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Abstract
To analyze pedigrees with quantitative trait (QT) and sequence data, we developed a rare variant (RV) quantitative
nonparametric linkage (QNPL) method, which evaluates sharing of minor alleles. RV-QNPL has greater power than the
traditional QNPL that tests for excess sharing of minor and major alleles. RV-QNPL is robust to population substructure and
admixture, locus heterogeneity, and inclusion of nonpathogenic variants and can be readily applied outside of coding
regions. When QNPL was used to analyze common variants, it often led to loci mapping to large intervals, e.g., >40Mb. In
contrast, when RVs are analyzed, regions are well defined, e.g., a gene. Using simulation studies, we demonstrate that RV-
QNPL is substantially more powerful than applying traditional QNPL methods to analyze RVs. RV-QNPL was also applied
to analyze age-at-onset (AAO) data for 107 late-onset Alzheimer’s disease (LOAD) pedigrees of Caribbean Hispanic and
European ancestry with whole-genome sequence data. When AAO of AD was analyzed regardless of APOE ε4 status,
suggestive linkage (LOD= 2.4) was observed with RVs in KNDC1 and nominally significant linkage (p < 0.05) was
observed with RVs in LOAD genes ABCA7 and IQCK. When AAO of AD was analyzed for APOE ε4 positive family
members, nominally significant linkage was observed with RVs in APOE, while when AAO of AD was analyzed for APOE
ε4 negative family members, nominal significance was observed for IQCK and ADAMTS1. RV-QNPL provides a powerful
resource to analyze QTs in families to elucidate their genetic etiology.

Introduction

The limited heritability explained by common variants and
advances in massively parallel sequencing has led to
increased interest in the role of rare variants (RVs) in the
etiology of complex diseases and quantitative traits (QTs).
For the analysis of RVs, there are many population-based
aggregate association methods that can be applied to either
case-control or QT data [1]. There are a limited number of
family-based RV-aggregate association methods for
dichotomous traits [2, 3] and even fewer for QTs [4]. To
avoid a reduction in power due to misclassification, QTs or
their residuals should be analyzed directly instead of
dichotomized QT values [5]. RV-QNPL offers a powerful
alternative to association analysis for familial data to elu-
cidate genetic etiology of QTs.

For family-based QT linkage analysis, there are two
primary methods: Haseman–Elston (H-E) and variance-
components (VC). The H-E method was first developed to
map human quantitative trait loci (QTL) by testing if sib-
pairs with increased allele sharing have similar QTs, i.e., the
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squared difference of the QTs is regressed on the number of
alleles shared identical-by-descent (IBD) by the sibpair [6].
To increase power newer versions of H-E were developed:
H-E revisited (HEr) [7] which regresses the product of QT
values on IBD sharing and the new H-E (nHE) [8] which
regresses a linear combination of squared sum and squared
difference of QTs on IBD sharing. Additionally, nHE was
extended to analyze general pedigrees (H-Eg), in which the
IBD score of each relative pair is regressed on the squared
differences and squared sums of the QTs [9]. H-E methods
are computationally efficient, and are more robust to
deviation of QTs from normality than VC methods, which
have substantially inflated type I and type II errors when
normality assumptions are violated [10]. Although both
methods have been widely used for QTL mapping in
humans, few causal genes have been identified [11]. One
reason is that most QTLs mapped to large genomic regions,
e.g., >40Mb, when common variants were analyzed due to
linkage disequilibrium (LD) [12]. Additionally, for common
variants locus heterogeneity can greatly attenuate the link-
age signal [13]. Although RVs play a role in modulating QT
values [11], analyzing individual RVs is underpowered
particularly for small effect sizes. Performing an aggregate
RV analysis can increase power, however, association tests
are sensitive to inclusion of non-causal variants which is not
the case for NPL analysis [14].

