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Abstract

While statistical analysis of a single network has received a lot of attention in recent years, with a 

focus on social networks, analysis of a sample of networks presents its own challenges which 

require a different set of analytic tools. Here we study the problem of classification of networks 

with labeled nodes, motivated by applications in neuroimaging. Brain networks are constructed 

from imaging data to represent functional connectivity between regions of the brain, and previous 

work has shown the potential of such networks to distinguish between various brain disorders, 

giving rise to a network classification problem. Existing approaches tend to either treat all edge 

weights as a long vector, ignoring the network structure, or focus on graph topology as represented 

by summary measures while ignoring the edge weights. Our goal is to design a classification 

method that uses both the individual edge information and the network structure of the data in a 

computationally efficient way, and that can produce a parsimonious and interpretable 

representation of differences in brain connectivity patterns between classes. We propose a graph 

classification method that uses edge weights as predictors but incorporates the network nature of 

the data via penalties that promote sparsity in the number of nodes, in addition to the usual 

sparsity penalties that encourage selection of edges. We implement the method via efficient convex 

optimization and provide a detailed analysis of data from two fMRI studies of schizophrenia.
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1. Introduction.

Network data analysis has received a lot of attention in recent literature, especially 

unsupervised analysis of a single network which is thought of as generated from an 

exchangeable random graph model, for example Bickel and Chen (2009); Le et al. (2017); 

Zhang and Zhou (2016); Gao et al. (2017) and many others. This setting is applicable to a 

number of real life scenarios, such as social networks, but there are situations where the 
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network nodes are labeled and therefore not exchangeable, and/or more than one network is 

available for analysis, which have received relatively less attention. Here we focus on the 

setting motivated by brain connectomics studies, where a sample of networks is available 

from multiple populations of interest (for example, mentally ill patients and healthy 

controls). In this setting, each unit in the population (e.g., a patient) is represented by their 

own network, and the nodes (brain regions of interest) are labeled and shared across all 

networks through a registration process that maps all individual brains onto a common atlas. 

There are many classical statistical inference questions one can ask in this setting, for 

example, how to compare different populations (Tang et al., 2017b,a). The question we focus 

on in this paper is a classification problem: given a training sample of networks with labeled 

nodes drawn from multiple classes, the goal is to learn the rules for predicting the class of a 

given network, and just as importantly, interpret these rules.

Network methods are a popular tool in the neuroscience literature (Bullmore and Sporns, 

2009; Bullmore and Bassett, 2011). A brain network represents connectivity between 

different locations of an individual’s brain. How connectivity is defined varies with the type 

of imaging technology used and the conditions under which data were collected. In this 

paper, we focus on functional connectivity, which is a measure of statistical association 

between each pair of locations in the brain, constructed from functional magnetic resonance 

imaging (fMRI) data, although the methods we develop are applicable to any sample of 

weighted networks with labeled nodes. In fMRI studies, BOLD (blood oxygen-level 

dependent) signal, a known correlate of underlying neural activity, is measured at a sequence 

of time points at many spatial locations in the brain, known as voxels, resulting in a 4-

dimensional data array, with three spatial dimensions and a time index. Brain networks 

constructed from fMRI data have been successfully used for various tasks, such as 

differentiating between certain illnesses, or between types of external stimuli (Bullmore and 

Sporns, 2009), and contain enough information to identify individual subjects (Finn et al., 

2015). Extensive statistical literature has focused on the analysis of raw fMRI data 

(Lindquist, 2008; Zhou et al., 2013; Zhang et al., 2016), usually aiming to characterize brain 

activation patterns obtained from task-based fMRI experiments. In this paper, we focus on 

resting-state fMRI data, where no particular task is performed and subjects are free to think 

about anything they want. Thus registering the time dimension across different subjects is 

not possible. The connectivity network approach, which averages over the time dimension in 

computing a measure of dependence between different voxels, is thus a natural choice, and 

has been widely used with multiple types of neuroimaging data.

Two different datasets are analyzed in this paper, both of resting state fMRI studies on 

schizophrenic patients and healthy controls. One dataset, COBRE (54 schizophrenics and 70 

controls), is publicly available (Aine et al., 2017); another, which we will refer to as UMich 

data (39 schizophrenics and 40 controls), was collected internally in the last author’s lab. 

Having two datasets on the same disease allows us to cross-check models trained on one of 

them for classification on the other to check the robustness of our approach. The raw data 

arrays undergo pre-processing and registration steps, discussed in detail in the Appendix C, 

along with additional details on data collection. To construct a brain network from fMRI 

measurements, a set of nodes is chosen, typically corresponding to regions of interests 

(ROIs) from some predefined parcellation. In our analysis we use the parcellation of Power 
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et al. (2011) (see Figure 1), which consists of 264 ROIs divided into 14 functional brain 

systems (in the COBRE data, node 75 is missing). A connectivity measure is then computed 

for every pair of nodes, resulting in an adjacency matrix of size 264×264. Many choices of 

connectivity measures are available (Smith et al., 2013); perhaps the most commonly used 

one is the Pearson correlation coefficient between locations, computed by averaging over the 

time dimension. It has been argued that partial correlations are a better measure of 

connectivity (Varoquaux and Craddock, 2013; Narayan et al., 2015), but the choice depends 

on the final goal of analysis. In this paper we follow the vast majority of the connectomics 

literature and measure connectivity on each individual by using marginal correlations 

between the corresponding time series (see Figure 2). The correlations are then further rank-

transformed and standardized; see Section 6 for details. These transformations are intended 

to deal with subject-to-subject variability and the global signal regression issue (Gotts et al., 

2013), and although they lose some information, we observed that on our datasets 

classification based on standardized ranks of marginal correlations outperformed 

classification based on other connectivity measures, such as marginal correlations. The 

methods we develop here are applicable to networks that encode any type of connectivity 

measure.

The problem of graph classification has been studied previously in other contexts, with a 

substantial literature motivated by the problem of classification of chemical compounds 

(Srinivasan et al., 1996; Helma et al., 2001), where graphs represent the compound’s 

molecular structure. This setting is very different, with small networks of about 20 nodes on 

average, binary or categorical edges recorded with no noise, and different nodes 

corresponding to different networks, (Ketkar et al., 2009). Classification methods for 

chemical compounds are usually based on finding certain discriminative patterns in the 

graphs, like subgraphs or paths (Inokuchi et al., 2000; Gonzalez et al., 2000), and using them 

as features for training a standard classification method (Deshpande et al., 2005; Kudo et al., 

2004; Fei and Huan, 2010). Computationally, finding these patterns is only possible on small 

binary networks.

Another type of methods are based on graph kernels (Gärtner et al., 2003; Vishwanathan et 

al., 2010), which define a similarity measure between two networks. These kernels 

combined with support vector machines (SVMs) have been successfully used on small 

networks (Kashima et al., 2003; Borgwardt et al., 2005), but the curse of dimensionality 

makes local kernel methods unsuitable for large scale networks (Bengio and Monperrus, 

2005). On our datasets, graph kernel methods did not perform better than random guessing.

In the context of classifying large-scale brain networks, two main approaches have been 

followed. One approach is to reduce the network to its global summary measures such as the 

average degree, clustering coefficient, or average path length (Bullmore and Sporns, 2009), 

and use those measures as features for training a classification method. Previous studies have 

reported significant differences on some of these network measures for groups of patients 

with certain brain diseases compared with healthy controls (Supekar et al., 2008; Liu et al., 

2008), suggesting their usefulness as diagnostic biomarkers. However, global summary 

statistics collapse all local network information, which can harm the accuracy of 

classification and does not allow to identify local differences. In our data analysis, a method 
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based on the network measures suggested in Prasad et al. (2015) performed poorly for 

classification (see Section 6).

An alternative approach to classification of large networks is to treat edge weights as a “bag 

of features”, vectorizing the unique elements of the adjacency matrix and ignoring the 

network nature of the data. This approach can leverage many existing classification methods 

for vectors, and provides an interpretation at the edge level if variable selection is applied 

(Richiardi et al., 2011; Craddock et al., 2009; Zhang et al., 2012). Spatial correlation 

between edges connecting neighboring nodes can be incorporated (Watanabe et al., 2014; 

Scott et al., 2015), although the effectiveness of this regularization will depend on the 

parcellation used to define nodes. Alternatively, an individual test can be used for each edge 

to find significant differences between two populations, with a multiple testing correction 

and without constructing a classifier at all (Narayan et al., 2015). While these methods can 

deliver good predictions, their interpretability is limited to individual edge selection, which 

is less scientifically interesting than identifying differentiating nodes or regions, and they 

cannot account for network structure.

Taking the network structure into account can have benefits for both testing and 

classification settings. Some methods perform inference over groups of edges based on the 

community assignments of the nodes to which they are incident. For example, Sripada et al. 

(2014a,b) introduced Network Contingency Analysis which begins with massive univariate 

testing at each edge, and then counts the number of superthreshold connections in each cell, 
a group of edges that connect nodes in two functional systems. Nonparametric methods are 

then used to conduct inference on the count statistic for each cell, with multiple comparison 

correction for inference at the cell level. Power can be improved by applying a network-

based multiple testing dependence correction (Zalesky et al., 2010). For classification, better 

interpretability and potentially accuracy can be obtained if we focus on understanding which 

brain regions or interactions between them are responsible for the differences. In somewhat 

related work, Vogelstein et al. (2013) proposed to look for a minimal set of nodes which best 

explains the difference, though that requires solving a combinatorial problem. Hypothesis 

testing on a type of graph average has also been proposed (Ginestet et al., 2017). Bayesian 

nonparametrics approaches for modeling populations of networks allow to test for local edge 

differences between the groups (Durante and Dunson, 2018), but are computationally 

feasible only for small networks.

