relates with a lower clustering coefficient (which indicates
the average number of actual three-node connections that

each node has compared to the possible number of three-
node connections). Likewise, highly impacted networks
showed lower network centralization. Higher levels of cen-
tralization (i.e., average number of nodes connected to each
node or how “star-shaped” a network structure is) have been
linked to increased system stability in root microbiomes [40]
and lake systems [55].

Interestingly, moderate HII communities seemed to be
only marginally impacted with respect to their co-occurrence
network in comparison with low-impact communities. This
finding may indicate a buffering effect in which microbiomes
are able to maintain most ecosystem functions despite shifts
in the underlying taxa performing them, for example via
functional redundancy. The altered pattern in high impacted
community networks may indicate that once a threshold is
reached, the system’s buffering capacities are exhausted, and
that specifically the loss of highly connected and influential
keystone taxa may lead to cascading effects of community
fragmentation [55]. Alternatively, the patterns could indicate
that while low and moderately impacted lakes are quite
similar to each other, highly impacted lakes may be overall
more variable or that, depending on the exact nature of the
anthropogenic impact, multiple high impact communities
may exist.

Ecological and evolutionary processes structuring
lake communities

In addition to investigating the effect of watershed anthro-
pogenic activity, the large spatial scale of the study allowed
us to assess the ecological and evolutionary processes
structuring lake bacterial communities in Eastern Canada in
general, as has been previously done in a range of bacterial
communities including aquifers [42] and the ocean [56].
Firstly, we investigated whether we could identify generalist
and specialist taxa within our dataset [41]. We were able to
identify 25 generalist taxa with an occupancy of over 75%
in our dataset, including well-known cosmopolitan fresh-
water lineages such as the actinobacterial acI clade ASVs,
betaproteobacterial betI ASVs, and an alphaproteobacterial
LD12 ASV. In contrast, we were unable to identify any
specialist (low occupancy but relatively high abundance)
ASVs, indicating that taxa have either low abundance or
wider distributions.

We also utilized the dataset to investigate patterns in
community assembly. In accordance with the absence of
specialists, we found heterogenizing selection to be only
responsible for a very small amount of community varia-
tion. Rather, lake ecosystems seemed to be extensively
connected by homogenizing dispersal and successful
lineages were thus able to establish themselves in other
communities (homogenizing selection). Consequently, dis-
persal limitation was not found to be an important factor
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structuring lake bacterial communities and instead, ecolo-
gical drift processes were prevalent. We are not aware of
any comparable study of community assembly in lakes, but
it was noticeable that, in our system, selection was a much
less powerful force shaping communities than in subsurface
or marine ecosystems [42, 56].

Caveats and conclusion

Data obtained within the first sampling season of the Lake-
Pulse project allows an unprecedented insight into how
bacterial communities vary across landscapes in relation to
geography and anthropogenic impact. However, the large-
scale nature of the project and the sampling effort involved
also lead to several caveats. Due to technical difficulties we
were unable to measure pH and total phosphorus directly for
a large quantity of the lakes and were thus not able to include
these variables in our models. pH has been previously shown
to be a key driver of bacterial community structure in a range
of environments [57–59]. pH is a complex variable and
correlated to some degree with the concentrations of ions
such as chloride and ammonium within the water, lake
geography and morphometry, phytoplankton biomass
[60, 61], and time of day [62]. Likewise, phosphate con-
centrations have been shown to impact lake bacterial com-
munity compositions [63, 64] and sediments [65] but were
not taken into account in this model. As phosphate, in
combination with nitrate and ammonia, is often used in
agricultural settings, we expect some positive correlation
between phosphate and nitrogen-species but are unable to
directly investigate its role in bacterial community diversity.
Nutrient availability is strongly linked with chlorophyll-a
concentrations, which have been used to predict lake nutrient
status and link eutrophication to land use [66–68]. We sus-
pect that at least some of the unexplained variation in our
system is connected to these missing environmental vari-
ables. Likewise, we limited our analysis to only include
abiotic factors as explanatory variables of bacterial commu-
nity structure. However, biotic interactions are not only likely
to be altered by environmental factors, as shown here via
network analysis, but can also exert strong biological control
mechanisms, for example via anticompetitor compounds
[69], predator-prey, or mutualistic relationships across
trophic levels. Future work within the project is aimed at
incorporating bacterial diversity into a food web framework
utilizing phytoplankton and zooplankton data also collected
from the lakes, as well as deepening our functional under-
standing of lake communities using metagenomics. More-
over, current sampling efforts are underway that will allow us
to include more lakes to extend our frameworks to all of
Canada, including regions of extremely high human impact
and associated environmental decay due to agriculture and
mining.

In conclusion, we used an extensive dataset of lake
bacterial communities to model the impact of anthropogenic
activity across vast areas of Eastern Canada. Human impact,
and specifically variables related to urban and agricultural
development within watersheds, appeared to have an effect
on lake communities and showed that when high-intensity
human activities alter more than about 50% of a watershed,
fragmentation of bacterial communities may be observed
which may ultimately be tied to the decline of the ecosys-
tem services provided by them.
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