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Abstract

We employ physics-informed neural networks (PINNs) to infer properties of biological materials 

using synthetic data. In particular, we successfully apply PINNs on inferring permeability and 

viscoelastic modulus from thrombus deformation data, which can be described by the fourth-order 

Cahn-Hilliard and Navier-Stokes Equations. In PINNs, the partial differential equations are 

encoded into a loss function, where partial derivatives can be obtained through automatic 

differentiation (AD). In addition to tackling the challenge of calculating the fourth-order derivative 

in the Cahn-Hilliard equation with AD, we introduce an auxiliary network along with the main 

neural network to approximate the second-derivative of the energy potential term. Our model can 

simultaneously predict unknown material parameters and velocity, pressure, and deformation 

gradient fields by merely training with partial information among all data, i.e., phase field and 

pressure measurements, while remaining highly flexible in sampling within the spatio-temporal 

domain for data acquisition. We validate our model by numerical solutions from the spectral/hp 
element method (SEM) and demonstrate its robustness by training it with noisy measurements. 

Our results show that PINNs can infer the material properties from noisy synthetic data, and thus 

they have great potential for inferring these properties from experimental multi-modality and 

multi-fidelity data.
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1. Introduction

Thrombus deformation and failure [38, 37] are important in deep vein thrombosis [51, 18, 

17], pulmonary embolism [42, 24], and atherothrombosis [58, 8], where a key concern is 

thrombus failure and subsequent shedding of emboli, which can cause life-threatening 

complications under certain conditions. If we model a thrombus as a porous medium, where 

fibrin is loosely connected around the core area [52], we can study its interaction with blood 

flow using mathematical models, i.e., the Cahn-Hilliard and Navier-Stokes Equations [47]. 

Phase field modeling gives a macroscopic representation of thrombus deformation whereas 

the microscopic details such as the fibrin network and platelets are neglected. This system of 

governing equations can still reflect the mechanical interactions of a thrombus and its 

ambient blood flow [63, 47, 21]. Material properties, e.g., the permeability and viscoelastic 

modulus, in the governing equations play an important role in thrombus mechanics. 

Specifically, they can be indicators for the possibility of vessel occlusion and 

thromboembolism, since pieces of thrombus could be detached by the local shear stress and 

be transported to distal vessels [7]. Therefore, there is a pressing need to infer material 

properties from measurements, which is central to predicting thrombus shape and 

deformation under diverse hemodynamic conditions and assessing the risk of 

thromboembolism and other clinical consequences. Similar estimation of unknown 

parameters from data is also a central problem in electrocardiology and medical image 

reconstruction [23, 11, 9, 40], geophysics [29, 48, 41, 57], and many other fields [45, 53, 1, 

6, 20].

However, the values of permeability and viscoelasticity are patient-specific and difficult to 

quantify from either experimental measurements or traditional numerical simulations using 

the finite element or finite volume method. A variety of numerical methods for inverse 

problems, i.e., Bayesian approaches [5, 56, 3], smoothing approaches [36, 19], and adjoint 

methods [33, 27, 31], have been developed to infer PDE parameters from data.

Recent advances in solving inverse problems using deep learning techniques provide us with 

a promising alternative to identify PDE parameters [30]. In particular, physics-informed 

neural networks (PINNs) [34, 35] is a relatively simple framework, which encodes the 

information from governing equations describing physical conservation laws. Specifically, 

the residuals of physics equations are encoded into the loss function of the neural network as 

constraints such that the network outputs satisfy the PDE equations as well as the initial and 

boundary conditions. Conceptually, adding these physical constraints restricts the optimizing 

weights and biases in a constrained space. Also, PINNs is a mesh-less framework since 

partial derivatives can be computed with automatic differentiation (AD) in most neural 

network packages. As a result, the residuals of PDEs can be evaluated at random points in 

the spatio-temporal domain for training effectively and efficiently. Additionally, for forward 

problems, the training data is unpaired; PINNs does not require any data other than the 

spatio-temporal coordinates of training points (and the initial/boundary conditions). 

Successful applications of PINNs range from flow visualization [35] to high-speed flows 

[26], stochastic PDEs [60], fractional PDEs [32], and cardiac flows [16], to name a few. For 

inverse problems with unknown parameters in PDEs, PINNs can infer even hundreds of 

parameters based only on measurements with a limited number of training points and 

Yin et al. Page 2

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



without any prior knowledge of the unknown parameters [35]. In PINNs, solving inverse 

problems follows the same workflow as forward problems only by penalizing the difference 

between point measurements and model predictions to the loss function. Unknown values of 

the parameters are set as model variables such that they can be optimized based on the 

gradients of the loss function with respect to their value. The potential of PINNs to infer 

parameters or their distributions has been explored for highly-nonlinear [34], stochastic [60], 

ill-posed [35, 34], multi-fidelity problems [28], non-homogeneous material properties 

infernce [61], and other cases [46, 4].

In this work, we apply PINNs to identify values of two parameters, namely, the permeability 

and viscoelastic modulus in the Cahn-Hilliard and Navier-Stokes equations. This is perhaps 

the first attempt to leverage the power of PINNs as a new method to infer physiological 

parameters using high-order multi-physics and multi-field nonlinear PDEs. In addition, to 

tackling the challenge of calculating the fourth-order derivative in the Cahn-Hilliard 

equation with AD, we introduce an auxiliary network along with the main neural network to 

approximate the second-derivative of the energy potential term. Moreover, we investigate the 

effects of the number of training points, the influence of noisy data, and different types of 

data on the accuracy of our inferred results.

The remainder of the paper is organized as follows: In section 2, we present the Cahn-

Hilliard and Navier-Stokes system of equations as well as the PINN model. In section 3, we 

present the fields construction and parameter inference results for representative cases such 

as a thrombus and a biofilm in a channel. We also explore the sensitivity of the PINN 

predictions by reducing the number of training data, adding noise, and using partial data 

from some of the fields. We conclude in section 4 with a brief summary.