Our goal in this paper is to develop a high-dimensional network classifier that uses all the 

individual edge weights but also respects the network structure of the data and produces 

more interpretable results. To achieve this goal, we use structured sparsity penalties to 

incorporate the network information by penalizing both the number of edges and the number 

of nodes selected. Although our main application here is classification of brain connectivity 

networks, our methods are applicable to any weighted graphs with labeled nodes, and to 

general prediction problems, not just classification.

The rest of this paper is organized as follows. In Section 2, we introduce our classifier and 

the structured penalties. In Section 3 we show how to efficiently solve the resulting convex 

optimization problem by a proximal algorithm, each step of which is a further optimization 
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problem which we solve by the alternating direction method of multipliers (ADMM). The 

performance of our method is evaluated and compared with other methods using simulations 

in Section 5. In Section 6, we analyze two brain connectivity datasets, each containing 

schizophrenic patients and healthy controls, and show that our regularization framework 

leads to state-of-the-art accuracy while providing interpretable results, some of which are 

consistent with previous findings and some are new. We conclude with a brief discussion in 

Section 7.

2. A framework for node selection in graph classification.

2.1. A penalized graph classification approach.

We start from setting up notation. All graphs we consider are defined on the same set of N 

labeled nodes. A graph can be represented with its adjacency matrix A ∈ ℝN × N. We focus 

on graphs that are undirected (Aij = Aji) and contain no self-loops (Aii = 0). These 

assumptions are not required for the derivations below, but they match the neuroimaging 

setting and simplify notation. Our goal is predicting a class label Y from the graph 

adjacency matrix A; in this paper we focus on the binary classification problem where Y 
takes values {−1, 1}, although extensions from binary to multi-class classification or real-

valued responses are straightforward. Throughout this paper, we use ∥ · ∥p to denote the 

entry-wise ℓp norm, i.e., for a matrix A ∈ ℝm × n, A p = ∑i = 1
m ∑j = 1

n Aij
p 1/p

.

A standard general approach is to construct a linear classifier, which predicts the response Y 
from a linear combination of the elements of A, 〈A, B〉 = Tr (BT A), where we arrange the 

coefficients in a matrix B ∈ ℝN × N to emphasize the network nature of the predictors. We 

focus on linear classifiers here because variable selection is at least as important as 

prediction itself in the neuroimaging application, and setting coefficients to 0 is a natural 

way to achieve this. The coefficients are typically estimated from training data by 

minimizing an objective consisting of a loss function plus a penalty. The penalty can be used 

to regularize the problem to make the estimator well-defined in high-dimensional problems, 

to select important predictors, and to impose structure, and many such penalties have been 

proposed, starting from the lasso (Tibshirani, 1996). Our focus is on designing a classifier in 

this framework that respects and utilizes the network nature of the predictors. In brain 

networks in particular, neuroscientists believe that edges are organized in subnetworks, also 

called brain systems (Power et al., 2011), that carry out specific functions, and certain 

subnetworks are important for prediction (Bullmore and Sporns, 2009), although different 

studies tend to implicate different regions (Fornito et al., 2012). Thus we aim to find nodes 

or subnetworks with good discriminative power, and hence select both the most informative 

nodes and edges.

Although the methods we develop here can be used on small networks, our main focus is on 

the more challenging case of medium to large brain networks. In brain connectivity studies 

dealing with multiple subjects, while raw images may contain hundreds of thousands of 

voxels, they are commonly down-sampled according to a parcellation scheme with a coarser 

resolution, usually resulting in networks with hundreds or thousands of nodes representing 

ROIs (see for example Kiar et al. (2018)). This coarser resolution is essential for registration, 
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as aligning different brains at a high resolution is much harder, but it still results in hundreds 

of thousands or millions of edges which serve as predictor variables. Given the typical data 

sizes in this area of application, we focus on methods based on convex formulations, which 

allow for efficient and scalable implementations with convergence guarantees.

Let {(A(1), Y1), …, (A(n), Yn)} be the training sample of undirected adjacency matrices with 

their class labels, and let Y = (Y1, … , Yn). A generic linear classifier described above is 

computed by finding the coefficients B defined by

B = arg min
B ∈ ℬ

l(B) + Ω(B) , (2.1)

where ℬ = B ∈ ℝN × N :B = BT , diag(B) = 0 , Ω is a penalty, and

l(B) = 1
n ∑

k = 1

n
l Yk, A(k); B

is a loss function evaluated on the training data. Our methodology can accommodate 

different choices of loss functions that can extend beyond classification problems (e.g., least 

squares or generalized linear models). The optimization algorithm presented in Section 3 can 

work with any convex and continuously differentiable loss function, and further assumptions 

are required for consistency (see Section 4). In this paper, for the purpose of classification 

we use the logistic loss function in the simulations and data analysis, which is defined as

l Yk, A(k); B, b = log 1 + exp −Yk A(k), B + b .

The threshold b is an additional parameter to be estimated.

To capture structural assumptions on important predictive edges, we focus on convex 

structured sparsity penalties (Bach et al., 2012) that encourage a small number of active 

nodes, by which we mean nodes attached to at least one edge with a non-zero coefficient. 

One approach to finding a set of such nodes was proposed by Vogelstein et al. (2013), who 

called it a signal-subgraph, and proposed finding the minimal set of nodes (called signal 

vertices) which together are incident to all selected edges (but not every node connected to a 

selected edge is a signal vertex). Finding this set is a combinatorial optimization problem, 

and the set is not always uniquely defined. Instead, we focus on convex formulations that 

allow for efficient computation and encourage small active node sets indirectly.

Other convex penalties have been used for fMRI data as a way to enforce spatial smoothness 

in the solution (Grosenick et al., 2013; Xin et al., 2014; Hu and Allen, 2015). These methods 

assume that voxels are equally spaced in the brain, and neighboring voxels are highly 

correlated. In particular, Watanabe et al. (2014) proposed penalties for brain network 

classification using these spatial assumptions. Here, instead of enforcing a spatial 

regularization directly, we aim for a regularization that can be applied to any type of network 

data, and in particular to brain networks with coarse and/or uneven parcellations where 
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enforcing spatial smoothness may not work as well. In any case, the flexibility of convex 

optimization algorithms allows one to easily incorporate additional spatially-informed 

penalties if needed.

2.2. Selecting nodes and edges through group lasso.

To reflect the network structure of the predictors, we use a penalty that promotes a sparse 

classifier not only in the number of edges used, but also in the number of nodes. The group 

lasso penalty (Yuan and Lin, 2006) is designed to eliminate a group of variables 

simultaneously. Here we penalize the number of active nodes by treating all edges connected 

to one node as a group. Then eliminating this group (a row of coefficients in the matrix B) is 

equivalent to de-activating a node. The group penalty is defined as

Ωλ, ρ(B) = λ ∑
i = 1

N
B(i)‖2 + ρ‖B‖1 , (2.2)

where B(i) denotes the vector of edge weights incident to the i-th node (or equivalently, the i-
th row or column of B), and λ, ρ ≥ 0 are tuning parameters. Note that the constraint B = BT 

makes the groups overlap, since a coefficient Bij belongs to groups associated with the nodes 

i and j, and therefore, the edge between nodes i and j would be selected only if both nodes 

are activated. The second term in the penalty ρ∥B∥1 acts as the usual lasso penalty to 

promote sparsity inside the group (Friedman et al., 2010a), allowing to select a subset of 

edges for an active node. Due to the overlap in the groups, this lasso penalty is usually 

necessary in order to produce sparse solution (see Proposition 1). The constraint diag(B) = 0 

in (2.1) is automatically enforced with this formulation.

REMARK 1. An alternative to the constraint in the problem (2.1) is to optimize over the set

ℬ = B ∈ ℝN × N, diag(B) = 0 .

Without the symmetry constraint and assuming undirected graphs, the penalty (2.2) is 

equivalent to the overlapping group lasso formulation of Jacob et al. (2009). This 

formulation has some advantages. Since it gives group lasso without overlaps, the lasso 

penalty ρ∥B∥1 is not required to obtain sparse solutions, and more efficient optimization 

algorithms exist for this case. This approach would loosely correspond to the idea of 

selecting signal nodes as in Vogelstein et al. (2013), in the sense that an edge can be selected 

if at least one of its nodes is selected, and the second node could be inactive. The downside 

is that each edge now corresponds to two different coefficients Bij and Bji, the problem 

encountered by all variable selection methods that ignore symmetry, such as Meinshausen 

and Bühlmann (2006). The standard solution for this problem, as suggested by Jacob et al. 

(2009), is to take the average of the coefficients. Intuitively, one would expect that the 

formulation using ℬ would be better when the significant edges are incident to a small set of 

nodes, since both nodes have to be active for an edge to be selected, while using ℬ may be 

better when for some nodes most of their edges are significant, creating “significant hubs”. 

Since in our application we are primarily looking for discriminative brain subnetworks, we 

focus on the symmetrically constrained formulation for the rest of the paper. We also found 

Arroyo Relión et al. Page 7

Ann Appl Stat. Author manuscript; available in PMC 2021 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that in practice this second formulation results in less accurate classifiers for the 

neuroimaging data discussed in Section 6.

REMARK 2. The analogue to (2.2) for directed graphs would assign coefficients Bij and Bij to 

the same group, resulting in the penalty

Ψλ, ρ(B) = λ ∑
i = 1

N
∑

j
Bij

2 + Bji
2 + ρ‖B‖1 , (2.3)

where B ∈ ℬ. Alternatively, we can also use the formulation of Remark 1, by replicating the 

variables and estimating two matrices of coefficients, say B(1) and B(2), with the penalty

Ψλ, ρ B(1), B(2) = λ ∑
i = 1

N
∑
j

Bij
(1) 2

+ Bji
(2) 2

+ ρ B(1) 1 + B(2) 1 ,

with B(1), B 2 ∈ ℬ, and set the coefficients matrix to B = (B(1) + B(2))/2. This formulation 

will again not directly select subnetworks as discussed in Remark 1.