We developed an RV-extension of the H-E method for
general pedigrees (H-Eg) [9]. A regional locus is generated
to analyze RVs in aggregate using the collapsed haplotype
pattern (CHP) method [15]. IBD sharing is calculated for
relative pairs and two methods were used: CHP-QNPL
which calculates IBD sharing for both major and minor
alleles i.e., haplotypes with and without RVs and RV-
QNPL which only estimates IBD sharing for minor alleles.
Using simulation studies, we compared analyzing RVs
[minor allele frequency (MAF) < 1%] with RV-QNPL and
H-Eg methods CHP-QNPL and multipoint-QNPL as
implemented in the MERLIN [9] software. We demonstrate
that when RVs are analyzed, CHP-QNPL delivers identical
results to multipoint-QNPL and RV-QNPL is more pow-
erful than CHP-QNPL. Moreover, RV-QNPL is robust to
the inclusion of nonpathogenic variants as well as allelic
and locus heterogeneity. Unlike for the analysis of common
variants using QNPL, RVs provide finer resolution due to
low levels of LD, mapping QTL to small regions, e.g., a
gene. For genome data, RV-QNPL can be used to analyze
coding and non-coding regions by using recombination
events as boundaries to construct regional loci. To
demonstrate the application of RV-QNPL, age-at-onset
(AAO) of AD was analyzed using whole-genome sequence
(WGS) data for members of 107 Hispanic and European-
ancestry pedigrees with late-onset Alzheimer’s disease
(LOAD).

For association studies of LOAD, AAO is the most
widely studied QT. Thus far for AAO of Alzheimer’s dis-
ease (AD) associations have been identified with APOE,
SNX25, PDLIM3, and SORBS2 [16, 17]. Application of RV-
QNPL to study the role RVs play in AAO of AD identified
suggestive linkage (LOD > 2.2) with KNDC1 (10q26.3,
MIM: 616237, GenBank: NM_152643.7, LOD= 2.4).
Functional studies suggest that KNDC is potentially
involved in AD etiology [18]. Additionally, nominally
suggestive linkage (p < 0.05) was observed with RVs in
previously associated LOAD genes: ABCA7 (19p13.3,
MIM: 605414, GenBank: NM_019112.3), ADAMTS1
(21q21.3, MIM: 605174, GenBank: NM_006988.5), APOE
(19q13.32, MIM: 107741, GenBank: NM_001302688.1),
and IQCK (16p12.3, GenBank: NM_153208.2) [19–21].

Material and methods

Rare variant extension of QNPL

For each family, variants are first phased using the Lander-
Green Algorithm [22] and generated haplotypes are used to
create a regional loci [15] capturing information on RVs with
MAFs below a threshold, e.g., <0.01. Moreover, annotation
specifications can be added to the RV inclusion criteria when
constructing the regional loci, e.g., missense, CADD c-score
>20. For each regional locus, every haplotype within a ped-
igree receives a unique score to ensure no loss of linkage
information. When founders or parents are missing sequence
data, to aid in determining IBD status, CHP genotypes are
imputed based upon offspring’s CHP genotypes and family/
ancestry specific allele frequencies which are obtained from
either founders or databases such as gnomAD [23]. Addi-
tional details on generating regional loci and their allele fre-
quencies can be found in the Supplemental Methods.

The (H-Eg) method was developed to analyze general
pedigrees and was adapted for implementation in RV-
QNPL. IBD sharing is estimated for each relative pair
and then multivariate regression is used to regress IBD
sharing on both the squared sums and squared differ-
ences of the QTs of relative pairs within a pedigree [9].
Three values are calculated for each relative pair (i,j):
IBD sharing πij, squared sum of traits Sij ¼ ðXi þ XjÞ2,
and squared difference of traits Dij ¼ ðXi � XjÞ2. For all
relative pairs in a family, three corresponding matrices
can be determined: S= [Sij], D= [Dij] and Π̂ ¼ ½πij�. In
multivariate regression analysis, the covariance matrices
are obtained for S, D, and Π̂. For standardized traits (μ=
0, σ= 1), the covariance for pair (i, j) is the correlation
rij, which is determined by trait heritability and the
kinship coefficient obtained from the pedigree structure.
Between relative pair (i, j) and pair (k, l), the covariances
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for S, D, and IBD Π̂ are: Cov Sij; Skl
� � ¼ 2ðrik

