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Abstract

Practical identifiability of Systems Biology models has received a lot of attention in recent

scientific research. It addresses the crucial question for models’ predictability: how accu-

rately can the models’ parameters be recovered from available experimental data. The

methods based on profile likelihood are among the most reliable methods of practical identi-

fication. However, these methods are often computationally demanding or lead to inaccu-

rate estimations of parameters’ confidence intervals. Development of methods, which can

accurately produce parameters’ confidence intervals in reasonable computational time, is of

utmost importance for Systems Biology and QSP modeling.

We propose an algorithm Confidence Intervals by Constraint Optimization (CICO) based

on profile likelihood, designed to speed-up confidence intervals estimation and reduce

computational cost. The numerical implementation of the algorithm includes settings to con-

trol the accuracy of confidence intervals estimates. The algorithm was tested on a number

of Systems Biology models, including Taxol treatment model and STAT5 Dimerization

model, discussed in the current article.

The CICO algorithm is implemented in a software package freely available in Julia

(https://github.com/insysbio/LikelihoodProfiler.jl) and Python (https://github.com/insysbio/

LikelihoodProfiler.py).

Author summary

Differential equations-based models are widely used in Systems Biology and Quantitative

Systems Pharmacology and play a significant role in the discovery of new disease-directed

drugs. Complexity of models is a trade off from their employment to crucial fields of biol-

ogy and medicine. These areas of application require large non-linear models with many

unknown parameters. How accurately can the parameters of a model be recovered from

experimental data? What is the identifiable subset of parameters? Can the model be

reduced or reparameterized to become identifiable? All those questions of identifiability
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analysis are essential for model’s predictability and reliability. That explains why the topic

of identifiability of Systems Biology models has received a lot of attention in recent scien-

tific research. However, existing numerical methods of identifiability analysis are compu-

tationally demanding or often lead to inaccurate estimations. Development of methods,

which can accurately produce parameters’ confidence intervals in reasonable computa-

tional time, is of utmost importance for Systems Biology and QSP modeling. We propose

an algorithm and a software package to test identifiability of Systems Biology models,

designed to speed-up confidence intervals estimation and reduce computational cost. The

software package was tested on a number of Systems Biology models, including Taxol

treatment model and STAT5 Dimerization model, discussed in the current article.

This is a PLOS Computational Biology Methods paper.

Introduction

Practical and structural identifiability

Reliability and predictability of a kinetic systems biology model depends on how precisely the

parameters of the model can be recovered from the given experimental data. Fitting a model to

experimental data is not enough to estimate all the parameters unambiguously. Noisy or

incomplete experimental data as well as the models structure often result in uncertainty in

parameters estimations.

Identifiability analysis is crucial for models verification. It addresses the question to what

extent and with what level of certainty can parameters of a model be recovered from the avail-

able experimental data. Two branches of identifiability analysis are distinguished [1] often

referred to as structural identification and practical identification. While structural identifiabil-

ity is the characteristic of a model’s structure and does not take into account available experi-

mental data, practical identifiability considers real noisy and incomplete experimental data.

The goal of structural approach [2,3] (prior identifiability analysis) is to verify model’s iden-

tifiability by exploring the model’s structure independently from the experimental data. A

wide range of methods have been proposed for testing structural identifiability. The strengths

and weaknesses of those methods have been thoroughly analyzed in scientific literature [1,4].

Practical identification (posterior identifiability analysis) is a data-based approach. The

approach addresses the possibility and the precision of parameters estimation based on avail-

able data. It takes into account the measurement noise and data incompleteness. Hence,

parameters’ values can be recovered only with some level of certainty, typically described by

confidence intervals and confidence regions. The authors of the study [5] define practical iden-

tifiability on the basis of profile likelihood notion: identifiable parameter is one that has finite

profile likelihood-based confidence interval. Accordingly, the non-identifiable parameters’

profile likelihood-based confidence interval is infinite.

Even if a model includes only structurally identifiable parameters it doesn’t imply their

practical identifiability. While structural non-identifiability implies practical non-identifiabil-

ity, structurally identifiable models often appear to be practically non-identifiable [6].