Finally, for numerical stability we add an extra ridge penalty term γ
2 B F

2 = γ
2Tr BTB , with 

γ a small and fixed constant. There are several benefits of combining ridge and lasso 

penalties (see for example Zou and Hastie (2005)). The parameter γ can be potentially 

considered as an additional tuning parameter, but here we only use a small fixed constant γ 
in order to avoid numerically degenerate solutions. In practice, the results are not sensitive to 

the exact value of γ.

Putting everything together, to fit our graph classifier, we solve the problem

(B, b) = arg min
B ∈ ℬ, b ∈ ℝ

1
n ∑

k = 1

n
log 1 + exp −Y k B, A(k) + b + γ

2‖B‖F
2

+ λ ∑
i = 1

N
‖Bi‖2 + ρ‖B‖1

(2.4)

for given values of λ and ρ, which will be chosen by cross-validation.

3. The optimization algorithm.

Our optimization algorithm to solve the problem (2.4) combines two common approaches to 

convex optimization: proximal algorithms and alternating direction method of multipliers 

(ADMM). We use an accelerated version of the proximal algorithm (Beck and Teboulle, 

2009) to solve the main problem (2.4). In each step, we need to calculate a proximal 

operator, which is a further convex optimization problem solved with the ADMM algorithm.

The main optimization difficulty comes from the overlapping groups. Some algorithms have 

been proposed for this case, including a subgradient descent method (Duchi and Singer, 

2009), which has a slow rate of convergence, or proximal algorithms based on smoothing the 
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original problem (Yuan et al., 2011; Chen et al., 2012). Although smoothing yields fast 

algorithms, it is not clear that the sparsity pattern is preserved with those approximations. 

We follow an approach similar to Yuan et al. (2011) and Chen et al. (2012), but solve the 

proximal operator for the penalty (2.2) directly using the ADMM method. This can 

potentially give a more accurate sparsity pattern, and the flexibility of the algorithm allows 

for additional penalties if desired, such as spatial smoothing similar to Watanabe et al. 

(2014) (see Remark 3).

The main problem (2.1) is solved with a proximal algorithm (see Parikh and Boyd (2013)). 

Recall that the proximal operator for a function f is defined as 

proxf(v) = arg minx f(x) + 1
2 x − v 2

2
. Starting with an initial value B 0 ∈ ℝN × N, a 

proximal algorithm solves the optimization problem (2.1) by iteratively calculating the 

proximal operator of Ω = Ωλ,ρ for a descent direction of the differentiable loss function ℓ. We 

use an accelerated version of the algorithm (Beck and Teboulle, 2009), which for each k = 2, 

…, until convergence, performs the updates

W (k) = B(k − 1) + k − 1
k + 2 B(k − 1) − B(k − 2)

(3.1)

B(k) = prox
t(k)Ω

W (k) − t(k)∇l W (k)

= arg min
B ∈ ℬ

1
2‖B − W (k) − t(k)∇l W (k) ‖2

2 + t(k)Ω(B) ,
(3.2)

where ∇l(W ) ∈ ℝN × N is the gradient of the loss function ℓ at W and {t(k)} is a sequence of 

positive values. If Δℓ is Lipschitz continuous, with L its Lipschitz constant, the sequence of 

values ℓ(B(k)) + Ω(B(k)) converges to the optimal value at rate O(1/k2) if t(k) ∈ [0, 1/L). The 

value of t(k) can be chosen using a backtracking search (Beck and Teboulle, 2009), which 

decreases this value until the condition

l B(k) ≤ l W (k) + ∇l W (k) , B(k) − W (k) + 1
2t(k)‖B(k) − W (k)‖2

2
(3.3)

is satisfied. This procedure ensures that step sizes {t(k)} become smaller as the algorithm 

progresses, until t(k) < 1/L. In practice, L might be large, which can make the algorithm slow 

to converge. It has been observed in other sparse high-dimensional problems that search 

strategies for t(k) which allow for t(k) > 1/L when appropriate can actually speed up 

convergence (Scheinberg et al., 2014; Hastie et al., 2015). We use a strategy of this type, 

allowing t(k) to increase by a factor of α ≥ 1 if the relative improvement in the loss function 

on iteration k becomes small. We observed that this strategy significantly reduces the 

number of iterations until convergence. The entire procedure is summarized in Algorithm 1 

on the Appendix A.

The logistic loss function of (2.4) has an extra parameter b. Rather than including it as an 

unpenalized coefficient for a constant covariate, we use block coordinate descent and solve 

for b separately. This is convenient because the threshold b and the matrix of coefficients B 
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may not be on the same scale. Thus, b can be updated by solving 

b(k + 1) = arg minb ∈ ℝl B(k), b , which is easy to compute via Newton’s method.

The proximal algorithm requires solving the proximal operator (3.2), which has no closed 

form solution for the penalty (2.2) under the symmetry constraint. Strategies based on 

smoothing this penalty have been proposed (Yuan et al., 2011; Chen et al., 2012). However, 

to allow for variable selection which results from non-differentiability of the penalty, we aim 

to solve the proximal operator directly using ADMM (see Boyd et al. (2011) for a review). 

Note that if the symmetric constraint is relaxed as in Remark 1, the proximal operator has a 

closed form solution (see Remark 4).

The ADMM works by introducing additional constraints and performing coordinate descent 

in the corresponding augmented Lagrangian function. Setting Z = W(k) − t(k) Δℓ(W(k)) and t 

= t(k), and introducing the variables Q, R ∈ ℝN × N, we can formulate (3.2) as a convex 

optimization problem

min
B, Q, R

1
2‖B − Z‖2

2 + tλ ∑
i = 1

N
‖Q(i)‖2 + ρ‖R‖1 (3.4)

subject to B = Q, B = R, B = BT, diag(B) = 0.

The ADMM algorithm introduces the multipliers U, V ∈ ℝN × N and a penalty parameter μ > 

0 to perform gradient descent on the Lagrangian of (3.4), given by ℒμ = ℒμ(B, Q, R, U, V ) as

ℒμ = 1
2‖B − Z‖2

2 + tλ ∑
i = 1

N
‖Q(i)‖2 + ρ‖R‖1 + U, B − Q + V , B − R

μ
2 ‖B − Q‖2

2 + ‖B − R‖2
2 + ‖B − BT‖2

2
.

(3.5)

The value μ controls the gap between dual and primal feasibility. In practice, we observed 

that setting μ = 0.1 gives a good balance between primal and dual feasibility, although other 

self-tuning methods are available (Parikh and Boyd, 2013). This function is optimized by 

coordinate descent, with each variable updated to minimize the value of ℒμ while all the 

other variables are fixed. This update has a closed form; the detailed steps of the ADMM are 

shown in Algorithm 2 on the Appendix A. These steps are performed until the algorithm 

converges within tolerance ϵADMM > 0. Note that ADMM will be performed in each 

iteration of the algorithm to solve (2.4) and thus tolerance ϵADMM can be decreased as the 

algorithm progresses. On the other hand, performing only one iteration of algorithm (2) 

gives a similar algorithm to the one of Chen et al. (2012).

REMARK 3. The ADMM makes it very easy to incorporate additional penalties. If Ψ is a new 

penalty, we can rewrite (3.4) by introducing an additional parameter Q so it becomes
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min
B, Q, Q, R

1
2‖B − Z(k)‖2

2 + tλ ∑
i = 1

N
‖Q(i)‖2 + ρ‖R‖1 + tΨ(Q)

subject to B = Q, B = Q, B = R, B = BT, diag(B) = 0.

We can obtain the Lagrangian formulation (3.5) in a similar manner, and include new 

parameters in the ADMM updates, which can be performed efficiently as long as the 

proximal operator of Ψ has a closed form solution. This is in fact the case for some other 

penalties of interest, such as the GraphNet penalty (Grosenick et al., 2013; Watanabe et al., 

2014), which can incorporate spatial location information.

REMARK 4. The alternative formulation for the graph penalty given in Remark 1 corresponds 

to standard sparse group lasso (Friedman et al., 2010a). In particular, we can still employ the 

proximal algorithms (3.1) and (3.2), but instead optimize over the set ℬ. Without the 

symmetric constraint on B, the overlap in the group lasso penalty disappears, and this vastly 

simplifies the problem. Using Theorem 1 of Yuan et al. (2011), the update for B(k) has a 

closed form solution given by

Y (k) = B(k − 1) + k − 2
k B(k − 1) − B(k − 2)

(3.6)

Zij
(k) = 1 − λρ

∣ Y ij
(k) − tk ∇ijl Y (k) ‖2 +

Y ij
(k) − tk ∇ijl Y (k)

(3.7)

B(i)
(k) = 1 − λ

‖Z(i)
(k)‖2 +

Z(i)
(k) , i ∈ [N] . (3.8)

4. Theory.

In this section, we show that the solution of the penalized problem (2.2) can recover the 

correct subgraph corresponding to the set of non-zero coefficients, and give its rates of 

convergence. The theory is a consequence of the results of Lee et al. (2015) for establishing 

model selection consistency of regularized M-estimators under geometric decomposability 

(see Appendix for details). We present explicit conditions for our penalty to work well, 

which depend on the data as well as the tuning parameters.