2. Methods

2.1. Cahn-Hilliard and Navier-Stokes Equations

Mechanical interaction between thrombus and blood flow as a fluid-structure interaction 

(FSI) problem can be modeled by the Cahn-Hilliard and phase field coupled Navier-Stokes 

equations (referred as Navier-Stokes equations) in fully-Eulerian coordinates [63]:

ρ(∂u
∂t + u ⋅ ∇u) + ∇p = ∇ ⋅ σvis + σcoℎ + σela − μ(1 − ϕ)u

2κ(ϕ) , (1)

∇ ⋅ u = 0, (2)

∂ψ
∂t + u ⋅ ∇ψ = 0, (3)

∂ϕ
∂t + u ⋅ ∇ϕ = τΔω, (4)
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ω = Δϕ + γg(ϕ), (5)

where u(x, t), p(x, t) σ(x, t), and ϕ(x, t) represent the velocity vector, scalar pressure, stress 

tensor, and scalar phase field; g(ϕ) equals the derivative of the double-well potential (ϕ2 − 

1)2/4h2, where h is the interfacial length; ψ = [ψ1, ψ2] denotes the auxiliary vector whose 

gradients are the components of the deformation gradient tensor F as follows:

F: =
−

∂ψ1
∂y −

ψ2
∂y

∂ψ1
∂x

∂ψ2
∂x

.

Equation (1) is the Navier-Stokes equation with viscous, elastic, and cohesive stresses, 

respectively, which can be written as:

σvis = μ∇u, (6)

σela = ∇ ⋅ (λe
(1 − ϕ)

2 (FFT − I)), (7)

σcoh = λ∇ ⋅ (∇ϕ ⊗ ϕ) . (8)

Equation (2) is the continuity equation and equation (3) denotes the transport of ψ. The 

fourth-order Cahn-Hilliard equation is decoupled into two second-order equations in 

equations (4) and (5) for formulating the weak form; γ, τ, and λ are the interfacial mobility, 

relaxation parameter, and mixing energy density, respectively. Note that the material 

parameters of interest are viscoelastic modulus λe and permeability κ(ϕ), which are to be 

determined from the data by PINNs. Other PDE parameters are assumed as known.

We impose Dirichlet boundary conditions u = g, (x, t) ∈ Γi × (0, T) for velocity at the inlet 

Γi, and no-slip boundary on the wall Γw. Neumann boundary conditions, i.e., 
∂ϕ
∂n = ∂ω

∂n = ∂ψ
∂n = 0, x ∈ Γw ∪ Γi ∪ Γo are imposed for ψ, φ, and ω on all boundaries, and for 

pressure and velocity at the outlet Γo. This model is feasible for both 2D and 3D but we only 

consider two-dimensional (2D) physical domain in this paper for proof of concept 

demonstration.

2.2. Physics-Informed Neural Networks (PINNs)

In Fig. 1 we show a schematic of PINNs. Given the time t and coordinates x, y of training 

points as inputs, we construct two fully-connected neural networks, Net U and Net W, where 

the outputs of Net U represents a surrogate model for the PDE solutions u, v, p, and ϕ and 

the outputs of Net W are PDE solutions ω, ψ1, and ψ2. We denote the PDE solutions as u
concatenated by the outputs from Net U and Net W, whose derivatives with respect to the 

inputs are calculated using AD. Then, we formulate the total loss L as the combination of 

Yin et al. Page 4

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PDEs residual loss (LPDE), initial and boundary condition loss (LIC, LBC), and data loss 

Ldata as follows:

L = ω1LPDE + ω2LIC + ω3LBC + ω4Ldata, (9)

and

LPDE θ, λ; XPDE = 1
XPDE

∑
x ∈ XPDE

f x, ∂tu, ∂xu, …, ∂xxu, …; λ 2
2, (10)

LBC θ, λ; XBC = 1
XBC

∑
x ∈ XBC

B(u, x)
2

2
, (11)

LIC θ, λ; XIC = 1
XIC

∑
x ∈ XIC

u − ut0 2
2, (12)

Ldata θ, λ; Xdata = 1
Xdata

∑
x ∈ Xdata

u − udata 2
2, (13)

where ω1, ω2, ω3, and ω4 are the weights of each term. The training sets XPDE, XBC, and 

XIC are sampled from the inner spatio-temporal domain, boundaries, and initial snapshot, 

respectively. Xdata is the set that contains sensor coordinates and point measurements; |·| 

denotes the number of training data in the training set. In particular, B represents a 

combination of the Dirichlet and Neumann residuals at boundaries. Finally, we optimize the 

model parameters θ and the PDE parameters λ = [λe, κ] by minimizing the total loss L(θ, 

λ) iteratively until the loss satisfies the stopping criteria. Optimizing the total loss is a 

searching process for λ such that the outputs of the PINN satisfy the PDE system, initial/

boundary conditions, and point measurements. We use the mean relative L2 error (ϵ), same 

as in [35], to quantify errors between reference data and model predictions:

ϵ: = ( 1
N ∑

i

N
[u xi) − u(xi)]2 /( 1

N ∑
i

N
[u xi) − 1

N ∑
i

N
u(xi)]

2
(14)

3. Results

To demonstrate the inference ability of the PINN model, we adopt four representative cases 

for parameters inference. The high-resolution training datasets are generated from the 

spectral/hp element solver NℰKTAℛ [12] coupled with the Cahn-Hilliard equations with 

3rd-order Jacobi polynomials. For the neural network architecture, our preliminary results 

suggested that using 9 hidden layers with 20 neurons per layer for Net U and Net W could 

be a good balance between the network representation capacity and computational costs. We 

use the ADAM optimizer [15] with learning rate 0.001 to train the model for a number of 

epochs, which is defined as the number of complete passes through the full training dataset.
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The two material parameters of interest are normalized as follows. For permeability κ, we 

follow the normalization in [52], where κ =
kf
af
2 , kf is the true permeability and af is the fibrin 

radius. The elastic modulus λe of the thrombus is normalized by the magnitude of a 

characteristic velocity (3.33 × 10−3m/s) and length (3 × 10−4m), and it is typically of 

O 10 − 10−1  with units in Pa [63, 54].