Profile likelihood is a reliable though computationally demanding approach to test parame-

ters’ identifiability in Systems Biology (SB). It helps us understand how the data can be mapped

to parameters’ values and how accurate the model predictions are.
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Following the definitions of [5], in the current study we propose new algorithm for practical

identification and confidence intervals estimation. This algorithm is designed to produce confidence

intervals in shorter computational time compared to other profile likelihood-based approaches

while controlling the accuracy of estimates. It does not require the intermediate points to lie on the

likelihood profile, which leads to less likelihood function calls. We also propose an implementation

of the algorithm in a free open source package tested on a number of published kinetic models.

Materials and methods

A kinetic systems biology model

A kinetic systems biology model can be expressed as an ODE system:

dxðtÞ
dt
¼ f xðtÞ; uðtÞ; pð Þ ð1Þ

The state vector x(t) denotes variables of the model (e.g. concentrations of molecular com-

pounds or other values), u(t)–known input or control (e.g. treatment regime), p –parameters

of the model and f is defined by rate laws. x(t) variables can be numerically integrated for the

time range (0, tend) given nominal initial values x0 = x(0) and parameters p.

Parameters evaluation and point estimates

The subset of unknown parameters can be estimated using the experimental dataset by solving

the inverse problem. Typically, not all the variables x are directly measured and observables

ŷiðtÞ denote experimentally accessible quantities. The observables can be defined as function

of x(t), set of additional parameters s (observation parameters) and random values usually rep-

resenting measurement errors. An important case of measurement error is additive error with

known variance:

ŷiðtÞ ¼ giðxðtÞ; sÞ þ εiðtÞ; i ¼ 1 . . . n ð2Þ

where εi are the measurement errors and gi are observation functions, n is the number of mea-

sured components.

The unknown parameters θ�{p,s,x0} can be estimated by fitting simulated values yi(θ,t) =

gi(x(t,p,x0), s) to experimental data ŷi. Assuming the joint distribution of the measurement

noise ε is known, the estimates of parameters θ̂ are typically obtained with MLE approach [7].

It implies maximizing the probability of obtaining ŷi values, given the model with θ parame-

ters. This is usually performed by minimizing the corresponding negative logarithm of the

likelihood function (objective function):

θ̂ ¼ arg min
y
½lðθÞ� ð3Þ

lðθÞ ¼ � 2log½LðθÞ�

The exact choice of the likelihood function Λ(θ) is based on measurement error model. For

additive error with known variance according to (2) it can be represented as sum of squared

residuals:

l θð Þ ¼
Pn

i¼1

Pk
j¼1

ŷij � yiðθ; tjÞ

ŝ ij

 !2

ð4Þ
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Here the double summation is performed over n –the number of measured components

and k –the number of measured time points. ŷij denote experimental data points, yi(θ,tj)–simu-

lated values and ŝ2
ij is the error variance.

MLE provides the point estimates θ̂ for the unknown parameters θ but does not tell us any-

thing about the uncertainty in θ estimates. Indeed, the estimated parameters θ̂ may not be

unique: another set of parameters may give the same objective function value or be very close

to it. The accuracy of the estimates can be expressed by confidence intervals or confidence

bands.

Profile Likelihood based confidence intervals

Confidence interval (CI) is an estimate of the unknown parameter which characterizes it

by the range of values for particular confidence level α. The confidence interval is a better

alternative to the point estimate because it gives more information about possible parame-

ter values.

A confidence interval with confidence level α for the parameter θi is an interval defined by

probability Pyi
ðy

L
i � yi � y

U
i Þ ¼ a. It is important to note that the definition uses the probabil-

ity term. It implies constructing a confidence interval many times using numerous data sam-

ples, which is typically impossible. Researchers often use different asymptotic methods to

estimate confidence intervals, which can produce different estimations [8].

Different methods of CI estimation may lead to different definitions of parameters’ iden-

tifiability. Profile likelihood is one of the most common and robust ways to construct CIs and

state practical identifiability of the estimated parameters [9] based on likelihood-ratio test. It

implies constructing likelihood-based CIs by exploring l(θ) as a function of a single parameter

θi [10]

lPLðyiÞ ¼ min
yj6¼i
½lðθÞ� ð5Þ

Corresponding confidence interval for an estimate ŷi with confidence level α is defined by

CIa;yi
� ½y

L
i ; y

U
i � ¼ fyi : lPLðyiÞ � lðθ̂Þ � Dag ð6Þ

where Δα is α quantile of the χ2 distribution if the likelihood ratio test is used, θ̂ is the point

estimate of the unknown parameters θ which corresponds to the minimum of l(θ).