Let B⋆ ⊂ ℝN × N be the unknown parameter we seek to estimate, and we assume there is a 

set of active nodes G ⊂ [N] with |G | = G, so that Bij
⋆ = 0 if i ∈ GC or j ∈ GC. We allow some 

edge weights inside the subgraph defined by G to be zero, but we focus on whether the set G
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is correctly estimated by the set G of active nodes in B. Denote by ℳ ⊆ ℝN × N the set of 

matrices where the only non-zero coefficients appear in the active subgraph, that is,

ℳ = B ∈ ℝN × N ∣ Bij = 0 for all i ∈ GC or j ∈ GC, B = BT (4.1)

There are two main assumptions on the loss function ℓ required for consistent selection in 

high-dimensional models (Lee et al., 2015). The first assumption is on the convexity of the 

loss function around B⋆, while the second assumption bounds the size of the entries in the 

loss Hessian between the variables in the active subgraph and the rest. Let the loss Hessian 

∇2l B⋆ ∈ ℝN × N ⊗ ℝN × N be defined by

∇(i, j), (k, l)
2 l(B) = ∂2l(B)

∂Bij∂Bkl
,

and define the matrix H(i, j), G ∈ ℝG × G with (i, j) ∈ (G × G)C such that

H(i, j), G k, l = Tr ∇(i, j), (G, G)
2 l B⋆ Λ(k, l), ( ⋅ , ⋅ ) , 1 ≤ k, l ≤ G, , (4.2)

where Λ ∈ ℝG × G ⊗ ℝG × G is a tensor such that Mat(Λ) is a pseudoinverse of Mat 

∇(G, G), (G, G)
2 l B⋆ , and Mat is the operation that unfolds the entries of a tensor Λ into a 

G2 × G2 matrix. The matrix H(i, j), G measures how well the variable corresponding to the 

edge (i, j) can be represented by the variables in the active subgraph.

ASSUMPTION 1 (Restricted Strong Convexity). There exists a set C ⊂ ℝN × N with B⋆ ∈ C, and 

constants L < ∞ such that

∑
i, j

Δi, jTr ∇(i, j), ( ⋅ , ⋅ )
2 l(B) Δ ≥ m‖Δ‖2

2, ∀B ∈ C ∩ ℳ, Δ ∈ C ∩ ℳ

‖∇2l(B) − ∇2l B⋆ ‖2 ≤ L‖B − B⋆‖2, ∀B ∈ C .

ASSUMPTION 2 (Irrepresentability). There exists a constant 0 < τ < 1 such that

max
i ∈ GC

∑
k = 1

G
‖ H(i, j), G k ⋅ ‖2

j = 1

N

2
= 1 − τ < 0.

This version of the irrepresentability condition corresponds to the one usually employed in 

group lasso penalties (Bach, 2008), but as we will see later, due to overlaps in the groups it 

further requires a lower bound on ρ to work for model selection.

The first two assumptions are stated directly as a function of the loss for a fixed design case, 

but they can be substituted with bounds in probability for the case of random designs. In 
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order to obtain rates of convergence, we do require a distributional assumption on the first 

derivative of the loss. This assumption can be substituted with a bound on maxi ∥Δℓ(B⋆)(i)∥2 

(see Lemma 3 in the Appendix).

ASSUMPTION 3 (Sub-Gaussian score function). Each pair in the sample (A, Y) is independent 

and comes from a distribution such that the entries of the matrix ∇l Y , A; B⋆  are 

subgaussian. That is, for all t > 0 there is a constant σ2 > 0 such that

max
i, j

ℙ ‖∇ijl Y , A; B⋆ ‖∞ > t ≤ 2exp −t2/σ2 .

With these assumptions, we establish consistency and correct model selection. The proof is 

given in the Appendix..

PROPOSITION 1. Suppose Assumptions 1 and 3 hold.

a. Setting the penalty parameters as λ = c1σ log N
n min N

1 + ρ , 1
ρ  and ρ ≥ 0 for some 

constant c1 > 0, with probability at least 1 − 2/N the optimal solution of (2.4) is 

unique and satisfies

‖B − B⋆‖2 = OP σN log N
n . (4.3)

b. Suppose Assumption 2 also holds. If n > c2G2σ2 logN for a constant c2 > 0, 

setting the penalty parameters as λ = c3σ log N
n min N

1 + ρ , 1
ρ  for some constant c3 

> 0, and

ρ > 1
τ − 1

G, (4.4)

then

‖B − B⋆‖2 = OP σG log N
n , (4.5)

ℙ(G ⊆ G) = 1 − 2/N . (4.6)

The part of the penalty associated with ρ causes the solution to be sparse. Due to the overlap 

in the groups, a small value of ρ will usually not result in zeros in the solution of the 

problem (2.4). The lower bound on ρ in (4.4) ensures that the irrepresentability condition of 

Lee et al. (2015) holds (see Lemma 2 in the Appendix).

Proposition 1 ensures that, with high probability, all edges estimated to have non-zero 

weights are contained in the active subgraph, and quantifies the error in estimating the 

entries of B*. To ensure that all active nodes are recovered, at least one edge corresponding 
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to each active node needs to have a non-zero weight. A similar result can be obtained to 

guarantee recovery of all active nodes under a stronger assumption that the magnitude of the 

non-zero entries of B⋆ is bounded below by Bij
⋆ > c4G2λ for a constant c4. The condition in 

part (b) requires a sample size that grows faster than the size of the active subgraph, which in 

practice can be much smaller than the size of the network, making the method suitable for 

our applications in which the sample size is limited and the number of nodes is large.

5. Numerical results on simulated networks.

In this section, we evaluate the performance of our method using synthetic networks. We are 

interested in assessing the ability of the method to correctly identify predictive edges, its 

classification accuracy, and comparisons to benchmarks. We compare the different methods’ 

edge selection performance in simulations using area under the curve (AUC). Brain 

connectomic networks are characterized by organization of nodes into communities 

(Bullmore and Sporns, 2009), in which nodes within the same community tend to have 

stronger connections than nodes belonging to different communities. In order to generate 

synthetic networks that mimic this property, we introduce community structure using the 

stochastic block model (SBM) (Holland et al., 1983). Before generating edges, we assign 

each node a community label, Ci, where Ci ∈ [K] for each i ∈ [N]. The node assignments are 

the same for all networks in the population. Given the community labels, network edges are 

generated independently from a distribution that only depends on the community labels of 

the nodes associated with each edge. Since fMRI networks are real-valued networks, we 

generate edge weights from a Gaussian distribution, rather than the standard Bernoulli 

distribution normally used with the SBM. Specifically, we draw each Aij independently from 

N μCiCj, σ2 , with μ ∈ ℝK × K defined by

μkl = 0.3, if k = l,
0.1 if k ≠ l,

and σ2 = 0.18. These values were chosen to approximately match the distribution of edge 

weights in our datasets (see Section 6). We set the number of nodes N = 300, with K = 12 

communities of size 25 each. We work with undirected networks, so the adjacency matrices 

are symmetric, with 44,850 distinct edges. Although our method is able to scale to larger 

networks, this moderately sized setting is already highly computationally demanding for 

many of the comparison benchmarks.

To set up two different class distributions, we select a set of active nodes G first, defined by 

the nodes corresponding to some communities selected at random. Then, we alter a set of 

differentiating edges ℰ selected at random from G × G with probability p. For each edge 

(i, j) ∈ ℰ, the distribution in class Y = −1 is N μCiCj, σ2 , while the distribution in class Y = 

−1 is changed to N(0.2, σ2). Figure 3 shows example expected adjacency matrices for each 

class. We then generate 50 networks from each class, resulting in a sample size of n = 100. 

We vary G = |G| by changing the number of communities selected, and the value of p, to 

study the effect of the number of active nodes and the density of differentiating edges inside 
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a subgraph. The number of communities selected is set to 1( |G | = 25), 2( |G | = 50) and all 

communities ( |G | = 300); note that in the last scenario all nodes are active and hence the 

node structure is not informative at all.

Since we are interested is identifying predictive edges and nodes, we use the AUC of the 

receiver operating characteristic (ROC) curve, for both edge and node selection. For each 

method, we calculate the ROC curve by changing its corresponding sparsity parameter to 

vary the number of edges selected. For a selection method ℳ and a sparsity parameter η let 

ℰ(ℳ, η) be the set of edges selected by ℳ, and ℰ(ℳ, η) the set of active nodes corresponding 

to ℰ(ℳ, η).We calculate the edge false positive rate (EFPR) and edge true positive rate 

(ETPR) as

EFPR(ℳ, η) =
ℰ(ℳ, η) ∩ ℰC

ℰC , ETPR(ℳ, η) =
ℰ(ℳ, η) ∩ ℰ

ℰ .

The node FPR and TPR are calculated similarly.

We also evaluate the prediction accuracy of the methods. For each method, we use 5-fold 

cross-validation to select the best tuning parameter using the training data, and then compute 

the test error on a different dataset simulated under the same settings. The AUC and test 

errors reported are averaged over 30 replications.

Methods for benchmark comparisons on simulated networks were selected based on their 

good performance on real data (see Section 6). For our method (GC), we vary the parameter 

ρ and compare results for two different values of λ, 05 (GC1) and 10−4 (GC2). For 

unstructured regularized logistic regression, we use the elastic net (Friedman et al., 2010b), 

with a fixed α = 0.02 (ENet). The performance of elastic net is not very sensitive to different 

values of α, but the number of variables that the method is able to select with large values is 

limited (including the case of α = 1 that corresponds to the lasso). A support vector machine 

with ℓ1 penalty (Zhu et al., 2004; Becker et al., 2009) is also included (SVML1) for 

comparison, and additionally we evaluate the classification error of the original support 

vector machines (SVM) (Cortes and Vapnik, 1995). For both SVMs, we use linear kernels, 

which performed better than nonlinear ones. We also consider an independent screening 

method for variable selection based on the two sample t-statistic (T-stat). Finally, we also 

compare with the signal-subgraph method (SS) (Vogelstein et al., 2013) which is the only 

other method that takes into account the network structure of the predictor variables. Note 

that the signal subgraph is designed for binary networks, so in order to apply it we 

thresholded each edge at the population mean. For each method, we fit 10 different tuning 

parameters to change the sparsity of the solution.

Figure 4 shows the values of the average AUC for selecting edges (top) and nodes (bottom). 

For G = 25 and 50, as the proportion of differentiating edges in the active subgraph 

increases, methods that take into account network structure (GC1, GC2 and SS) slightly 

improve their edge AUC, since enforcing node selection also results in better edge selection, 

while the edge AUC remains constant for unstructured methods (ENet, T-stat and SVML1). 
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On node selection, all methods improve the node AUC as the fraction of significant edges 

increases, but GC and SS have the largest gains. A similar trend is observed in classification 

error shown in Figure 5. All methods improve as the proportion of differentiating edges 

increases, but our method has the best performance overall. Our method performed the best 

with the larger value of λ (GC1) on variable selection, particularly when the set of active 

nodes is smaller, but both values of λ give very good classification performance. In the last 

scenario (G = 300), all nodes are active so the node AUC is undefined, and the node 

structure is not informative at all. Although the performance of our method is no longer the 

best, it performs comparably to state of the art methods that do not use network structure.