3.1. Inference of Permeability

3.1.1. Thrombus in a channel with uniform permeability—To infer the 

permeability κ in the Cahn-Hilliard and Navier-Stokes equations, we perform simulations 

for a semi-circle permeable thrombus in a channel with a steady parabolic flow coming from 

the left. This setup represents an idealized thrombus with an impermeable core consisting of 

a fibrin clot and a permeable shell region consisting of loosely-packed and partially-

activated platelets. This model has been adapted as an idealized thrombus in previous works 

[63, 55, 59]. We impose a Neumann type boundary condition for ϕ and ψ as ∇ϕ · n = ∇ψ · n 
= 0, where n is the unit vector perpendicular to the boundaries. We set the density ρ = 1, 

viscosity μ = 0.1, λ = 4.2428 × 10−5, τ = 10−6, viscoelastic modulus λe = 0, and the 

interface length h= 0.05. These parameters in PINNs are non-dimensionalized values so as 

to be consistent with the CFD solver. The thrombus is present in the middle of the channel as 

shown in Fig. 2(a) with a uniform permeability in the core (ϕ = −1) and in the outer shell 

layer (ϕ = 0). In general, the inlet velocity u(t, y) can be time-dependent, but in this case it is 

set as steady 0.3(y − 2)y. In plot (b), we sample coordinates of training data in the initial 

snapshot t0 ( ), inner spatio-temporal domain from t1 to tn ( ), and at boundaries ( ). 

Moreover, we also sample point measurements ( ) including their coordinates and PDEs 

solutions in the spatio-temporal domain to calculate the data loss term in the total loss. In 

this section, the point measurements only contain scalar data from the phase field ϕ as the 

data source to recover the velocity field and the value of κ. In this paper, we refer to the 

phase field point measurements as training data, which are randomly drawn from all points 

in the inner spatio-temporal domain. For each case, 1,000 points are drawn from an initial 

snapshot, each containing information on the phase field, velocity field, and pressure field as 

initial conditions. Since we want the network to satisfy the governing equations in the 

spatio-temporal domain and satisfy the boundary conditions, we randomly sample 25,000 

inner points to compute the PDE residuals and 1,000 boundary points to compute the 

residuals at boundaries. Noting in particular that point measurements and inner points are 

drawn from the inner spatio-temporal domain, the former contains the PDE solutions 

whereas the latter does not. The number of inner points, initial points, and boundary points 

will remain the same unless specifically mentioned for all the cases in the following context.

In Fig. 3, we first show four simulation cases with permeability values from 10−3 to 102. We 

first consider a simple case with the value of κ uniform across the core and shell areas as 

proof of concept. We randomly sample 10,000 phase field point measurements in the spatio-

temporal domain to infer κ for each case. The first column shows the reference data of phase 

and velocity fields at t = 0.63 as ground truth. As shown in Fig. 3(a), the thrombus is 

permeable, thus fluid can penetrate the core and shell of the thrombus. In Fig. 3(b)-(d), the 

fraction of fluid in the thrombus falls off dramatically as a result of a decrease of the 
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thrombus permeability and an accelerated area is formed on the top of the thrombus. Unlike 

the thrombus with large κ, fluid can hardly flow through the impermeable thrombus and the 

phase deformation becomes relatively small. In other words, the deformation of phase fields 

is noticeable when κ is large, but is minimal for permeability 0.0005. In Fig. 3, the second 

column depicts the predicted phase and velocity fields, and the third column shows the 

absolute error. The model predictions agree well with the reference data for both phase and 

velocity fields. The error in the phase field is mainly distributed on the thrombus interface 

with a maximum absolute error smaller than 10% for all cases. However, the velocity error 

grows with the decrease of permeability with the largest local error reaching 10% under the 

bottleneck region. Overall, the results show that the PINN model can regress PDE solution 

fields and infer parameters from synthetic data.

We summarize the results of parameter inference, mean relative L2 errors as well as the 

history of inference value in Fig. 4. Plot (a) shows that all the inferred κ values fall near the 

diagonal line, indicating a good agreement between the reference and inferred values. Plot 

(b) shows the mean relative L2 error for each case: the maximum relative error for velocity 

prediction is below 0.6% and for the phase field is less than 0.02%. Figs. 4 (c-f) depict the 

convergence history of parameter retrieval in the training process to the true different values 

of κ. For κ = 0.5 and 0.005, the inferred network predictions converge to the true values with 

2% and 20% error. For κ = 50, the system is insensitive to the variations in κ and a posteriori 
practical identifiability analysis is provided in the Appendix. For κ = 0.0005, the velocity 

field has a sharp interface on the top of the thrombus surface. These reasons may lead to a 

discrepancy between the true and inferred value, causing a relatively large error in this 

special case.

To investigate the effect of the number of training points on the model prediction ability, we 

retrain the model for the same cases as in Fig. 3 and Fig. 4 with a different number of 

training points from 0.1% up to 40% of the total number of points (100,000). To clarify, the 

training points in Fig. 5 only include point measurements in the inner spatio-temporal 

domain. Figs. 5 (a, d, g, j) show the trend of the inferred values changing with the spatio-

temporal resolution of the training data. Generally, the inference results converge toward the 

true value with mild deviations if the training data is greater than 2,500 training points (2.5% 

of the total number of points). The second and the third column show the mean of relative L2 

errors for velocity and phase fields. The velocity errors for κ equals 0.5 and 50 are one order 

smaller than those of small permeability, indicating better predictions when κ is large. The 

phase field errors are all lower than 1% if the training data is above 2.5% of the total number 

of points. Hence, for this case, we conclude that it is sufficient to guarantee convergence and 

good results if 2.5% of points are used to make inferences.