þril þ rjk þ rjlÞ2, CovðDij;DklÞ ¼ 2ðrik þ rjl � ril � rjkÞ2,
CovðSij;DklÞ ¼ 2ðrik þ rjk � ril � rjlÞ2, and Cov π̂ij; π̂kl

� � ¼P
pπijπkl � ~πij~πkl

� �� ðP qπijπkl � π̂ijπ̂klÞ, where π̂ and ~π

are the expected IBD sharing with or without genotype
information; finally, the covariance between traits and IBD
are CovðSij; π̂klÞ ¼ 2QCovðπ̂ij; π̂klÞ and Cov Dij; π̂kl

� � ¼
�2QCovðπ̂ij; π̂klÞ, where Q is the phenotypic variance
explained by the QTL. When calculating IBD sharing values
π̂ and ~π, CHP-QNPL estimates allele sharing regardless of
whether haplotypes carry RVs or not, while RV-QNPL only
calculates allele sharing for haplotypes that carry at least one
RV, i.e., allele sharing of wild-type haplotypes are excluded.
The final trait matrix Y is determined as Y= [S, D]′. The
multivariate regression formula is:

Π̂C ¼ Σ0
YΠ̂Σ

�1
Y YC þ e

where Π̂C and YC are the mean-centered matrix of Π̂ and Y,
Σ0
YΠ̂ is the covariance matrix between Π̂ and Y, andΣY is the

covariance matrix of Y.
With Q being the phenotypic variance explained by the

test locus, the method tests if Q > 0. The least-squared esti-

mate of Q is: Q̂ ¼ Σm
f¼1½B0Π̂C �

Σm
f¼1½B0ΣΠ̂B�; details on the calculation of

matrix B can be found in Sham et al. [9]. For a sample with
m families, both numerator and denominator obtained from
each family are summed to obtain an estimate of Q for the

entire sample. The test statistic, T ¼ Q̂Σ½B0Π̂C�, when Q̂ > 0.
T is asymptotically χ2 distributed with 1 degree of freedom

under the null. T= 0 when Q̂ < 0 since only positive Q is
biologically meaningful. Empirical p values are estimated
using permutation for RV-QNPL and CHP-QNPL. Details
on performing permutations were previously described [14].

Simulation framework

The type I error was evaluated for RV-QNPL, CHP-QNPL,
and multipoint-QNPL and power was estimated for

RV-QNPL and CHP-QNPL. Genotypes for 17,987 auto-
somal genes across the genome were simulated based on the
observed variant sites and their corresponding MAFs
obtained from the Non-Finnish Europeans (NFE) in the
ExAC [24] database. For multipoint-QNPL, genetic map
distances and recombination rates were estimated using
interpolation from the Rutgers Combined Linkage-Physical
map [25]. Two pedigree structures were used for simula-
tion: nuclear families with three offspring and extended
pedigrees with two branches each with two offspring
(Fig. 1). All family members were assigned QTs and ana-
lyzed. QT values are randomly drawn from a N(2,1) dis-
tribution for family members with a star (Fig. 1), and from a
N(0,1) distribution for all other family members, to mimic a
proportion of the founders having an exposure, e.g., genetic
or environmental, which influences their QT. The QT
values were standardized (i.e., μ= 0 and σ= 1) before the
analysis. RVs (MAF < 0.01 in ExAC NFE) sequence data
were generated for families using RarePedSim. Genotypes
were generated unconditional on QT values to evaluate type
I error and conditional on QT values to estimate power [26].
Phase information was removed from the simulated data to
mimic sequence data obtained from DNA. Data were then
phased to construct the CHP regional loci [22]. For both the
evaluation of type I error and power, analyses were per-
formed for 100 extended families (Fig. 1a) and 300 nuclear
families with three offspring (Fig. 1b), and genes with >1
variant were analyzed. Additional information on the
simulation of the variant data and their analysis can be
found in the Supplemental Methods.