Confidence intervals estimation is the major goal of practical identifiability analysis.

According to [5] “a parameter estimate ŷi is practically non-identifiable, if the likelihood-based
confidence region is infinitely extended in increasing and/or decreasing direction of θi, although
the likelihood (negative log-likelihood) has a unique minimum for this parameter”.

Available methods

Two general numerical approaches to construct parameters profiles and PL-based CIs are

currently developed and implemented in software packages [11–13]. They can be distin-

guished as stepwise optimization-based approaches and integration-based approaches.

These approaches sequentially calculate lPL(θi) until the profile function reaches the

threshold lðθ̂Þ þ Da.

Stepwise optimization-based approaches are based on the definition of lPL(θi). They imply

exploring the shape of lPL(θi) by making small steps from the minima yi ¼ ŷi in the increasing

or decreasing direction and re-optimizing l(θ) for all θj6¼i at each step of θi. The smaller θi steps
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the numerical algorithm takes while exploring lPL(θi) the more accurate the profiles are. At the

same time, re-optimizing l(θ) at each θi step may require thousands of likelihood function

calls, which can be inacceptable for high dimensional ODE models. Progressive derivative-

based [5] and linearly extrapolated stepping [11] have been proposed to make appropriate

steps and more accurate profile estimations.

Integration-based approaches suggest obtaining θi profile as a solution of the ODE system.

The ODE system itself is derived from optimal conditions for constrained optimization of l(θ)

defined in Lagrangian form. Potentially solving the modified ODE system should produce

arg minyj6¼i
½lðθÞ�. However, numerical integration of these ODEs requires Hessian of the likeli-

hood function, which is hard or impossible to compute in many real cases. A number of ideas

have been proposed to relax the requirements and either approximate Hessian [14] or obtain it

from adjoint sensitivity analysis [12].

Various numerical implementations of stepwise optimization-based and integration-
based approaches have been developed [13,15] CI endpoints can be obtained with these

methods as sequence of optimizations or numerical integration steps, which is often

unstable or computationally expensive. The success of these methods critically depends

on the initial step choice, and calculations become even more expensive when parameter

is not identifiable or has wider confidence interval than expected. Existing PL methods

are mainly focused on visualizing the profiles and stating if the parameter is identifiable

or non-identifiable. The accuracy of CI endpoints estimation is in general beyond the

scope of these methods.

Results

Algorithm

The current study presents a new approach for confidence intervals estimation and profile

likelihood-based analysis of identifiability: Confidence Intervals estimated by Constrained

Optimization (CICO). It addresses the above-mentioned difficulties of stepwise optimization-

based and integration-based PL implementations, namely computational effort, accuracy of CI

endpoints estimation and algorithm termination criteria. The key idea of the method is to

obtain CI endpoints and avoid the calculation of profiles as the most computationally expen-

sive part of the analysis.

Method rationale

According to [10] for a given significance level α CIa;yi
endpoint values y

�

i ¼ fy
L
i ; y

U
i g can be

found as solutions of the system of m equations:

lðθÞ � l�
a

@l
@yj
ðθÞ

2

6
4

3

7
5 ¼ 0 ð7Þ

where j = 1,. . .,i−1,i+1,. . .,m; m is the number of parameters, and l�
a
¼ lðθ̂Þ þ Da in terms of

(6).

Modified version of Newton-Raphson algorithm is proposed in [10] to solve (7) and obtain

y
�

i . Here we propose a different approach to solve (7) based on constrained optimization.

Assuming there exists a solution of (7) and l(θ) possesses derivatives at θ�, we can denote
@l
@yi

θ�ð Þ ¼ s.
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1. In case s<0, we can multiply the right and left side of Eq (7) by a positive parameter m ¼

� 1

s > 0 and rewrite the system in the following form:

mðlðθÞ � l�
a
Þ ¼ 0

m
@

@yi
lðθÞ ¼ � 1

m
@

@yj6¼i
lðθÞ ¼ 0

,

mðlðθÞ � l�
a
Þ

1þ m
@

@yi
ðlðθÞ � l�

a
Þ

0þ m
@

@yj6¼i
ðlðθÞ � l�

a
Þ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼ 0

8
>>>>>>><

>>>>>>>:

or using matrix notation:

mðlðθÞ � l�
a
Þ

rðcTθÞ þ mrðlðθÞ � l�
a
Þ

" #

¼ 0 ð8Þ

Note, that cTθ is a hyperplane with normal vector cT : cT
j ¼

0; j 6¼ i

1; j ¼ i

(

.