Furthermore, to validate the robustness of our model to noisy measurements, we add white 

noise N(0, 1) to the input data, i.e., phase field ϕ, in the following way:

ϕ = clip(ϕ + σN(0, 1)), ϕ ∈ [ − 1, 1], (15)

where σ is the noise level. We add normal-distributed white noise signals to the reference 

data ϕ and impose a clip function to restrain the value of ϕ within −1 and 1. We test the value 
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of the noise level σ up to 20% of the variance and train the model with these noisy data. The 

reference permeability value in these cases is set as 0.01. Fig. 6 (a) plots the inferred κ 
against various noise levels, showing that the inferred value is not affected by the added 

noise. In plot (b), the relative L2 errors for phase and velocity field show slight increase as 

the noise level increases. In particular, the predictions of the velocity field is more sensitive 

to the noise as ϵv increases from less than 1% at σ = 0 to 25% at σ = 0.20. In general, the 

good agreement in parameter inference and small increment in field predictions demonstrate 

strong robustness of the PINN model to noisy data.

3.1.2. Thrombus in a channel with space-dependent permeability—Unlike the 

aforementioned idealistic case, in a real thrombus, the permeability varies spatially 

depending on the volume fraction (ϕ), with the core area much less permeable than the outer 

shell. To validate the inference ability of the PINN for a space-dependent permeability, we 

test another case with the κ = 1 for the shell area and κ = 0.001 for the core area as shown in 

Fig. 7. Since the core area is hardly permeable while the shell has a larger κ, we expect a 

non-uniform displacement from the thrombus core and shell as the outer layer moves with 

ambient flow and the inner layer stays still. To express such spatial variation explicitly, we 

consider a relation between ϕ and κ in this case:

κ(ϕ) = eaϕ + b, (16)

where a and b are model parameters to be optimized in the PINN model and the true values 

of a and b are 6.90 and 0.0. Since the fluid phase (ϕ = 1) does not have permeability, we only 

consider κ for the core (ϕ = −1) and shell layer (ϕ = 0).

In Fig. 7 we present the history of the different losses, namely PDE loss, boundary condition 

loss (Loss BC), initial condition loss (Loss IC), and data loss (Loss Data) in (a). Plot (b) 

shows the inference result for κ as a function of ϕ; the permeability at core area (κ(ϕ = −1) = 

0.0011) and shell area (κ(ϕ = 0) = 1.0003) match the reference values well. Plot (c) shows 

that the model parameter quickly converges to the true values.

We present the reference data ϕref, vref and the model predictions ϕpred, vpred and their 

difference at t = 0.78 in plot (d). The field predictions exhibit a good agreement compared 

with the ground truth data. The errors for the phase field are mainly distributed in and 

around the outlet layer of the thrombus and the errors in velocity field are mainly confined 

within the shell layer.

3.2. Inference of viscoelastic Modulus

The viscoelastic modulus is another important parameter that has to be estimated indirectly. 

There are few rheometry experiments that measure the viscoelastic shear modulus λe with 

oscillatory shear deformation. We assume homogeneity and isotropy of the thrombus for 

simplicity. To explore the viability of parameter inference from imaging data, we consider 

two typical setups as illustration: a thrombus in a cavity and a biofilm in a channel.

3.2.1. Viscoelastic thrombus in a cavity—We first consider a viscoelastic thrombus 

in a 1×1 cavity as shown in Fig. 8 (a). This example represents a benchmark test for 
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simulating the deformation of a viscoelastic material. The top layer with the light gray color 

denotes the fluid phase while the bottom layer with the darker color indicates the initial state 

of the viscoelastic thrombus. We impose a time-dependent sinusoidal vertical flow v(t, x) = 

−(1 − cos(2πt)) sin(2πx) at the top boundary. At the left and right boundary, we set the 

Dirichlet boundary ϕ(y) = tanh(y − 0.5)/ 2ℎ and the periodic boundary for velocity; we also 

set ∇ϕ ·n = 0 at the top boundary and ϕ = −1 on the bottom wall. We sample 20,000 phase 

field points and 2,000 pressure points at boundaries from 20 consecutive snapshots (t ∈ 
[0.03, 0.63]) in addition to 1,000 initial points. To train this neural network, we only utilize 

the phase field information and some pressure measurements at the boundaries as data 

sources. Such data acquisition does not require information other than the phase field from 

the inner spatio-temporal domain, such as the pressure or auxiliary vector field ψ, and hence 

it can potentially be used in a real experimental setup. The weights are chosen as followed:

ω1 = ω3 = 1, ω2 = ω4 = 5, epoch ∈ [1, 600, 000], (17)

ω1 = 10, ω3 = ω2 = ω4 = 1, epoch ∈ [600, 001, 900, 000], (18)

We set ρ = 1, μ = 0.01, h = 0.02, λ = 2.5 × 10−9, and τ = 10−4.

In Fig. 8 we present in plot (b) the history of the loss for each term and in plot (c) the 

inferred value of the viscoelastic modulus. In plot (b), the PDE loss (blue line) converges 

around 10−3 and the other losses balanced at the same order with the PDE loss after 

redistributing the weights at epoch 600,000. Another result of changing the weights is that 

the inferred value for λe converges closer to the reference value 0.25.