Type I error was evaluated not only for families with no
missing data, but also with all founders missing phenotype
and genotype data for RV-QNPL, CHP-QNPL, and
multipoint-QNPL (as implemented in MERLIN [22]). One-
hundred replicates of complete exomes (each containing
17,987 autosomal genes) were generated and p values for
RV-QNPL, CHP-QNPL, and multipoint-QNPL were
obtained analytically and for RV-QNPL and CHP-QNPL,
empirically using one million permutations. Nominal

Fig. 1 Pedigree structures used
in simulation studies. Pedigree
structures used to evaluate type I
error and power: multi-
generational pedigrees (a) and
nuclear pedigrees with three
offspring (b).
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p values were evaluated at 5.0 × 10−2 (LOD score= 0.59),
5.0 × 10−3 (LOD score= 1.44) and 1.5 × 10−5 (LOD
score= 3.80; the genome-wide significance level proposed
by Lander and Kruglyak [27]) and quantile-quantile (QQ)
plots were generated.

To evaluate and compare power performances for RV-
QNPL and CHP-QNPL, simulations were performed under
different scenarios. Two scenarios were used to estimate the
effect of non-causal variants on power. Firstly, analysis was
performed for a fixed number of nonsynonymous (as
annotated in ExAC) variants varying the proportion that are
causal from 100 to 50%, and the proportion of non-causal
variant sites from 0 to 50%. This scenario was used to
evaluate the effect of reducing the number of causal RVs
while keeping the total number of RVs constant. Secondly,
to assess the robustness of the methods to non-causal var-
iants, instead of changing the number of causal variants, all
nonsynonymous variants were assigned to be causal and
then both causal nonsynonymous and synonymous variants
that were delegated to be non-causal were analyzed together
to mimic observed ratio of 2:1 between nonsynonymous
and synonymous variants [24]. To evaluate the effect of
missing data on power, analyses were performed with 20%,
50%, 70%, and 100% of founders missing: only their
phenotype data and both their phenotype and genotype data
to evaluate the loss in power. Additionally, the effect of
locus heterogeneity was examined by comparing power for
families which are all linked to the same gene [linkage
homogeneity (α= 1.0)] and with a proportion of linked and
unlinked families [linkage admixture (α= 0.67)]. Under
homogeneity, 100 linked, extended pedigrees were ana-
lyzed and under admixture (locus heterogeneity) 100 linked
and 50 unlinked extended families were analyzed. It should
be noted that the sample size is not fixed when examining
linkage heterogeneity, e.g., comparing 100 linked extended
families to 50 linked and 50 unlinked extended families,
since this would show the impact of reducing the sample
size and not locus heterogeneity. Although the sample size
is increased inclusion of unlinked families will not increase
power, since the power to detect linkage for unlinked
pedigrees is equal to alpha. Since each gene is analyzed
separately, linked pedigrees were generated with RVs in
every gene linked to the QT and unlinked pedigrees were
generated under the null. Additionally, analysis was per-
formed for nuclear pedigrees, i.e., 300 linked pedigrees
were analyzed and 300 linked and 150 unlinked pedigrees
were analyzed. For each analysis, power was evaluated by
the proportion of tests with a LOD > 3.8 [27].

Application to Alzheimer’s disease data

RV-QNPL was applied to analyze 107 LOAD families with
446 members with available AAO of AD and WGS data.

Alzheimer’s Disease Sequencing Project (ADSP) data were
obtained from dbGaP (accession number phs000572.v7.p4).
The pedigrees include individuals of Dominican (62);
European (42); and Puerto Rican (3) ancestry. Analyses
were performed for three groups: all 446 AD patients with
AAO data [42 European families and 65 Caribbean His-
panic families with a mean AAO of AD of 73.64 years of
age standard deviation (std) 9.17]; 151 APOE ε4 allele
positive AD patients with AAO data (24 European and 27
Caribbean Hispanic families with mean AAO of AD 72.19
years of age std 8.24); and 254 APOE ε4 allele negative AD
patients with AAO data (25 European and 54 Caribbean
Hispanic families with mean AAO of AD of 74.54 years of
age std 9.61). Forty-one individuals (21 APOE ε4 carriers
and 20 non-carriers) could not be analyzed in the APOE ε4-
specfic analyses because AAO data was unavailable for
another family member with the same APOE ε4 status.
There is additional information on AAO of AD in Table S1.
Residuals were generated for AAO of AD after adjusting for
sex and analyzed. Pedigree structures and their ancestries
are displayed in Fig. S1 and Table S2, respectively. Initial
quality control (QC) was performed by the ADSP QC
working group [2] and was followed by additional QC
[2, 14]. RV-QNPL was used to analyze genes with >1 RV
site. Frameshift, missense, nonsense, and splice site variants
with MAFs <0.01 were analyzed based on allele frequencies
obtained from gnomAD [23] [NFE for the European pedi-
grees and Latino (AMR) for the Caribbean Hispanic pedi-
grees]. For missing genotypes, CHP regional markers were
constructed using gnomAD allele frequencies that corre-
sponded to the family’s ancestry, i.e., NFE or AMR. Joint
and individual analyses were performed for the European
and Caribbean Hispanic families.