The system (8) states the necessary optimality conditions (Karush-Kuhn-Tucker condi-

tions) at θ� for the following Lagrangian function:

Lðθ; mÞ ¼ yi þ mðlðθÞ � l�
a
Þ; ð9AÞ

which refers to minimization of target function f(θ) = cTθ = θi with inequality constraint

lðθÞ � l�
a
� 0. The minimal θi value is the lower CI endpoint y

L
i :

2. Likewise, in case s>0 we can denote m ¼ 1

s > 0 and apply the similar transformations to the

system (7) to obtain optimality conditions for Lagrangian function:

Lðθ; mÞ ¼ � yi þ mðlðθÞ � l�
a
Þ; ð9BÞ

which refers to minimization of target function f(θ) = −θi with inequality constraint lðθÞ �
l�
a
� 0 and. The maximal θi value is the upper CI endpoint y

U
i :

3. @l
@yi

θ�ð Þ ¼ s ¼ 0 is a special case. In this caserl(θ�) = 0 and θ� is a stationary point of l(θ)

which can be a solution of (7) but does not satisfy (8). Theoretically, the CICO algorithm

excludes this case and additional assumption @l
@yi

θ�ð Þ 6¼ 0 should be made for (7) and (8) to

be equivalent. In practice, exact equality @l
@yi

θ�ð Þ ¼ 0 can hardly happen and derivatives

close to zero can be handled by lowering the tolerance of the chosen optimizer and ODE

solver.

Interpretation

In the previous section we have reformulated the problem of confidence intervals estimation

in the terms of constrained optimization. This approach has a clear geometrical interpretation.

We are looking for tangent hyperplanes to the confidence region CRa ¼ fθ : lðθÞ � l�
a
� 0g,

which correspond to the minimal and maximal feasible θi. For θ2R2 the approach can be illus-

trated by Fig 1. The contour lines reflect confidence regions for different l�
a

values. (A) plot

stands for identifiable case and (B) for non-identifiable. In identifiable case (A) each confi-

dence region is limited. Hence, corresponding confidence intervals CIa;yi
have finite endpoints.

In non-identifiable case (B) confidence intervals for parameter θ1 is infinite and confidence
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interval for θ2 has no finite upper endpoint. CI endpoints were calculated using CICO

method.

Scan bounds and termination criteria

All PL-based approaches: stepwise optimization, integration-based algorithm and CICO imply

exploring θ space by calculating an objective function l(θ) at different θ points. For a given

parameter θi no a-priori information about its identifiability is usually available. In case θi is

identifiable we can expect that the profile will intersect with the threshold. In contrast, to state

parameter’s non-identifiability we have to check all θi feasible values, which can be the whole R

space. The definition of practical non-identifiability [9] requires exploration of the whole θi

domain but in practice it is never performed. Due to the limitations of computational

resources a limited region of θi is often utilized in practice for general identifiability analysis.

To address the discrepancy between identifiability definition and its practical application

the numerical implementation of CICO proposes the notion of scan bounds ðy
BL
i ; y

BU
i Þ which

represent feasible parameters’ values. The scan bounds may be selected based on biologically

acceptable values or available computational resources. In practice this approach was utilized

by researchers implicitly but the bounds were not used for algorithms termination criteria.

The proposed scan bounds naturally suggest the notion of practical identifiability within the
bounds. We will call a parameter “practically identifiable within the bounds” if its whole confi-

dence interval for a particular confidence level α is located inside the pre-defined scan bounds,

i.e. ½y
L
i ; y

U
i � � ðy

BL
i ; y

BU
i Þ. If the condition is not satisfied, i.e. 9y

�

i 2 ½y
L
i ; y

U
i �, but y

�

i 2

ð� 1; y
BL
i � [ ½y

BU
i ;þ1Þ we will call this parameter practically non-identifiable within the

bounds.
It is necessary to note that the PL-based confidence intervals may be asymmetric relative to

θ̂ in contrast to asymptotic confidence intervals. In some cases CIs have finite endpoint in one

direction and infinite endpoint in another. In practice it is reasonable to analyze the identifia-

bility of lower and upper sides separately.