Fig. 9 compares the reference data and the model predictions at time t = 0.48. Phase, 

velocity, and pressure fields are plotted respectively on each row, and the last column plots 

the absolute difference between the data and predictions. We can observe excellent inferred 

results for ϕ, p, and v with some minor discrepancies at the interface layer and top periodic 

layer. Additionally, our model renders high-resolution results in fields construction as can be 

seen in the summary of the mean relative L2 error in Table 1. The first row shows the mean 

errors for each field over the full snapshots, while the second row lists the mean errors over 

the first half among all snapshots. As the data indicate, the errors increase as the system 

develops since the full time window errors are all greater than those at the first half time 

window. But overall, we can conclude that the model infers the fields for each variable with 

satisfactory accuracy.

3.2.2. Biofilm in a channel—In this section, we consider a thin biofilm sitting in a 

channel. This case is used to mimic the oscillatory shear experimental setup [63] whereas 

the thrombus is detached from the top surface, unlike the original setup. It is also 

representative for studying the mechanics of thromboembolism caused by plaque formation 

and rupture. Other biological implications of biofilms can be found in [47], where biofilms 

are aggregations embedded in a self-produced matrix of extracellular polymeric substances. 

From a mechanical point of view, we expect to see a different mode of oscillation on a 

biofilm when changing λe [63]. However, this effect may not be distinguishable for a semi-
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circular thrombus and it will make parameter inference even more challenging. Hence, we 

choose the biofilm as a benchmark example.

A thin viscoelastic biofilm is present in the middle of a channel with oscillatory flow u(t, y) 

= 0.9 sin(2πt)(2y − y2) coming from the left side of the domain. We expect to observe a 

swinging movement of the biofilm with the oscillatory flow. Similar to the sampling strategy 

on the inference of permeability, we sample the four types of points from this domain as 

shown in Fig. 10(b): initial points ( ), inner points ( ), boundary points ( ), and points 

with measurements ( ). Since the dynamics is rich in the area indicated by the black dash 

line, we refine the density of sampling points from t0 to tn within the box for better accuracy. 

For this 2D flow, we set λ = 4.2428×10−5, τ = 0.5, ρ = 1, and μ = 0.1, and the interface 

width h = 0.04.

In the first test, with λe and κ unknown, we aim to infer the parameters and recover the 

whole field from the training data. The model is informed with 15,000 phase field data in the 

spatio-temporal domain, 2,000 pressure measurements at boundaries, and 1,000 initial 

points. Fig. 11(a) shows the history of the training losses where the loss PDE is the largest 

among all losses and the loss for data measurements and initial conditions are the lowest. 

The inferred values for the two unknown parameters are in plot (b) and (c), indicating that 

the predicted λe and κ converge towards the actual values, at 8.27 and 0.006, as compared to 

the true value of λe = 10 and κ = 0.005. To show the regressed fields, we compare the 

reference data and model predictions for phase and velocity fields at times t0 = 0.02, t1 = 

0.44, and t3 = 0.86 in Fig. 12. The first column of Fig. 12 shows the actual distribution of 

phase and velocity fields from the reference data, and the second column shows the 

regressed fields from the PINN model. In plot (a), we observe overall good phase predictions 

in the second column with some minor smoothing effects around the sharp interface of the 

biofilm. Plot (b) presents the comparisons for the velocity field, and we observe that the 

fluid is forced to pass from the top of the biofilm, with local acceleration because of the 

impermeability of the biofilm. The model predictions vpred show the capability of the PINN 

for capturing such effects and regressing the velocity field. The absolute error for the 

velocity field is generally below 10% with larger differences at the flow restricted area and 

close to the bottom boundary. We summarize the mean relative L2 error in Table 2; the mean 

error for the first half time window is relatively smaller than the full time.

However, there still exists a relatively large error for inferred value of λe. There are three 

possible reasons. First, the dynamics are not very sensitive to the variation in λe. In the 

Appendix (Figure 15), we perform a posteriori sensitivity analysis and compared the phase 

and velocity field with λe at 15 and 0.1, demonstrating that the variation in elastic modulus 

mainly affects the shape and velocity around the biofilm interface. Hence, it is crucial to 

have an accurate prediction of the moving boundary of this fluid-structure system. Second, 

the interface around the biofilm is relatively sharp with rectangular corners, which poses 

additional difficulties in capturing the detailed but important interface dynamics. On the 

other hand, PINNs perform well when on inferring λe when the system with similar 

governing equations has a less sharp interface in Fig. 9. Lastly, the Cahn-Hilliard equation is 

essentially a fourth-order PDE system, hence, posing a challenge for neural networks to 

approximate such a high-order system.
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Furthermore, we assess to the inference ability with different numbers and types of data. The 

number of training points (only includes phase field point measurements) is indicated by its 

ratio to the total number of points. We set κ as a known parameter to focus on the modulus 

λe. The first two rows in Fig. 13 present the inferred λe and mean of relative L2 error for 

each field for the biofilm problem. The third and fourth rows show the same results for κ = 

0.01. The inferred modulus convergences to the true value with an increasing amount of data 

used in training. Hence, the more training points and more data sources we use, the more 

accurate the results. Moreover, we shaded the 20% error region between λe = 8 and 12 in (a, 

g) which includes most of the points for yellow, black, and blue lines. By contrast, the errors 

in parameter inference exhibit a poor performance if only the phase field data are employed 

to train the neural network. Additionally, we also compare the change of the errors for each 

variable with the increasing number of training points in (b-f) and (h-l), and almost all points 

fall below or on the verge of the 5% error region shaded with gray except the training with 

too small training data or modality. These results demonstrate that it is sufficient to infer λe 

with a limited amount of data from the phase field and pressure measurements at the 

boundaries.

Finally, we investigate the inference ability on λe of the model to noisy measurements. We 

repeat a set of similar noisy tests as that in permeability inference. Results in Fig. 14 are 

obtained with 16,000 (8%) points measurements with the maximum noise level at 20%. The 

noise level is similar to that defined in equation 15 where we denote the percentage with 

respect to the noise variance. Fig. 14 (a) shows the inferred viscoelastic modulus at various 

noise levels. The inferred value is around 8 with some minor oscillations. Plot (b) illustrates 

that all the errors exhibit no or very little increase with the increasing intensity in noise level. 