Results

Type I errors were obtained by evaluating nominal p values
at 5.0 × 10−2, 5.0 × 10−3 and 1.5 × 10−5 (Table S3), and QQ
plots were generated (Figs. S2 and S3). For multipoint-
QNPL, CHP-QNPL, and RV-QNPL, analytical p values
gave slightly inflated type I errors, especially for extended
families (results not shown). T test statistics from CHP-
QNPL and multipoint-QNPL are identical when analysis
was performed without missing data (Fig. S4). Therefore,
additional analysis was only performed using CHP-QNPL
instead of both methods. Due to the inflation of type I error,
permutation-derived empirical p values were obtained for
CHP-QNPL and RV-QNPL and type I error was controlled
(Table S3; Figs. S2 and S3). Empirical p values were used
for all further analyses.

Power was evaluated for RV-QNPL and CHP-QNPL
(Table 1; Fig. 2 and Fig. S5). RV-QNPL is consistently
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more powerful than CHP-QNPL for all scenarios. For
example, when causal nonsynonymous RVs were analyzed
without missing data or locus heterogeneity, the power for
RV-QNPL is 15.6% and 11.2% higher than CHP-QNPL for
300 nuclear families and 100 extended pedigrees, respec-
tively (Fig. 2a and Fig. S5A).

When RVs were generated under linkage and all variants
were causal, family members whose QT values were drawn
from a N(2,1) distribution had on average 2.44X as many
RVs as those with QT values obtained from a N(0,1) dis-
tribution. This ratio declined to 2.27X and 2.15X when 75%
and 50% of the RVs were causal. For both RV-QNPL and
CHP-QNPL, the power decreases with decreasing propor-
tion of causal RVs and increasing non-causal RVs, e.g.,
compared to when all RVs are causal, when 50% of the RVs
are causal and the rest are non-causal, the power of RV-
QNPL decreases from 0.905 to 0.774 (14.5%) for nuclear
families and from 0.943 to 0.857 (9.1%) for extended
families. For CHP-QNPL, the power drops by 26.2% (from
0.783 to 0.578) for nuclear families and by 18.3% (from
0.848 to 0.693) for extended families. Not only is the
decrease in power less for RV-QNPL than CHP-QNPL but
the initial power is also higher (20.6% on average),
regardless of proportion of causal RVs (Table 1; Fig. 2a and
Fig. S5A).

In the second scenario, when the number of causal
nonsynonymous RVs was fixed and they were analyzed
with and without non-causal synonymous RVs, there is a
greater loss in power for CHP-QNPL than for RV-QNPL.
For nuclear families the power for RV-QNPL is 0.905 and
reduces to 0.877 (by 3.1%) when non-causal variants were
included and for extended families the power reduces from
0.943 to 0.909 (by 3.5%) when non-causal variants were
included. For CHP-QNPL, when non-causal RVs were
included, the reduction in power is 6.4% (from 0.783 to

0.733) for nuclear families and 4.0% (from 0.848 to 0.814)
for extended families. The power of RV-QNPL is 15.7%
higher than CHP-NPL when non-causal variants were
included in the analysis (Table 1; Fig. 2b and Fig. S5B).