The definition of identifiability within the bounds is utilized in the CICO implementation.

If lower or upper CI endpoint is present within the scan bounds ðy
BL
i ; y

BU
i Þ the algorithm

Fig 1. Contour lines. Plots show the contour lines of two functions, chosen to illustrate identifiable and non-

identifiable cases. Plot (A) is an identifiable case illustrated by Booth function lA(θ) = (θ1+2θ2−7)2+(2θ1+θ2−5)2, which

has known minimum lA(1,3) = 0. Plot (B) illustrate non-identifiable case by Rosenbrock function lBðθÞ ¼
ð1 � y1Þ

2
þ 100ðy2 � y

2

1
Þ

2
with minimum lB(1,1) = 0. The star-shaped points mark the minima of the above functions.

The bold contour represents the CRa ¼ fθ : lðθÞ � l�
a
� 0g for l�

a
¼ 200. The dashed lines are profile paths projected

on (θ1, θ2) Red circles mark the points where tangent hyperplanes correspond to parameters’ minimal or maximal

values in CRα. Red circles are CI endpoints. The contours were calculated using marching squares algorithm

implemented in Contour.jl package (https://github.com/JuliaGeometry/Contour.jl). They are provided for illustrative

purposes only.

https://doi.org/10.1371/journal.pcbi.1008495.g001
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converges to the endpoint with preset tolerance. If one of confidence interval’s point is found

out of scan bounds ðy
BL
i ; y

BU
i Þ the algorithm terminates and the appropriate message is

displayed.

Software implementation: LikelihoodProfiler

We provide an implementation of CICO algorithm in an open source free package Likelihood-

Profiler https://github.com/insysbio/LikelihoodProfiler.jl written in Julia language [16]. The

package was also translated to free open source package in Python https://github.com/

insysbio/LikelihoodProfiler.py. LikelihoodProfiler allows the user to perform CI estimation

and state parameter’s identifiability. The main function exposed to the end-user is get_in-
terval which calculates the upper and lower CI endpoints for the selected parameter θi. Cur-

rently the CICO implementation depends on NLopt package [17] and the user can choose any

suitable optimization algorithm from this package.

To test parameters’ identifiability the user should provide loss_func which is the likeli-

hood function of unknown parameters θ. The function is expected to be based on MLE

approach. The user should also set theta_init which is the initial values of parameters

which are typically (but not necessary) the optimal values θ̂ obtained by fitting parameters to

experimental data. Other mandatory settings are loss_crit, which denotes l�
a
¼ lðθ̂Þ þ Da

and index denoting the parameter of interest in vector. The user may also set scan_bounds
which is the feasible θi range ðy

BL
i ; y

BU
i Þ, or use the default values (1e-9, 1e9). The following

Julia code loads LikelihoodProfiler package and evaluates theta endpoints for likelihood

function l(theta).
using LikelihoodProfiler
l(theta) = 5.0 + (theta[1]-3.0)^2 + (theta[1]-theta[2]-1.0)^2
theta_init = [3.0, 2.0]
ci = [get_interval(theta_init, i, l, loss_crit = 9.0) for i in 1:2]

The implementation utilizes two termination criteria, which address two possible situa-

tions. In case there is a confidence interval endpoint within the scan_bounds, optimization

stops when the algorithm converges to the endpoint with the preset tolerance and BORDER_-
FOUND_BY_SCAN_TOL message is displayed. In case the algorithm doesn’t find any feasible

point above the threshold the algorithm stops with SCAN_BOUNDS_REACHED message.

The algorithm can also work in transformed space (log or logit) which can speed up

the optimization process for complex nonlinear models. An optional argument scale of

get_interval function can set search space for each parameter individually. It supports

three options:: direct,: log,: logit with default scale set to: direct for all

parameters. The package also includes a set of useful tools for visualization.

Internally LikelihoodProfiler uses Augmented Lagrangian algorithm [18,19] from NLopt

package [17], which implies combining the objective function and the constraint into a single

function. Then the augmented objective function with no constraints is passed to an optimiza-

tion algorithm. Augmented Lagrangian implementation used in the package was proved to

converge to KKT points [18]. The optimization of the augmented objective function can be

performed with any gradient-based or derivative-free algorithm including global optimization

methods.