Hence, we conclude that the PINN shows good robustness to noisy measurements given 

these findings.

4. Discussion

In this paper, we demonstrate the potential of PINNs to infer material properties of thrombus 

in a flow field, i.e., permeability and viscoelastic modulus, from authentic data. Such 

modeling leverages the recent advances in deep learning algorithms for scientific machine 

computing by penalizing the Cahn-Hilliard and Naiver-Stokes equations, which provides a 

mathematical description for thrombus deformation. Our findings agree well with 

permeability reference values over a wide range, i.e., from O 10−4  to O 101 , and the model 

predictions match with the simulation results from the high-order spectral/hp element 

method. In particular, only based on the phase field distribution, the PINN model inferred 

the value of permeability for a thrombus in a channel, suggesting a potential approach to 

directly estimate material properties from imaging data. For the inference of viscoelastic 

modulus, we show that it will be sufficient to make the inference given that the phase field 

data along with some pressure measurements at boundaries serve as input to the model. We 

also demonstrated the robustness of model inference with noisy measurements for both 

parameters. In addition, we successfully use PINNs to address a thrombus with a 

heterogeneous permeability, i.e., different permeabilities at the core and shell layer.
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Phase field modeling is a special case where the concentration field can be converted from 

gray-scale values of the image pixels through calibration, and material properties can be 

directly obtained from in operando imaging data [62]. In our system, the multiple 

components and the complex geometry of a thrombus can be represented by the gray values 

of each pixel, which increases the possibility of using experimental images to learn 

thrombus properties in the future.

In this research, we have demonstrated that PINNs can regress the entire fields and unknown 

parameters given only partial measurements (phase field and pressure at boundaries). This 

provides a novel and viable way to incorporate data from imaging techniques and multi-

modality data to train physics-informed deep learning models for field regression and non-

invasive parameter inference in biomedical systems. A possible future improvement will be 

to employ instead of the governing PDEs, the Gibbs energy functional that is minimized to 

derive the PDEs; this may be advantageous as lower-order derivatives as well as a smaller 

number of equations is involved. Another future improvement will be to consider a more 

realistic and representative setup such as inferring parameters for a 3D thrombus with more 

realistic shape and unsteady ambient flow. Since predictions on the interface have a 

substantial impact on parameter inference, a domain decomposition based PINN model [10] 

can be adopted to better capture the dynamics around the interface. Also, solving such PDEs 

in variational form [14, 13] can help to reduce the highest order.

In terms of current limitations, one foreseeable challenge may come from the low imaging 

resolution, which causes difficulties to delineate and convert the presence of a shell layer 

with partially-activated platelet to the gray-scale values of the images. Incorrect 

quantification of such area can lead to a mismatch between the true and inferred value. 

Another possible limitation of the current study for biomedical applications is that our 

approach requires that the system must be represented via explicit governing differential 

equations, whereas the governing equations for many biological processes are not known a 

priori. Promising remedies to overcome such challenge are data-driven system identification 

[2, 25, 39, 43], or variational system identification [49, 50] for discovering hidden governing 

equations from noisy and sparse data. Also, high dimensionality and lack of boundary/initial 

information could deteriorate the overall accuracy of the model predictions.

In ongoing work, we are extending our research by exploring the possibility of using 

imperfect PDE constraints and also noise-filtering techniques for realistic imaging data. 

Furthermore, although PINNs are less data-hungry compared to traditional data-driven 

models, the amount of data used in training, from an experimental point of view, is still quite 

intensive given the small dimensions and limited spatio-temporal resolution of imaging. In 

particular, the inference of biomechanical properties of a realistic thrombus depend on its 

internal properties, topology, and ambient flow (possibly surrounded by turbulent flow [44]), 

which requires considerable data to fully capture such dependencies. In vivo or in vitro 
experimental data combining multi-modality imaging techniques, such as ultrasound (US) 

and optical coherence tomography (OCT), or panoramic-digital imaging correlation (pDIC), 

can accurately reflect the real vessel geometries and material properties. However, the 

morphological diversity of a thrombus and expensive experimental cost make acquiring 

sufficient experimental data impractical. Multi-fidelity frameworks [22, 28], leveraging data 
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from different modalities, seem to be promising for addressing these issues given the 

insufficient amount of high fidelity data. Specifically, the high fidelity data can be realistic, 

but expensive experimental imaging data with actual material properties (i.e., viscoelastic 

modulus and permeability). On the other hand, considerable low-fidelity in silico data 

represented by computational results from finite-element simulations can be generated. The 

multi-fidelity machine-learning framework can learn to optimally combine the multi-

modality experimental data with simulations to obtain a response surface for the 

biomechanical properties of a thrombus in response to the morphological and physiological 

variables. We are currently working on extending this multi-fidelity/multimodality 

framework, and we will report our results in a future publication.
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Appendix

A4. A posteriori practical identifiability analysis for κ and λe

We perform a posteriori sensitivity analysis to κ in Fig. 15. We rerun a set of simulations for 

a thrombus in a channel with κ = 50 – 0.0005 and plot the phase field difference when κ is 

set as the true value and inferred value. In (a) the maximum difference in the phase field for 

κ = 50 is at 2.5×10−5 while the maximum difference for κ = 0.0005 is almost 1,000 times 

larger, showing that the system is relatively insensitive to variations in κ when permeability 

is large. Therefore, the system is less “sensitive” when κ = 50 than κ is at O 1 − 10−4  and it 

is harder to have an accurate inference results when κ = 50.