Moreover, the power performance when founders are
missing their sequence data is examined to evaluate the
impact on the ability to phase haplotypes and determine
IBD sharing status. RV-QNPL largely maintains power, and
power loss is less than for CHP-QNPL. For example, when
all founders are missing phenotypes but not genotypes
compared to when founders are missing both phenotype and
genotype data, the power for RV-QNPL reduces from 0.772
to 0.763 (1.2%) for nuclear pedigrees and from 0.934 to
0.933 (0.1%) for extended pedigrees. For the same scenario,
power for CHP-QNPL decreases by 8.2% (from 0.757 to
0.695) for nuclear pedigrees and 4.6% (from 0.760 to
0.725) for extended pedigrees. Similarly, when 50% of
founders are missing only phenotypes, compared to when
50% of founders are missing both phenotypes and geno-
types, the power for RV-QNPL reduces by 0.5% (from
0.849 to 0.845) for nuclear pedigrees and by 0.1% (from
0.939 to 0.938) for extended pedigrees. The power for
CHP-QNPL decreases by 5.3% (from 0.770 to 0.729) for
nuclear pedigrees and by 1% (from 0.808 to 0.800) for the
extended pedigrees (Table 1; Fig. S6).

Another factor which can lead to a loss in power in
complex diseases is locus heterogeneity, simulation results
demonstrate that RV-QNPL is robust to its presence, e.g.,
with only a 0.2% loss in power when 450 nuclear families
[power= 0.903 (300 linked and 150 unlinked pedigrees,
α= 0.67)] with 3 offspring were analyzed compared to
analyzing 300 pedigrees with linkage (power= 0.905, α=
1.0). For extended families the power when there is locus
heterogeneity is 0.931 compared to 0.943 without hetero-
geneity. CHP-QNPL displayed a slightly larger reduction in

Table 1 Power of CHP-QNPL
and RV-QNPL.

Power comparison for QNPL methods Extended families Nuclear families

CHP-QNPL RV-QNPL CHP-QNPL RV-QNPL

100% causal 0.848 0.943 0.783 0.905

75% causal 0.791 0.916 0.707 0.868

50% causal 0.693 0.857 0.578 0.774

Nonsynonymous & synonymous 0.814 0.909 0.733 0.877

Locus heterogeneity 0.837 0.931 0.774 0.903

20% founder missing phenotype 0.837 0.941 0.779 0.893

50% founder missing phenotype 0.808 0.939 0.77 0.849

70% founder missing phenotype 0.779 0.937 0.763 0.812

100% founder missing phenotype 0.76 0.934 0.757 0.772

20% founder missing all data 0.836 0.941 0.764 0.888

50% founder missing all data 0.8 0.938 0.729 0.845

70% founder missing all data 0.765 0.936 0.706 0.806

100% founder missing all data 0.725 0.933 0.695 0.763
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power [1.1% for nuclear pedigrees (from 0.783 to 0.774)
and 1.3% for extended pedigrees (from 0.848 to 0.837)]
(Table 1; Fig. 2d and Fig. S5D).

The joint analysis of AAO of AD in European and Car-
ibbean Hispanic pedigrees regardless of APOE ε4 status
yielded suggestive linkage (2.2 < LOD score < 3.8) [27] with
RVs in KNDC1 (p value= 4.2 × 10−4, LOD= 2.4). KNDC1
RV carriers have an average AAO of AD of 75.67 years (std
9.73) compared to 72.04 years (std 8.95) for non-carriers.
When analysis was performed regardless of APOE ε4 status
for Caribbean Hispanic families, nominal significance was
observed for LOAD gene ABCA7 (p= 4.9 × 10−2) and for

European families, nominal significance was observed for
LOAD gene IQCK (p= 3.0 × 10−2). IQCK also displayed
nominal significance (p= 3.6 × 10−2) when APOE ε4 nega-
tive family members (European and Caribbean Hispanic)
were analyzed. Additionally, ADAMTS1, which was reported
to be associated with LOAD and protective, displayed
nominal significance (p= 4.1 × 10−2) with AAO of AD for
APOE ε4 negative European family members. Nominally
significant linkage between AAO of AD and RVs in APOE
(p= 1.8 × 10−2) was observed for APOE ε4 positive Car-
ibbean Hispanics. For KNDC1, seven missense RVs segre-
gate in eleven families with linkage (seven Caribbean