Validation: The cancer taxol treatment model

Here we provide identifiability analysis of the cancer taxol treatment model [20]. Though the

primary goal of this analysis is to verify CI endpoints computed with CICO, we also provide

performance estimations of CICO algorithm vs. original implementation [20]. The original
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Matlab code is based on stepwise-optimization approach which implies recovering the whole

parameters profile to obtain CI endpoint values (https://github.com/marisae/cancer-chemo-

identifiability).

The taxol treatment model is defined by the set of ODEs with three state variables, five

unknown parameters (a0, ka, r0, d0, kd), dosage regime and experimental data. The unknown

parameters have been fitted to experimental data and their estimated values were taken from

original Matlab implementation. Even though the model is structurally identifiable, practically

available experimental data, as it was shown [20], is insufficient to recover all the unknown

parameters.

The same authors provide an open GitHub repository with Matlab implementation of the

taxol treatment model (https://github.com/marisae/cancer-chemo-identifiability). This imple-

mentation was used to verify the results obtained by CICO algorithm. The repository includes

Matlab script for a0 identification. We have adapted this script to estimate CI for other four

unknown parameters (ka, r0, d0, kd). No changes were made to the original Matlab code with

the exception of counters, which were added to count the number of likelihood function calls

the algorithm makes until it reaches the threshold. Internally the Matlab implementation uses

lsqcurvefit function for fitting.

To run identifiability analysis with LikelihoodProfiler package the taxol treatment model

was rewritten in Julia language. To make the numerical simulations comparable with original

Matlab implementation Julia’s analogue of Matlab ode23s solver Rosenbrock23 from Differen-

tialEquations.jl package [21] was used with the same tolerances setup: relative 1e-3, absolute

1e-6. Search bounds for all unknown parameters were set to (1e-3,1e3). CICO CI endpoints

were estimated with Nelder-Mead derivative-free solver from NLopt package.

CI endpoints estimated with CICO (Table 1) correspond with the values obtained in the

original code.

As most of computational efforts in “profiling” approach are focused on solving ODEs with

different parameters’ sets, the performance of the algorithms was measured by the number of

likelihood function calls (Table 1) the algorithm makes until it reaches (or converges to) the

endpoint. In the taxol treatment model each likelihood function computation requires solving

ODE system four times for four different treatment doses.

In general, CICO needs less likelihood function evaluations than stepwise optimization-

based profiling to converge to endpoint value. Efficacy of CICO is especially evident in non-

identifiable cases. This is due to the constraints incorporated in the objective function as a

Table 1. Comparison of CICO and stepwise profile likelihood methods for the cancer taxol treatment model.

LikelihoodProfiler (CICO) Original Matlab (Stepwise PL)

Parameter Lower

Endpoint

Upper

Endpoint

LF Calls

(Lower)

LF Calls

(Upper)

Time

(sec)

Lower

Endpoint

Upper

Endpoint

LF Calls

(Lower)

LF Calls

(Upper)

Time

(sec)

a0 6.76 17.3 285 601 2.79 (7.9, 8.32)� (17.05, 17.46)� 285 1715 97.74

ka 4.99 10.73 522 349 3.26 (4.86, 5.26)� (10.52, 10.93)� 682 670 75.16

r0 NI 0.4 49 796 2.85 NI (0.36, 0.37)� 1510 7475 531.96

d0 0.19 NI 601 170 2.81 (0.13, 0.2)� NI 1605 >20000 >1000

kd 50.51 NI 796 223 3.74 (47.65, 53.61)� NI 930 12260 722.52

CI endpoints estimated with CICO and CIs’ estimates obtained in the original Matlab stepwise optimization-based implementation. The CI endpoints for original

Matlab implementation are given as intervals

(�) because stepwise PL approach doesn’t estimate endpoints with any preset tolerance but marks two points before and after parameter’s profile intersects the threshold.

NI stands for non-identifiable parameter. Elapsed time is measured by @time in Julia and tic toc in Matlab. Computations were performed on a standard desktop

computer (2.30 GHz Intel Core i3 with 8 GB RAM).

https://doi.org/10.1371/journal.pcbi.1008495.t001
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penalty part. It starts to penalize the algorithm only when optimizer gets near to the threshold,

which doesn’t happen in many non-identifiable cases where profiles are flat.