In Fig. 16 we present fields comparison when λe = 0.1 and 15 for the biofilm problem. In 

Fig. 16 (a), we observe small differences between the deformation of the biofilm at the same 

time where most of the differences appear at the interface. Plot (b) compares the velocity 

field where we observe an acceleration area on the top of the biofilm. However, the main 

inconsistency is caused by the velocity inside the biofilm. In plot (c) we show the pressure 

field comparison and we observe an overall similar pressure distribution for λe at different 

values with minor differences close to the center. Overall, the results in Fig. 16 and 15 

demonstrate that the parameter sensitivity for κ and λe pose a difficulty on the inverse 

inference to the unknown parameters.

A2. Supplementary results for the inference of λe

In this section, we present two more additional tests result from the network trained with ϕ + 

u (green line) and u + p (purple line) in Fig. 17 on the top of Fig. 13. The inferred parameter 

value on the purple line has the largest error among all lines, and the phase field error ended 

at the order of 1, indicating converged training results from the PINN model by only using 

information from velocity and pressure fields. The green line shows the results from training 

with ϕ and u. While the error in (e-i) shows a satisfactory agreement with the actual data, the 

inferred parameter value still cannot match the true value very well. We use these two tests 

as a supplementary proof to show the importance of pressure data on the inference of λe.
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A3. Inferring permeability from a pre-trained model

In this section, we briefly discuss the possibility to infer parameter values from a pre-trained 

model. To be more specific, we use the weights and biases of a network for inferring κ = 0.5 

as the initial state to infer κ = 0.005 and 0.0005. Figure 18 plots the value of κ and total loss 

against training epochs for PINNs with a pre-trained model and randomized initialization. 

For κ = 0.005, (a) and (b) show that the model with pre-training shows a faster convergence 

on inferring κ and minimizing loss compared with the model without pre-training. However, 

pre-training may not be helpful for impermeable thrombus (κ = 0.0005) even if the 

initialization of κ is far from the true value. So the effect of using a pre-trained model as 

initialization for faster convergence is case dependent and needs a more detailed and careful 

discussion in our future work.

A4. Relative L2 error over time

In this section, we plot the relative L2 error over time for the cavity and biofilm example. 

The errors in the first half window are smaller than that in the full time window. The relative 

errors in every field increase over time, hence suggesting that longer time integration may 

cause larger deviations on the field predictions.
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Figure 1: Schematic of a PINN for solving inverse problem for Cahn-Hilliard and Navier-Stokes 
PDEs.
Circled by blue boxes, Net U and Net W represent surrogate models for the PDEs solution 

whose derivatives can be computed with automatic differentiation (AD). The computed 

derivatives are used in the loss function to restrict model outputs such that they satisfy the 

system of PDEs in Ω. For inverse problems, the residual between sensor measurements u|data 

and model outputs uΩ are included in the loss function. We use ADAM to optimize the 

model parameters θ (weights and biases) and search the unknown values of the material 

parameters from the PDEs λ to minimize the loss function.
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Figure 2: 2D flow past a thrombus.
(a) The computational domain is a channel with walls on the top and bottom boundaries with 

the inlet flow u(t, y) entering from the left side.; ϕ=1 corresponds to fluid. A thrombus with 

a permeable core ϕ = −1 and shell ϕ = 0 is present at the bottom boundary. (b) Sampling 

points for inferring permeability include initial points ( ) at the time t0, inner points ( ) 

from t1 to tn, boundary points ( ) on boundaries, and point measurements ( ) with PDE 

solutions.
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Figure 3: Prediction and error of 2D flow past a thrombus for various permeability values at t = 
0.63.
Representative snapshots of the reference data for permeability value κ (a) 50 (b) 0.5 (c) 

0.005 (d) 0.0005 are shown against the predicted phase and velocity field. The first column 

shows the reference simulation results while the second shows the results from the PINNs. 

The third column shows the absolute value of the difference between references and model 

predictions. The network is informed by 10,000 point measurements drawn from t ∈ [0.33, 

0.63].
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Figure 4: Performance and history of PINN on predicting permeability of 2D flow past a 
thrombus with κ ranging from 0.0005 to 50.
(a) Comparison of the inferred values with the reference values. (b) Mean relative L2 errors 

for phase and velocity field when κ varies from 0.0005 to 50. The plots in (c, d, e, f) 

illustrate the inference of the permeability with respect to the number of iterations of PINN 

when κ = 50, κ = 0.5, κ = 0.005, and κ = 0.0005. The number of training points is 10,000.
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Figure 5: Effect of the number of training points on the accuracy of PINNs.
Ntotal = 100,000. Plots (a, d, g, j) show comparison of reference and inferred permeability 

for a different number of training points from 0.1% of the total number of points to 40%. 

The second and the third column show the mean of relative L2 error for (b, e, h, k) velocity 

field and (c, f, i, l) phase field over time for different numbers of training points. We shaded 

the area where the error is lower than 1%.
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Figure 6: Predictions of 2D flow past a thrombus trained with noisy phase field measurements.
(a) Inferred permeability and (c) mean relative L2 errors between the model predictions and 

the reference for phase ϵϕ and velocity field ϵv. Noise is added to the phase field with the 

noise level ranged from 0 to 20%. Here, 10,000 data points are scattered in the spatio-

temporal domain as the training data to infer the permeability.
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Figure 7: 2D flow past a thrombus with phase dependent permeability.
(a) History of network losses (Loss PDE, Loss IC, Loss BC, and Loss Data) and (b) inferred 

the permeability κ as a function of ϕ. (c) The values of a and b at each epoch. (d) 