Fig. 2 Exome-wide power for RV-QNPL and CHP-QNPL in
extended pedigrees. One-hundred extended pedigrees with simulated
QT and genotype data were analyzed with 100%, 75%, and 50% of the
RVs being causal and the remaining non-causal (a); only causal
nonsynonymous (NS) RVs as well as causal nonsynonymous (NS) and

non-causal synonymous (S) RVs (b); 0%, 20%, 50%, 70% and 100%
of founders missing both their genotype and phenotype data (c); and
under linkage homogeneity [No heterogeneity (NH)], i.e., 100 linked
families as well as with locus heterogeneity (H), i.e., 100 linked and 50
unlinked families (d).
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Hispanic and four European families) (Table S4). For
ABCA7, twelve missense RVs segregate in nineteen linked
Caribbean Hispanic pedigrees (Table S5). The carriers of
ABCA7 RVs have a mean AAO of AD of 71.73 years (std
8.77) compared to 74.56 years (std 9.90) for non-carriers. For
ADAMTS1, one RV was observed in a linked pedigree
(Table S6) and the two RV carriers both have AAO of 90.00
years versus 74.78 years (std 9.86) for non-carriers. For
APOE, one missense RV was observed in four linked Car-
ibbean Hispanic pedigrees, and it is located at a conserved
nucleotide site and deemed deleterious (Table S6). The car-
riers of the APOE RV have a mean AAO of 74.83 years (std
8.43) versus 71.32 (std 8.90) years for non-carriers. For
IQCK, when analyzed regardless of APOE ε4 status, one
missense RV was observed in three linked European pedi-
grees with RV carriers having a mean AAO of 76.14 years
(std 8.56) compared to 74.49 years (std 9.00) for non-carriers.
When analyzed in all APOE ε4 negative families, two RVs in
IQCK were observed in two linked pedigrees (one Caribbean
Hispanic and one European pedigree) (Table S6) with RV-
carriers having a mean AAO of 82.2 years (std 3.49) versus
74.19 years (std 10.22) for non-carriers. Pedigrees segregat-
ing variants in ABCA7, APOE, IQCK, and KNDC1 are
shown in Fig. S1 and Table S2.

Discussion

RV-QNPL was developed to perform aggregate RV non-
parametric QT linkage analysis. Simulation studies
demonstrate that RV-QNPL is a powerful approach to map
QTLs in families. It is shown that CHP-QNPL delivers
identical results with multipoint-QNPL (Fig. S4) and RV-
QNPL is more powerful than CHP-QNPL for a variety of
scenarios.

Analysis of AAO of AD for the ADSP pedigrees high-
lights that loci can be mapped to small regions, e.g., an
individual gene. RVs have low levels of LD, allowing for
fine mapping. Although QNPL methods do not incorporate
locus heterogeneity in the statistical framework, there is
only a very small loss in power in the presence of locus
heterogeneity when RVs were analyzed since for unlinked
regions most families will not have a RV and therefore are
uninformative. When data were simulated under the null of
no linkage each founder on average had 0.037 RVs per gene
region. Due to fewer founders unlinked nuclear families
were less likely to segregate RVs than extended families
and therefore the reduction in power was even smaller.
Also, for RV-QNPL, unlike for CHP-QNPL, when there is
a variant within the tested region with sharing of the major
allele, it does not contribute to the test statistic. RV-QNPL,
which is based on the H-Eg model, also inherits benefits
including robustness to population substructure and

admixture [28]. Similar to regression analyses, covariates
can be controlled for by analyzing adjusted residuals. For
the analysis of AAO of AD, residuals adjusted for sex were
generated. RV-QNPL is applicable for nuclear and extended
families with exome and genome sequence data. When
analysis is performed outside of the coding regions,
recombination events can be used as boundaries to aggre-
gate RVs unlike aggregate association methods where prior
knowledge or a sliding window must be used.