Fig 2 illustrates the search path of stepwise “profiling” and CICO for identifiable a0 param-

eter and non-identifiable kd parameter. Stepwise-optimization tends to follow the profile path

while CICO algorithm doesn’t require the intermediate points to lie on the profile, which leads

to fewer likelihood-function calls.

Validation: STAT5 dimerization model

STAT5 Dimerization Model [22] consists of eight state variables, nine parameters and experi-

mental dataset. It is proposed as one of the benchmark models in dMod simulation package

[13]. We have translated the model from PEtab format used by dMod into Julia. The model’s

files include best-fit parameter values, which were taken as initial values for identifiability anal-

ysis. The boundaries for parameters deviance were set according to PEtab data to (1e-5,1e5).

We have reproduced the identifiability analysis of the model in R with dMod and in Julia with

LikelihoodProfiler.

dMod implements integration-based approach to parameters identification, according to

which parameters’ profiles are obtained as a solution of ODE system. This approach men-

tioned in Section 2.4 (Available methods) relies on first derivatives of the likelihood function

and Hessian approximation. To ensure the integration accurately follows the profile path each

point proposed by integration step can be used as the initial point for optimization. This

option is controlled by method =“optimize” setting. In case of STAT5 Dimerization

Model we have used the”optimize” method because default”integrate” method had

not produced all the profiles due to Hessian-related issues. We have added iteration counter to

R code to count likelihood function calls. dMod stops the profile integration when it intersects

the threshold or when parameter bounds are reached. Hence, CI endpoints are reported as

intervals with average width approximately equal to 3e-2 (Table 2).

This allowed us to set tolerance of endpoint estimation in LikelihoodProfiler scan_tol
= 1e-2. To make Julia simulations close to deSolve.lsoda used in dMod we have chosen

Fig 2. Search paths for the parameters’ CI endpoints of the cancer taxol treatment model. The path of CI search for

stepwise optimization-based algorithm (A, C) and CICO algorithm (B, D). Circles denote the points reached by the

algorithm during the search and numbers above the circles indicate the number of likelihood function calls the

algorithm makes to reach this point. The dotted line is the likelihood profile calculated separately for illustrative

purposes. The dashed horizontal line marks the significance level α = 0.95. Red circles mark the estimated endpoints (if

they exist) for CICO algorithm and black–the points, where the algorithm reaches the box constraints. It denotes non-

identifiable case. (A) Estimation of lower and upper CI endpoints with the stepwise optimization-based method for a0

parameter. (B) Estimation of lower and upper CI endpoints with CICO method for a0 parameter. (C) Estimation of

lower and upper CI endpoints with the stepwise optimization-based method for kd parameter. (D) Estimation of lower

and upper CI endpoints with CICO method for kd parameter.

https://doi.org/10.1371/journal.pcbi.1008495.g002
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LSODA differential equations solver (supported by DifferentialEquations.jl) with the same tol-

erance setup: relative 1e-7, absolute 1e-7. Nelder-Mead derivative-free solver from NLopt

package was used to estimate CI endpoints.

Taking into account the difference of the underlying optimizers, the endpoints reported by

LikelihoodProfiler correspond to the values obtained in dMod. The performance of each pack-

age was measured by the number of likelihood function evaluations and time required to com-

pute CI endpoints. The results indicate the efficiency of CICO, which on average overperforms

integration-based approach implemented in dMod even though dMod relies on model’s func-

tions compiled to C. Only for k_exp_hetero parameter dMod "optimize” method has recorded

fewer likelihood function calls. Timings indicate significant practical efficacy of both CICO

and Julia language for this task.

The detailed identifiability analysis of the Taxol treatment model and STAT5 dimerization

model, the source code as well as other use-case models’ identifiability analyses are published

on our GitHub repository (https://github.com/insysbio/likelihoodprofiler-cases).

Discussion

A number of recent studies have demonstrated that profile likelihood-based methods are effi-

cient to analyze identifiability of the parameters reconstructed on the basis of experimental

data. In the absence of identifiability analysis one can never be certain how reliable parameters

estimations and how accurate the model predictions are. However, practical usage of profile

likelihood-based methods has not become a standard routine yet due to a number of

challenges.