In terms of computing time, since there are many contributing factors including the software 

choice for implementation and the tuning parameters, a fair comparison is difficult. We can 

roughly say that elastic net is the fastest, taking about a minute to run a cross-validation 

instance, while our method takes about 10 minutes on average, and the signal-subgraph takes 

more than an hour.

6. Application to schizophrenia data.

We analyze the performance of the classifier on the two different brain fMRI datasets 

previously described in Section 1. The code of our classifier and the processed connectomics 

datasets are available at https://github.com/jesusdaniel/graphclass.

6.1. Classification results.

First, we evaluate our method’s classification accuracy. We use a nested 10-fold cross-

validation to choose tuning parameters and estimate the test accuracy. The classifier is 

trained for a range of values of λ and ρ, with λ ∈ {10−7, 10−6.5, …, 10 −2} and ρ ∈ {10−3, 

10−2.5, …, 102}. The value of γ in (2.4) is set to 10−5; we observed that setting γ to a small 

value speeds up convergence without affecting the accuracy or sparsity of the solution. 

Figure 6 shows the average cross-validated accuracy, sparsity (fraction of zero coefficients) 

and node sparsity (fraction of inactive nodes), as a heat map over the grid of tuning 

parameter values. We observe that λ has little influence on sparsity, which is primarily 

controlled by ρ. Moreover, as Proposition 1 suggests, values of ρ < 1 do not result in node 

selection. As expected, accuracy generally decreases as the solution becomes sparser, which 

is not uncommon in high-dimensional settings (Hastie et al., 2015). However, we can still 

achieve excellent accuracy with a substantially reduced set of features. In the COBRE 

dataset, the best accuracy is obtained with only 1886 edges (5.4%) but almost all nodes are 

active (260). On the UMich data, 29733 edges (85.6%) achieve the best performance, and all 

nodes are active. Choosing parameters by cross-validation often tends to include too many 

noise variables (Meinshausen, 2007), as we also observed in simulations. A commonly used 

technique to report solutions that still achieve good accuracy with a substantially reduced set 

of features is the so-called “one-standard-error rule” (Hastie et al., 2015), in which one 

selects the most parsimonious classifier with cross-validation accuracy at most one standard 

error away from the best cross-validation accuracy. Figure 7 shows the solutions for each 

dataset obtained by this rule. Nodes are ordered by brain systems (see Figure 1). The fitted 

solution for COBRE has 549 non-zero coefficients (1.56%) and 217 active nodes (82.5%), 
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while the UMich solution has 11748 non-zero entries (33.8%), and all nodes are active. Note 

that when many variables are selected, the magnitude of the coefficients becomes small due 

to the grouping effect of the penalty (Zou and Hastie, 2005).

We also compared our method to benchmarks (Table 1), using the same methods as in the 

previous section and training and evaluating all methods using with the same nested 10-fold 

cross-validation. For SVM, we tested different kernels, including graph aware kernels 

(Gärtner et al., 2003), but in most cases local kernel methods were no better than random 

guessing. We additionally included random forests and a method based on global and local 

network summaries previously proposed as features for classifying brain data (Prasad et al., 

2015). For the latter, because our dataset is much larger, we only considered global and node 

features proposed in Prasad et al. (2015), which resulted in about 30,000 features per 

individual, and omitted edge features. Watanabe et al. (2014) evaluated their classifiers on a 

different parcellation of the COBRE data, and we do not include their methods since they 

are based on the assumption of equally spaced nodes and cannot be directly applied to our 

data. Their reported accuracy of 71.9% and 73.5% for the COBRE data is substantially 

lower than our method, although the results are not directly comparable.

Results in Table 1 show that most methods performed better on the COBRE dataset than on 

the UMich dataset, which can be partially explained by the different sample sizes and 

possibly noise levels. Besides differences in sample size and demographic characteristics 

(Table 4), the COBRE dataset is more homogeneous as it was collected using identical 

acquisition parameters, whereas the UMich dataset was pooled across five different 

experiments spanning seven years.

Our method performs very well on both datasets, particularly among methods that do 

variable selection. SVMs, which use the hinge loss, perform well too, and generally 

outperform methods using the logistic loss. Our penalty can be combined with any loss, so 

we could also include our penalty combined with hinge loss which might potentially 

improve classification accuracy, but we do not pursue this direction, for two reasons: one, 

our method is close to SVM + L1 as it is (better on COBRE, slightly worse on UMich but 

the difference is within noise levels), and because solutions based on logistic loss are 

generally considered more stable and preferable for variable selection (Hastie et al., 2015). 

In Figure 8, we plot cross-validated classification accuracy of these methods as a function of 

the number of variables selected. For the COBRE data, as we have observed before, good 

accuracy can be achieved with a fairly small number of edges, and the noisier UMich data 

requires more edges. In all cases, our method uses fewer nodes than the others, as it is 

designed to do so.

Ultimately, assessing significance of the selected variables is necessary, which is in general a 

difficult task in high-dimensional settings and an active area of research (see for example 

Meinshausen and Bühlmann (2010); Van de Geer et al. (2014); Lockhart et al. (2014); Lee et 

al. (2016)). In brain connectomics, it is particularly challenging to identify significant 

variables because of small sample sizes (Button et al., 2013). Here we employ stability 
selection (Meinshausen and Bühlmann, 2010) which can be shown to control a type of false 

discovery rate by employing many rounds of random data splitting and calculating the 
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probability of each variable being selected. Some versions of this method have been 

theoretically studied, and upper bounds on the expected number of variables with a low 

selection probability that are included in the final solution (i.e., errors) have been derived 

under mild conditions (Meinshausen and Bühlmann, 2010; Shah and Samworth, 2013). We 

implemented the version of stability selection proposed by Shah and Samworth (2013), with 

values of λ and ρ obtained by cross-validation on the COBRE data, and by the “one 

standard error rule” on the UMich dataset, since stability selection is most relevant to sparse 

solutions. However, one of the advantages of stability selection is that it is not sensitive to 

the initial choice of tuning parameters, and changing tuning parameters only slightly alters 

the ordering of variables with the largest selection probabilities.

The edges with the 15 largest selection probabilities are reported in Table 2. Using the 

results of Shah and Samworth (2013) (equation 8), we estimated that the expected number of 

falsely selected variables (variables with a probability of selection smaller than the 

estimated) is bounded by6.1 for the COBRE dataset and 9.7 for the UMich data, which also 

suggests that results on the UMich data might be less reliable. While the two datasets yield 

somewhat different patterns of edge selection, it is notable that the default mode network (5) 

was often selected in both. This network has been consistently implicated in schizophrenia 

(Whitfield-Gabrieli et al., 2009; Öngür et al., 2010; Peeters et al., 2015), as well as other 

psychiatric disorders, possibly as a general marker of psychopathology (Broyd et al., 2009; 

Menon, 2011). In the COBRE dataset, edges were also selected from the fronto-parietal task 

control region (8), previously linked to schizophrenia (Bunney and Bunney, 2000; Fornito et 

al., 2012). These results coincide with the findings of Watanabe et al. (2014) on a different 

parcellation of the same data, which is an encouraging indication of robustness to the exact 

choice of node locations. Some of the variables with the highest estimated selection 

probabilities appear in the uncertain system (−1), in particular in the cell connecting it with 

salience system (9), which suggests that alternative parcellations that better characterize 

these regions may offer a better account of the schizophrenia-related changes. Additionally, 

sensory/somatomotor hand region (1) and salience system (9) also stand out in the UMich 

data, and these are networks that have also been implicated in schizophrenia (Dong et al., 

2017).

While results in Table 2 do not fully coincide on the two datasets, there are clear 

commonalities. Table 3 compares classification accuracy when the classifier is trained on 

one dataset and tested on the other (with the exception of the intercept, since the datasets are 

not centered in the same way, which is fitted on a part of the test data, and the test error is 

then computed via 10-fold cross-validation). While the accuracy is lower than when the 

same dataset is used for training and testing, as one would expect, it is still reasonably good 

and in fact better than some of the benchmark methods even when they train and test on the 

same data. We again observe that the COBRE dataset is easier to classify.

Figure 9 shows the active nodes in the COBRE dataset (marked in green), corresponding to 

the endpoints of the edges listed in Table 2. We also identified a set of 25 nodes that are not 

selected in any of the sparse solutions with cross-validation accuracy within one standard 

error from the best solution (marked in purple). These consistently inactive nodes are mostly 

clustered in two anatomically coherent regions.
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7. Discussion.

We have presented a method for classifying graphs with labeled nodes, motivated by brain 

connectomics but generally applicable to any setting with such graphs. The distinct feature 

of our method is that it is graph-aware, aiming to select a sparse set of both edges and nodes, 

but it is general in the sense that it does not rely on the spatial structure of the brain. The 

method is computationally efficient since the regularization we use is convex, and the 

solution is implemented with efficient optimization algorithms. These properties guarantee 

fast convergence to the solution, making the methods scalable to networks with thousands of 

nodes, which is enough to deal with many of the brain atlases usually employed in 

neuroimaging (see for example Kiar et al. (2018)). Statistically, the rate of convergence 

depends on the number of active nodes only, not the total number of nodes, which allows for 

accurate results with even moderate sample sizes if the active node set is small.

The results we obtained on the schizophrenia data are generally in agreement with previous 

studies. In particular, the default mode network has been consistently implicated in 

schizophrenia and many other psychiatric disorders (Öngür et al., 2010; Broyd et al., 2009). 