A challenge for family-based studies is the ascertainment
of family members. For QTs, families can be ascertained
randomly or for extreme trait values either with members
having QT values in both tails (discordant) or in the same
tail (concordant) of the distribution. One QNPL study
design for sib-pairs with highly discordant QT values
dichotomizes the QTs before analysis [29]. Not only is it
difficult to ascertain sib-pairs with very discordant QT
values, but one study noted higher rates of non-paternity for
the siblings compared to the general population [30].
Additionally, when family members are selected to have
either high or low QT values (concordant), there is less QT
variability than for a random sample which can reduce
power [31].

Pedigrees can have diverse structures and parental and
founder data are often unavailable. For common variants
it has been shown that Type I and II errors can be
increased when incorrect allele frequencies are used in
linkage analysis, however, for RVs the effect is small and
having data for one parent or multiple siblings can miti-
gate the impact [28, 32]. To aid in specifying accuracy
allele frequencies for the analysis when there is missing
variant data, large population-specific databases should be
used to obtain frequencies. Additionally, when founders
are missing their genotype data, it influences the ability to
phase available genotypes [33]. When there are missing
founders, type I errors for both CHP-QNPL and RV-
QNPL are well controlled but power is reduced. Simula-
tion studies demonstrate that RV-QNPL, compared to
CHP-QNPL, has minimal power loss when founders are
missing their genotypes. For the ADSP pedigrees which
are missing most founders, type I error is well controlled
(Fig. S7).

Analysis of AAO of AD for the ADSP families was
performed with and without stratification on APOE4 status.
Suggestive linkage was observed for RVs in KNDC1when
analysis was performed regardless of APOE4 status.
KNDC1 encodes a Ras guanine nucleotide exchange factor
that negatively regulates dendritic growth and synaptic
connections, which plays a pivotal role in the progression of
AD [18], suggesting its potential impact on AAO. More-
over, four genes which were reported to be associated with
LOAD (ABCA7, ADAMTS1, APOE, and IQCK) displayed
nominally significant linkage. Both common and RVs in
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ABCA7 have been shown to be associated with LOAD in
Europeans and African-Americans [19–21]. A weak asso-
ciation with RVs in ABCA7 were also reported for LOAD in
Caribbean Hispanics [34]. ABCA7 has not been previously
reported to modulate LOAD AAO as was observed in this
study for Caribbean Hispanics. ADAMTS1 is a potential
neuroprotective gene and was shown to reduce the risk of
LOAD in a recent GWAS meta-analysis of Europeans [21].
Although no direct effect on AAO of AD has been reported,
in the ADSP families carriers of RVs in ADAMTS1 had a
later AAO than non-carriers. For APOE the common ε4
allele increases risk for both late- and early-onset AD and
has a dosage effect on AAO in Europeans [19], however the
findings in other populations is less pronounced. In our
study, RVs in APOE displayed nominal significance in
Caribbean Hispanics but not in Europeans, when analyzing
ε4 allele carriers, suggesting the potential RV involvement
with APOE ε4 in modulating AAO in Hispanic LOAD
patients. IQCK was recently implicated as a risk gene for
LOAD, with a common variant identified in a 3-stage
GWAS meta-analysis of Europeans [21], but no association
has been found with AAO. Several factors may contribute
to the absence of significant LOD scores in the analysis of
ADSP pedigrees. First, this study is not well powered given
the relatively small sample size, a total of 107 families (446
patients with AAO of AD data). Even fewer samples were
available for the APOE-specific analyses. Second, the AAO
is dependent on the frequency of follow-up and sensitivity
of diagnostic tests. In addition to AAO, quantitative endo-
phenotypes, e.g., the level of Aβ42 and tau, can be analyzed
to aid in the understanding of AD etiology.

The RV-QNPL method provides a robust and powerful
approach to fine-map susceptibility RVs for QTs. Results
from the ADSP analysis and extensive simulation studies
demonstrate the superior power of RV-QNPL compared to
analyzing RVs using traditional QNPL methods that eval-
uate IBD sharing for both the minor and major alleles. RV-
QNPL is applicable to nuclear and extended families with
exome and genome sequence data. These characteristics
make RV-QNPL an ideal method to elucidate the genetic
etiology of QTs. RV-QNPL is implemented in Python with
C++ extensions, and the software package and doc-
umentation is publicly available online at https://github.
com/statgenetics/rvnpl.
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