Indeed, profile likelihood-based methods are computationally demanding. Progressive

stepping and other optimizations of the basic profile likelihood approach impose restrictions

on the likelihood function (such as the need to calculate gradients) and limits the set of the

applicable optimization methods. The CICO algorithm attempts to solve this problem by

replacing multiple calculations of the likelihood function with constrained optimization. For

each individual parameter only two optimization iterations are required to calculate the lower

and upper CI endpoints. CICO doesn’t require the gradient of the likelihood function and

allows the user to choose derivative-free or gradient-based optimization algorithm.

Table 2. Comparison of LikelihoodProfiler and dMod for STAT5 dimerization model.

LikelihoodProfiler (CICO) dMod (optimize)

Parameter Lower

Endpoint

Upper

Endpoint

LF Calls

(Lower)

LF Calls

(Upper)

Time

(sec)

Lower

Endpoint

Upper

Endpoint

LF Calls

(Total)

Time

(sec)

Epo_degradation_BaF3 -1.71 -1.42 523 494 0.75 (-1.74, -1.72)� (-1.42, -1.39)� 1716 42.15

k_exp_hetero NI -3.15 4 1036 0.72 NI (-3.1, -3.01)� 533 13.53

k_exp_homo -2.48 -1.98 237 289 0.4 (-2.56, -2.52)� (-1.95, -1.93)� 1931 47.89

k_imp_hetero -1.86 -1.69 171 179 0.32 (-1.91, -1.9)� (-1.67,-1.66)� 1435 37.58

k_imp_homo 0.19 NI 1287 7 1.04 (0.11, 0.18)� NI 2675 66.35

k_phos 4.16 4.27 143 168 0.21 (4.1, 4.12)� (4.29, 4.3)� 1959 50.75

sd_pSTAT5A_rel 0.44 0.77 172 243 0.34 (0.42, 0.44)� (0.78, 0.8) 2165 55.58

sd_pSTAT5B_rel 0.72 0.99 231 186 0.34 (0.66, 0.68) (0.99, 1.01) 2062 53.50

sd_rSTAT5A_rel 0.4 0.67 204 929 0.83 (0.35, 0.36) (0.67, 0.67) 2062 53.49

CI endpoints estimated with LikelihoodProfiler (CICO) and CIs’ estimates obtained in dMod. Lower and upper CI endpoints for dMod are given as intervals

� marking two points before and after parameter’s profile intersects the threshold. NI stands for non-identifiable parameter. Elapsed time is measured by @time in Julia

and system.time in R. Computations were performed on a standard desktop computer (2.30 GHz Intel Core i3 with 8 GB RAM).

https://doi.org/10.1371/journal.pcbi.1008495.t002
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Other challenges originate from uncertainty in practical non-identifiability definition. It is

implied that researchers have to scan sufficiently wide but finite intervals to state a non-identi-

fiable case. In practice it is usually performed by visualizing the profiles on a chosen interval

and extrapolating profiles behavior to the global parameters feasible region. In the current

study we have proposed a formal criteria of the algorithm termination, utilizing the scan

bounds notion, which can automate the analysis process and get rid of subjectivity.

The numerical experiments have demonstrated that confidence intervals obtained with

CICO algorithm coincide with the results reported in the publications. As it was shown, on

average the algorithm overperforms considered above optimization-based and integration-

based PL implementations. This comparison was performed with the default solver settings

and can possibly be optimized for greater efficiency. Moreover, the optimization-based PL

approach doesn’t converge to the endpoint, while the CICO algorithm was developed to accu-

rately estimate CI endpoints. Hence a more thorough comparison of the algorithms is difficult,

since the termination criteria of the optimization-based PL doesn’t take into account the accu-

racy of CI endpoints estimation.

To compare the methods we have measured efficacy in terms of elapsed time and likelihood

function calls required to obtain CI endpoints. In general, CICO implementation in Likeli-

hoodProfiler is about 100 times faster than dMod integration-based approach (R) and optimi-

zation-based method (Matlab). However, it is important to note that timings highly depend on

the programming language, optimization method and ODE solver used while the number of

likelihood function evaluations is a language independent measurement, though it also is

affected by the efficacy of optimization algorithm and ODE solver.

In addition to confidence intervals, other interval estimates may also be of interest: confi-

dence n-dimensional parameters’ regions, prediction bands, etc. The CICO algorithm usage

can be potentially expanded to calculate these generalizations of confidence intervals, and we

plan to test its use for these classes of tasks in our future studies.
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