While different subnetworks were implicated by the two different datasets, we are still able 

to predict the disease status fairly accurately by training on one dataset and testing on the 

other. The differences between the two datasets may reflect real differences in samples 

collected at different sites and in different experiments, as significant pathophysiological 

heterogeneity occurs for all psychiatric diagnoses, or they may simply reflect type 2 errors.

Our methods work very generally with a sample of networks with labeled nodes and 

associated responses. The many pre-processing steps inevitable when dealing with fMRI 

data always add some uncertainty, and pre-processing decisions can potentially affect 

downstream conclusions. We aimed to somewhat mitigate this by using ranks, which are 

more robust and showed a slightly better performance on our datasets. Another option, when 

practical, is to compare multiple pre-processing pipelines, and/or multiple measures of 

connectivity, to further validate results. Our method’s independence of these particular 

choices and its computational efficiency make it an attractive option for such comparisons.
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APPENDIX A:: OPTIMIZATION ALGORITHM DETAILS

The optimization procedure for solving the penalized prediction problem introduced above 

consists in a proximal algorithm, and the steps are detailed in Algorithm 1. Each step 

requires to solve a further convex optimization problem via ADMM. The exact solution of 

the steps of this method is shown in Algorithm 2.
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APPENDIX B:: PROOFS

Here we prove the bounds on Frobenius norm error and probability of support selection in 

Proposition 1, following the framework of Lee et al. (2015) based on geometrical 

decomposability. A penalty Ω is geometrically decomposable if it can be written as

Ω(B) = ℎA(B) + ℎI(B) + ℎE⊥(B)

for all B, with A, I closed convex sets, E a subspace, and hC the support function on C 
defined as hC (B) = sup {〈Y, B〉|Y ∈ C}.

The proof proceeds in the following steps. Lemma 1 shows that an equivalent form of our 

penalty (2.2) is geometrically decomposable, allowing us to use the framework of Lee et al. 

(2015). Lemma 3 shows the Assumption 2 together with a lower bound on ρ imply that the 

irrepresentability assumption of Lee et al. (2015) holds. Assumption 2 is directly on the 

entries of the loss Hessian, which simplifies the very general form of the assumption in Lee 

et al. (2015). Lemma 3 gives a bound on the entries of the loss gradient under the sub-

gaussianity assumption 3. Lemma 4 gives explicit bounds for the compatibility constants 

that appear on Theorem 1 of Lee et al. (2015). Finally, we combine these results to prove 

Proposition 1.

Algorithm 1

Proximal algorithm for fitting graph classifier

Input: Training sample {(A(1), Y1),…, (A(n), Yn)}; regularization parameters λ, ρ; step size constants α ≥ 1, δ ∈ (0, 1), 
η > 0; tolerance ϵPROX > 0.

Initialize: Starting values B(0), t(0).

Iterate: for k = 1, 2,… until ϵ(k) < ϵPROX)

 1. Compute W(k) according to (3.1).

 2. Compute B(k) by solving the proximal operator (3.2).

 3. If condition (3.3) does not hold, decrease step size t(k) ← δt(k) and return to 2.

 4. Calculate loss improvement ϵ(k) = {ℓ(B(k−1)) + Ω(B(k−1))} − {ℓ(B(k)) + Ω(B(k))}.

 5. If |ϵ(k) − ϵ(k−1)|/ϵ(k) < η, increase step size t(k+1) = αt(k), otherwise set t(k+1) = t(k).

Output: B = B(k).

Algorithm 2

Proximal operator by ADMM

Input: Z, ϵADMM, μ.

Initialize: B(0) = Z, R(0) = Z, Q(0) = Z, U(0) = 0N×N, V(0) = 0N×N

Iterate: for l = 0, 1, 2,… until convergence (ϵADMM‐p 
(l) < ϵADMM and ϵADMM‐d

(l) < ϵADMM)

 1. Perform coordinate gradient descent on (3.5) by computing
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   B(l + 1) = 1
1 + 2μ Z + μ

2 Q(l) + Q(l)T + μR(l) − U(l) − V (l − 1) ,

   Q(i)
(l + 1) = 1 − tλ

μ B(i)
(l + 1) + 1

μU(i)
(l)

2 +

B(i)
(l + 1) + 1

μU(i)
(l) ,   i ∈ [N],

   Rij
(l + 1) = 1 − tλρ

μ Bij
(l + 1) + 1

μV ij
(l)

+

Bij
(l + 1) + 1

μV ij
(l) ,   i, j ∈ [N],

   U(l + 1) = U(l) + μ B(l + 1) − 1
2 Q(l + 1) + Q(l + 1)T ,

   V (l + 1) = V (l) + μ B(l + 1) − R(l + 1) .

 2. Update primal and dual residuals ϵADMM‐p 
(l)

 and ϵADMM‐d
(l)

    ϵADMM‐p
(l + 1) = μ ‖Q(l + 1) − Q(l)‖∞ + ‖R(l + 1) − R(l)‖∞ ,

    ϵADMM‐d
(l + 1) = μ ‖B(l + 1) − Q(l + 1)‖2 + ‖B(l + 1) − R(l + 1)‖2 .

Output: B = B(l + 1)
.

Without loss of generality, to simplify notation we assume that G = 1, …, G , that is, the 

active subgraph is in the first G rows of the matrix.

LEMMA 1. The penalty (2.2) can be written as geometrically decomposable.

PROOF OF LEMMA 1. We use an equivalent formulation of the penalty in which every 

coefficient is penalized only once. Let B′, B′′ ∈ ℝN × N be matrices such that the upper 

triangular part of B″ and the diagonals of B′ and B″ are zero. Define

Ω B′, B′′ = ∑
i = 1

N
‖B(i)′ ‖2 + ρ‖B′′‖1,

and E = B′, B′′ ∈ ℝN × 2N :B′ = B′T , Bij′′ = Bij′ ,  for i < j and Bij′′ = 0 for i ≥ j . Denote by R 

the transformation from ℝN × N to ℝN × 2N that replicates entries appropriately,

RB ij =
Bij if 1 ≤ j ≤ N

Bi j − N if j > N . (B.1)

Therefore, for any B ∈ ℝN × N, we can uniquely define RB = (B′, B″) such that 

Ω(B) = Ω B′, B′′ . We then show that Ω is geometrically decomposable. Moreover, for any 

(B′, B″) ∈ E we can define R−1, so the penalties Ω and Ω on E are equivalent. Define the 

sets A, I ⊂ ℝN × 2N such that
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A = B′, B′′ : max
i ∈ G

‖B(i)′ ‖2 ≤ 1, max
i ∈ GC

‖B(i)′ ‖2 = 0, max Bij′′ ≤ ρ, Bij′′ = 0, (i, j) ∈ (G × G)C ,

I = B′, B′′ : max
i ∈ GC

‖B(i)′ ‖2 ≤ 1, max
i ∈ G

‖B(i)′ ‖2 = 0, max Bij′′ ≤ ρ, Bij′′ = 0, (i, j) ∈ G × G .

Letting 〈Y, (B′, B″)〉 = Tr(Y′ B′T) + Tr(Y″ B″T), combining the arguments of Lee et al. 

(2015) for lasso and group lasso penalties,

ℎA B′, B′′ = ∑
i ∈ G

‖B(i)′ ‖2 + ρ ∑
(i, j) ∈ G × G

Bij′′ ,

ℎI B′, B′′ = ∑
i ∈ GC

‖B(i)′ ‖2 + ρ ∑
(i, j) ∈ (G × G)C

Bij′′ ,

ℎE B′, B′′ = 0 if  B′, B′′ ∈ E,
∞ otherwise.

Hence, Ω can be written as a geometrically decomposable penalty

Ω(B) = Ω B′, B′′ = λ ℎA B′, B′′ + ℎI B′, B′′ + ℎE B′, B′′ .

☐

We introduce some notation in order to state the irrepresentability condition of Lee et al. 

(2015). For a set F ⊂ ℝN × 2N and Y ∈ ℝN × 2N, denote by γF (Y) = inf {λ > 0 : Y ∈ F} the 

gauge function on C. Thus,

γI B′, B′′ = max max
i ∈ GC

‖B(i)′ ‖2, 1
ρ max

(i, j) ∈ (G × G)C
Bij′′ + 1I B′, B′′ ,

where 1I(B) = 0 if B ∈ I and ∞ otherwise. Define

V (Z) = inf γI(Y ): Z − Y ∈ E⊥, Y ∈ ℝN × 2N

for Z ∈ ℝN × 2N. Let ℳ = E ∩ span(I)⊥ be the set of matrices with correct support in the 

extended space ℝN × 2N, similarly to ℳ in (4.1). Denote by PM and PM⊥ the projections 

onto ℳ and ℳ⊥. Define the function ℋ(Z):ℝN × N ℝN × N as
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ℋ(Z)ij =
Tr H(i, j), G PMZ G, G if j ∈ G,

0 otherwise.

where H(i, j), G is the matrix defined in (4.2). The Irrepresentability Assumption 3.2 of Lee et 

al. (2015) requires the existence of 0 < τ < 1 such that

sup
Z ∈ A

V PM⊥(Rℋ(Z) − Z) < 1 − τ . (B.2)

For a support function h, denote by ∂h(M) = ⋃Y∈M ∂h(Y) the set of subdifferentials of h in 

M. Note that ∂hA(M) = A, since 0 ∈ M and ∂hA(0) = A.

LEMMA 2. If Assumption 2 holds and ρ > 1
τ − 1

G , then there exists 0 < τ < 1 such that (B.2) 

holds.