Comparison of phase field and velocity field for κ(ϕ) at t = 0.78 and their absolute error. The 

core permeability is 0.001 and the shell permeability is set 1 as the actual values. 10,000 

data points are scattered in the spatio-temporal domain from 30 snapshots (t ∈ [0.03, 0.93]) 

as the training data to infer the permeability.
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Figure 8: (a) Schematic for viscoelastic thrombus in a cavity, (b) history losses for each term, and 
(c) inference of λe.
(a) We impose a time-dependent sinusoidal vertical velocity v(t, x) = −(1 − cos(2πt)) 
sin(2πx) at the top boundary, and set the left and right sides as periodic. We changed the 

weight for each loss term at epoch 600,000. Training data points are scattered among the 

spatio-temporal domain to train the network, including 20,000 phase field points from the 

inner spatio-temporal domain, 2,000 pressure measurements at boundaries, and 1,000 initial 

points. Loss PDE: loss for the PDEs residuals, Loss BC: loss for boundary conditions, Loss 

IC: loss for initial conditions, Loss Data: loss for measurements data.
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Figure 9: Viscoelastic thrombus in a cavity.
The first column presents the phase field distribution ϕ, velocity field v, and pressure 

distribution p from reference data, respectively. The second column shows the same field 

predictions from the model at t = 0.48. The absolute difference between the data and the 

model predictions are plotted in the third column.
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Figure 10: 2D flow past a viscoelastic biofilm setup.
(a) The computational domain is a channel with wall boundaries on the top and bottom 

sides, and with flow u(t) entering from the left side. A viscoelastic biofilm is present at the 

bottom boundary. (b) Training points include initial points ( ) at time t0, inner points ( ) 

from t1 to tn, boundary points ( ) on the boundaries, and point measurements ( ) with PDE 

solutions. The sampling points are refined within the dashed line area to improve the results 

of the PINN model.
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Figure 11: History of (a) network losses and inference for (b, c) λe and κ against the number of 
training epochs for the biofilm problem.
The full time window is from 0.02 to 1.16.
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Figure 12: 2D flow past a viscoelastic biofilm.
With λe and κ unknown at the same time, we sample 15,000 phase field data, 2,000 pressure 

points at boundaries, and 1,000 initial points as the training data for parameters inference 

and field regression. The time is from 0.02 to 1.16. Representative snapshots (at t0 = 0.02, t1 

= 0.44, and t2 = 0.86) of the reference (a) phase field and (b) velocity fields are shown 

against the predicted phase and velocity from the model. The first column shows the 

reference fields from simulation, the second shows the predicted results from PINNs, and the 

third column shows the absolute value of the difference between the references and the 

model predictions.
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Figure 13: Effect of the number of training points on the prediction value of λe with κ value as 
known.
(a, g) Predicted λe versus the number of training points for case with zero κ and non-zero κ. 

(b-f, h-l) The mean relative error L2 versus the number of training points for each field when 

κ = 10 and κ = 0.01. We also plotted the inference results and L2 error given various training 

data sources such as ϕ+u+p, ϕ+p, and only with ϕ. For the one with pressure information and 

phase field, inner (Ω) and boundary (∂) pressure measurements are used respectively to train 

the neural network. We shaded areas with lower than 5% of error. t ∈ [0.02,1.16], Ntotal = 

200,000.
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Figure 14: 2D flow past a viscoelastic biofilm trained with noisy measurements with λe 
unknown.
(a) The inferred λe. (b) presents the mean relative L2 errors between the model predictions 

and the references for each field. Noise is added to the phase field with the noise level 

ranged from 0 to 20%. Here, 16,000 (8%) data points are scattered in the spatio-temporal 

domain.
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Figure 15: A posteriori practical identifiability analysis of κ to the phase field.
(a-d) Phase field difference between κ is set as true values and inferred values.
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Figure 16: 2D flow past a viscoelastic biofilm for λe = 15 and 0.1.
The first two lines show the phase field different at t0 = 0.44 and t1 = 0.86. The middle two 

lines and the last two lines show the comparison of velocity and pressure at t0 and t1. The 

last column presents the absolute difference between fields data when λe = 15 and 0.1.
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Figure 17: Results for the biofilm case with additional results.
We train the PINN model with p+u and ϕ+u as comparisons, and we plot the inference 

results and errors on the top of Fig. 13 with opaque lines indicating the new results. The 

shaded areas indicate that the error is lower than 5%.
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Figure 18: Effect of using a pre-trained model on the inference of κ = 0.005 and 0.0005.
(a, c) compare the history of inferred κ from the model with and without pre-training versus 

epochs. (b, d) shows the training loss versus epochs for each model. The pre-trained model 

is adopted as the weights and biases for κ = 0.5 at last epochs.
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Figure 19: 
Relative L2 error over the full time window for the (a) cavity and (b) biofilm example.
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Table 1:
Summary of the mean relative L2 error for the thrombus in a cavity over half and full 

time window.

Training points in the cavity problem are sampled from t ∈ [0.03, 0.63]. The half window relative errors are 

defined as the errors from t ∈ [0.03, 0.33], whereas the full window relative errors are defined as the errors 

from t ∈ [0.03, 0.63]

ϵv ϵϕ ϵp ϵψ1 ϵψ2

Full 3.511 × 10−2 1.157 × 10−3 2.391 × 10−3 2.636 × 10−2 2.450 × 10−2

Half 4.494 × 10−3 4.129 × 10−4 1.057 × 10−3 2.516 × 10−2 2.236 × 10−2
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Table 2:
Summary of the mean relative L2 error for the biofilm problem over half and full time 

window.

Training points in the biofilm problem are sampled from t ∈ [0.02, 1.16]. The half window relative errors are 

defined as the errors from t ∈ [0.02, 0.56], whereas the full window relative errors are defined as the errors 

from t ∈ [0.02, 1.16].

ϵv ϵϕ ϵp ϵψ1 ϵψ2

Full 2.396 × 10−2 9.700 × 10−3 2.260 × 10−4 2.665 × 10−3 7.453 × 10−4

Half 1.417 × 10−2 8.893 × 10−3 9.090 × 10−5 1.490 × 10−3 4.016 × 10−4
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