PROOF OF LEMMA 2.. Since V is sublinear (Lemma 3.3 of Lee et al. (2015)),

sup
Z ∈ A

V PM⊥(Rℋ(Z) − Z) ≤ sup
Z ∈ A

V PM⊥(Rℋ(Z)) + sup
Z ∈ A

V PM⊥Z . (B.3)

To bound the first term, note that E⊥ = Z′, Z′′ ∣ Zij′ + Zji′ + Zij′′ = 0, j < i . Hence,

V Y ′, Y ′′ = inf γ U′, U′′ :Uij′ − Yij
(1) + Uji′ − Y ji′ + Uij′′ − Yij′′ = 0, j < i

≤ inf γ U′, U′′ : U(i)′ = Y(i)′ , i ∈ GC; UGC, GC′′ = YGC, GC′′ ; U′, U′′ − Y ′, Y ′′ ∈ E⊥

≤ max max
i ∈ GC

‖Y(i)′ ‖2, 1
ρ‖YGC, GC′′ ‖∞ .

Therefore,

V PM⊥(Rℋ(Z)) ≤ max max
i ∈ GC

‖ PM⊥(Rℋ(Z)) (i)
(1)‖2, 1

ρ‖ PM⊥(Rℋ(Z)) GC, GC
(2)

‖∞
= max

i ∈ GC
‖ℋ(Z)(i)‖2,

which implies that

sup
Z ∈ A

V PM⊥(Rℋ(Z)) ≤ sup
Z ∈ A

max
i ∈ GC

‖ℋ(Z)(i)‖2

≤ sup
B ∈ ℝG × G, B(i) 2 ≤ 1

max
i ∈ GC

Tr H(i, j), GB j = 1
N

2

≤ max
i ∈ GC

∑
k = 1

G
H(i, j), G k ⋅ 2

j = 1

N

2
= 1 − τ .

(B.4)
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Let Z = (Z′, Z″) ∈ A. Without loss of generality, assume that ZG, G′ = ZG, G′′ = 0 (note that 

these entries do not change V PM⊥Z ). Therefore, PM⊥Z = Z. Hence,

V (Z) = inf γ U′, U′′ : U′, U′′ ∈ I, U′, U′′ − Z′, Z′′ ∈ E
= inf γ U′, U′′ :Uij′ + Uij′′ = Zji′ , 1 ≤ j ≤ G, G < i ≤ N

= inf max max
i ∈ GC

‖U(i)′ ‖2, 1
ρ max

j ∈ G
i ∈ GC

Uij′′ :Uij′ + Uij′′ = Zji′ , j ∈ G, i ∈ GC

≤ inf max max
i ∈ GC

‖U(i)′ ‖2, 1
ρ max

j ∈ G
i ∈ GC

Uij′′ :Uij′ + Uij′′ = 1, j ∈ G, i ∈ GC

The last bound from Zji′ ≤ 1 and no longer depends on Z. It is easy to see that the minimum 

is attained when, for each i > G,

‖U(i)′ ‖2 = 1
ρ Uij′′ , 1 ≤ j ≤ G,

and therefore

V (Z) ≤ G
1 + ρ G . (B.5)

Moreover, if Z* ∈ A is defined such that Z* G + 1, i
(1) = 1 for i = 1,… , G and 0 elsewhere, 

then V (Z*) achieves this bound, which shows that ρ > 1 − 1
G  is a necessary condition for 

the irrepresentability to hold, even in the case where the entries of the Hessian that denote 

the information between active and inactive edges is zero. Therefore, plugging the bounds 

(B.4) and (B.5) into equation (B.3), we obtain (B.2) holds as long as 1 − τ + G
1 + ρ G < 1, 

which implies that ρ > 1
τ − 1

G . ☐

The next lemma establishes a bound on the dual norm of Ω of the loss gradient function 

under a sub-Gaussian assumption. Let Ω* denote the dual norm of Ω, so Ω*(B) = sup {〈Y,B〉 
| Y ∈ C, Ω(Y) ≤ 1}.

LEMMA 3. Under Assumption 3,

ℙ Ω* ∇l B⋆ > t ≤ 2N2min exp − n(1 + ρ)2t2

N σ2 , exp − nρ2t2

σ2 . (B.6)

PROOF OF LEMMA 3. By Hoe ding’s inequality for sub-Gaussian variables, for all j, k and t > 
0,
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ℙ ∇jkl B⋆ > t ≤ ℙ 1
n ∑

i = 1

n
∇jkli B⋆ > t ≤ 2exp −n t2

σ2 .

Note that (1 + ρ)∑i = 1
N ‖B(i)‖2 ≤ Ω(B). Let Φ(B) = 1

1 + ρmaxi = 1, …N‖B(i)‖2. Thus,

Ω*(B) ≤ sup
Y ∈ ℝN × N

Tr(Y B):Ωρ = 0(Y ) ≤ 1
1 + ρ = Φ(B) . (B.7)

In a similar manner, ρ∥B∥1 ≤ Ω(B). Setting Ξ(B) = 1
ρ‖B‖∞, we have

Ω*(B) ≤ Ξ(B) . (B.8)

Using (B.7) and setting Λ = Δℓ(B⋆),

ℙ Ω*(Λ) > t ≤ ℙ Φ(Λ) > t

= ℙ max
1 ≤ i ≤ N

‖Λ(i)‖2 > (1 + ρ)t

≤ ℙ max
1 ≤ i ≤ N

max
j ≠ i

Λij > (1 + ρ) t
N

≤ 2N(N − 1)exp − n(1 + ρ)2t2

2σ2(N − 1)
,

the last inequality obtained by arguments similar to Lemma 4.3 of Lee et al. (2015). In the 

same way, we can also bound the previous quantity using (B.8) by

ℙ Ω*(Λ) > t ≤ ℙ(Ξ(Λ) > t)
= ℙ ‖Λ(i)‖∞ > ρt

≤ N(N − 1)exp − nρ2t2

2σ2 .

Combining (B.9) and (B.9), we can obtain equation (B.6). ☐

For a semi-norm Ψ :ℝN × N ℝ, let κΩ be the compatibility constant between Ψ and the 

Frobenius norm, defined as

κΨ = sup Ψ(B):‖B‖2 ≤ 1, B ∈ M ,

and let κIC be the compatibility constant between the irrepresentable term and the dual norm 

Ω* given by

κIC = sup V PM⊥(RℋZ − Z) :Ω*(Z) ≤ 1 .

LEMMA 4. The following bounds on the compatibility constants hold:
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κΩ = G + ρ G(G − 1),

κΩ* ≤ 1
1 + ρ,

κIC ≤ 3 − τ .

PROOF OF LEMMA 4.. Note that Ω(Y) is maximized on {Y : ∥Y∥2 ≤ 1} when all entries of Y 

have magnitude equal to 1
G(G − 1) . Therefore

κΩ = G G − 1
G(G − 1) + ρ G(G − 1)

G(G − 1) = G + ρ G(G − 1) . (B.9)

Similarly, (B.7) implies

κΩ* ≤ sup 1
1 + ρ max

i ∈ G
‖B(i)‖2:‖B‖2 ≤ 1 ≤ 1

1 + ρ . (B.10)

Finally,

κIC = sup V PM⊥(RHZ − Z) :Ω*(Z) ≤ 1
≤ sup V PM⊥(RℋZ) :Ω*(Z) ≤ 1 + sup V PM⊥(Z) :Ω*(Z) ≤ 1
≤ (1 − τ) + 2 = 3 − τ .

☐

PROOF OF PROPOSITION 1. Part (a). Since B minimizes the problem (2.4),

l(B) + λΩ(B) ≤ l B⋆ + λΩ B⋆ .

Rearranging the terms, using Assumption 1, by the triangle inequality and the generalized 

Cauchy-Schwarz inequality,

0 ≥ l(B) − l B⋆ + Ω(B) − Ω B⋆

≥ ∇l B⋆ T , B − B⋆ + m
2 ‖B − B⋆‖2

2 − Ω B − B⋆

≥ − Ω B − B⋆ Ω* ∇l B⋆ − Ω B − B⋆ + m
2 ‖B − B⋆‖2

2 .
(B.11)

By the argument for computing κΩ in (B.9), Ω(Y ) ≤ N + ρ N(N − 1) ‖Y ‖2. Rearranging 

the terms in (B.11),

‖B − B⋆‖2 ≤ 2
m N + ρ N(N − 1) λ + Ω* B − B⋆ .
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For any ρ, setting λ = 2 σ2log N
n min N

1 + ρ , 1
ρ , by Lemma 3, with probability at least 1 – 2/N,

‖B − B⋆‖2 ≤ 4
m N + ρ N(N − 1) λ

≤ 4
m

σ2log N
n N + ρN min N

1 + ρ, 1
ρ

≤ 4
m

σ2log N
n N min 1 + ρ N, 1 + 1

ρ N

≤ 4
m N2σ2log N

n .

(B.12)

Part (b). Lemma 1 gives a geometric decomposition of the penalty. Therefore, we can 

directly use Theorem 3.1 of Lee et al. (2015), since Lemma 2 also ensures that their 

irrepresentability condition holds. Thus,

‖B − B⋆‖2 ≤ 2
mκΩ 1 + τ

4κIC
λ,

and G ⊆ G as long as

4κIC
τ Ω* ∇l B⋆ < λ < m2τ

2LκΩ
2 κΩ*κIC

1 + τ
4κIC

−2
. (B.13)

Setting

λ =
8κIC

τ
σ2log N

n min N
1 + ρ, 1

ρ ,

using a similar argument than (B.12), the left hand size of (B.13) holds with probability at 

least 1 − 2/N. The right hand side of (B.13) holds as long as the sample size satisfies

n > C L, m, τ, κΩ, κΩ*, κIC ( G + G)2σ2log N,

with C(L, m, τ, κΩ, κΩ*, κIC) > 0 a positive constant. Therefore, claims (4.5) and (4.6) 

follow. ☐

APPENDIX C:: DATA AQUISITION AND PRE-PROCESSING

C.1. Subjects and imaging.

The COBRE data.

Raw anatomic and functional scans from 146 subjects (72 psychosis patients and 74 healthy 

control subjects) were downloaded from a public database (http://

fcon_1000.projects.nitrc.org/indi/retro/cobre.html). Four subjects coded as ambidextrous (2 
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patients, 2 controls) were excluded to yield 70 psychosis patients and 72 controls for 

analysis. To enter the COBRE dataset, subjects had a diagnosis of either schizophrenia or 

schizoaffective disorder and were without histories of neurological disorder, mental 

retardation, severe head trauma with more than 5 minutes loss of consciousness and 

substance abuse/dependence within the last 12 months.

In the primary sample, two schizophrenic (SCZ) subjects and one healthy control (HC) 

subject had insufficient voxels in the cerebrospinal fluid (CSF) segmentation on the CSF, 

and they were dropped from additional analyses. Two additional SCZ subjects were 

excluded for scrub ratios (see discussion of scrubbing routine in fMRI Data Analysis) 

greater than 0.6, leaving 38 SCZ subjects and 42 HC subjects for the analysis. In the 

replication sample, 15 psychosis patients and two control subjects were excluded for scrub 

ratios greater than 0.6; one patient was excluded with incomplete data, leaving 54 SCZ and 

69 HC subjects for analysis (see Table 4).

A full description of the imaging parameters for the COBRE dataset is available online at the 

link provided above and in Aine et al. (2017).

The UMich data.

Subjects were selected from experiments conducted by Professor Stephan F. Taylor at the 

University of Michigan between 2004 and 2011 for task-based fMRI studies, which included 

resting state scans. Thirty-nine stable outpatients were selected with DSM-IV schizophrenia 

or schizoaffective disorder (SCZ) (American Psychiatric Association, 1994). Forty healthy 

comparison (HC) subjects, without a lifetime history of Axis I psychiatric disorders (First et 

al., 1995), were selected to approximate the age range, gender distribution and family 

education level of the patients. Prior to initial data collection, all subjects gave written, 

informed consent to participate in the protocol approved by the University of Michigan 

institutional review board (IRBMED).

MRI scanning occurred on a GE 3T Signa scanner (LX [8.3] release, General Electric 

Healthcare, Buckinghamshire, United Kingdom). Functional images were acquired with a 

T2*-weighted, reverse spiral acquisition sequence (gradient recalled echo, TE=30 msec, 

FA=90 degrees, field of view=22 cm, 40 slices, 3.0mm thick/0mm skip, equivalent to 64 × 

64 voxel grid – yielding isotropic voxels 3 mm on edge). Because the data were acquired 

across different experiments, acquisition parameters differed slightly in the aggregate 

sample: 240 volumes at TR=1500 msec (11 SCZ, 10 HC), 180 volumes at TR=2000 msec 

(17 SCZ, 16 HC) and 240 volumes at 2000 msec (14 SCZ, 17 HC). Acquisitions were 

acquired in the resting state with eyes open and fixated on a large ‘plus’ sign projected on a 

monitor.

C.2. Pre-processing.

We first performed standard pre-processing steps. All scans were slice-time corrected and 

realigned to the 10th image acquired during a scanning session (Jenkinson et al., 2002). 

Subsequent processing was performed with the Statistical Parametric Mapping SPM8 

package (Well-come Institute of Cognitive Neurology, London). Anatomic normalization 
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was done with the VBM8 toolbox in SPM8, using the high resolution structural scans 

obtained for both datasets. Normalizing warps were applied to the co-registered, functional 

volumes, which were re-sliced and smoothed with an 8 mm isotropic Gaussian smoothing 

kernel. To assess and manage movement, we calculated the frame-wise displacement (FD) 

(Power et al., 2012), for all 6 parameters of rotation and translation. We used a scrubbing 
routine to censor any frame with FD > 0.5 mm from the regression analysis described below, 

yielding a scrub ratio for each subject. Three-compartment segmentation of the high-

resolution structural image from the VBM8 normalization was applied to the functional time 

series to extract cerebral spinal volume (CSF) and white matter (WM) compartments, which 

were then subjected to a principal component analysis to identify the top 5 components in 

each (Behzadi et al., 2007), which should correspond to heart rate and respiratory effects on 

global signal (Chai et al., 2012). Multiple regressions were applied to the time series to 

remove the following nuisance effects: linear trend, 6 motion parameters, their temporal 

derivatives, the quadratics of these 12 parameters, 5 components from the PCA of CSF, 5 

components of PCA of WM, followed by band pass filtering from 0.01 – 0.1 Hz, and then 

motion scrubbing. For each 4D data set, time courses were then extracted from 10 mm 

diameter spheres based on the 264 sets of coordinates identified by Power et al. (2011). 

From these time series, a cross-correlation matrix of Pearson r-values was obtained and 

Fisher’s R-to-Z transformation was applied for each of the 264 nodes with every other node 

(for COBRE dataset, node 75 is missing). Finally, for each individual, edge weights were 

assigned to be ranks of these score, with edge scores ranked separately for each subject, and 

then these values were centered and standardized across the individuals. Ranks have been 

used previously in brain connectomic studies to reduce the effect of potential outliers (Yan et 

al., 2013); although some information is lost with the rank transformation, we observed that 

while ranks does not increase the classification accuracy significantly, they tend to produce 

sparser solutions with a similar accuracy to Pearson correlations.
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Fig 1: 
Regions of interest (ROIs) defined by Power et al. (2011), colored by brain systems, and the 

total number of nodes in each system.
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Fig 2: 
Brain network from one of the subjects, showing the value of the Fisher z-transformed 

correlations between the nodes, with the 264 nodes grouped into 14 brain systems.
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Fig 3: 
Expected adjacency matrices for each class. There are 50 active nodes G on communities 4 

and 7, and edge weights on 25% of the edges within G × G have been altered for the second 

class of networks (Y = 1).
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Fig 4: 
Variable selection performance of different methods in terms of edge AUC (top) and node 

AUC (bottom) as a function of the fraction of differentiating edges in the subgraph induced 

by the active node set G. As the proportion of active edges increases, methods that use 

network structure improve their performance when only a subset of the nodes is active.
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Fig 5: 
Classification error of different methods as a function of the fraction of differentiating edges 

in the subgraph induced by the active node set G. Our method is more accurate when only a 

subset of the nodes is active.

Arroyo Relión et al. Page 38

Ann Appl Stat. Author manuscript; available in PMC 2021 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 6: 
Cross-validated results for the two data sets. Classification accuracy (left), fraction of zero 

edge coefficients (middle), and fraction of inactive nodes (right).
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Fig 7: 
Fitted coefficients for COBRE and UMich datasets, with tuning parameters selected by the 

“one standard error rule”. Positive coefficients corresponds to higher edge weights for 

schizophrenic patients.
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Fig 8: 
Cross-validated accuracy and number of nodes selected as a function of the number of edges 

used.
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Fig 9: 
Nodes shown in green are endpoints of edges selected by stability selection shown in Table 

2. Node shown in purple are nodes not selected by any of the sparse solutions within one 

standard error of the most accurate solution.
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Table 1

Cross-validated accuracy (average and standard errors over 10 folds) for different methods.

Classification accuracy % (s.e.)

Method COBRE UMich

With variable selection

Our method (GC) 92.7 (2.6) 85.9 (3.6)

Elastic net 89.5 (1.8) 82.6 (4.7)

SVM-L1 87.9 (2.2) 86.2 (4.3)

Signal-subgraph 86.1 (3.3) 82.4 (3.3)

DLDA 84.6 (3.3) 73.4 (3.9)

Lasso 80.1 (5.6) 60.9 (5.6)

No variable selection

SVM 93.5 (2.1) 89.8 (2.5)

Ridge penalty 91 (2.6) 80.9 (3.5)

Random forest 74.2 (2.6) 82.1 (3.9)

Network summaries 61.4 (3.1) 65 (7.2)
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Table 2

Edges with the top 15 largest selection probabilities from stability selection. The first column shows the pair of 

nodes making the edge, the second column the brain systems the nodes belong to in the Power parcellation, 

and the third column the fitted coefficient of the edge

COBRE UMich

Edge Systems Coefficient Edge Systems Coefficient

1 (208, 85) (9, −1) −0.187 (110, 207) (5, 9) −0.013

2 (260, 11) (12, −1) 0.183 (255, 113) (1, 5) 0.014

3 (194, 140) (8, −1) 0.136 (33, 218) (1, 9) 0.016

4 (52, 186) (3, 8) − 0.1 (46, 225) (2, 10) 0.013

5 (160, 239) (7, 11) −0.082 (43, 90) (2, 5) −0.013

6 (120, 116) (5, 5) 0.099 (23, 225) (1, 10) 0.012

7 (57, 129) (3, 5) −0.128 (66, 118) (4, 5) −0.013

8 (24, 114) (1, 5) −0.148 (26, 145) (1, 7) 0.013

9 (81, 179) (5, 8) −0.129 (186, 254) (8, −1) 0.012

10 (193, 140) (8, −1) 0.153 (15, 134) (1, 6) 0.011

11 (178, 234) (8, 10) 0.146 (76, 207) (5, 9) −0.012

12 (18, 194) (1, 8) 0.116 (65, 84) (4, −1) −0.012

13 (215, 207) (9, 9) −0.076 (26, 122) (1, 5) 0.012

14 (90, 224) (5, 10) 0.123 (33, 145) (1, 7) 0.012

15 (112, 253) (5, −1) 0.136 (36, 224) (1, 10) 0.011
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Table 3

Classification accuracy (cross-validation average and standard error) of the classifier fitted on one dataset and 

evaluated on the other. The intercept (the mean) is fitted on the test data and the accuracy is estimated using 

10-fold cross-validation on the test data.

Test data

Training data COBRE UMich

COBRE 92.7 (2.6) 73.5 (3.4)

UMich 78.3 (3.0) 85.9 (3.6)
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Table 4

Summary of the two datasets.

Dataset # nodes Status # Sex M/F Age mean (s.d.)

COBRE 263 Schizophrenic 54 48/6 35.4 (13.1)

Control 70 48/22 35.1 (11.5)

UMich 264 Schizophrenic 39 29/10 40.7 (11.5)

Control 40 28/12 36.8 (12.3)
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