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a b s t r a c t 

The Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological model is one of the standard models 

of disease spreading. Here we analyse an extended SEIR model that accounts for asymptomatic carriers, 

believed to play an important role in COVID-19 transmission. For this model we derive a number of 

analytic results for important quantities such as the peak number of infections, the time taken to reach 

the peak and the size of the final affected population. We also propose an accurate way of specifying 

initial conditions for the numerics (from insufficient data) using the fact that the early time exponential 

growth is well-described by the dominant eigenvector of the linearized equations. Secondly we explore 

the effect of different intervention strategies such as social distancing (SD) and testing-quarantining (TQ). 

The two intervention strategies (SD and TQ) try to reduce the disease reproductive number, R 0 , to a 

target value R target 
0 

< 1 , but in distinct ways, which we implement in our model equations. We find that 

for the same R target 
0 

< 1 , TQ is more efficient in controlling the pandemic than SD. However, for TQ to be 

effective, it has to be based on contact tracing and our study quantifies the required ratio of tests-per- 

day to the number of new cases-per-day. Our analysis shows that the largest eigenvalue of the linearised 

dynamics provides a simple understanding of the disease progression, both pre- and post- intervention, 

and explains observed data for many countries. We apply our results to the COVID data for India to obtain 

heuristic projections for the course of the pandemic, and note that the predictions strongly depend on 

the assumed fraction of asymptomatic carriers. 

© 2020 Elsevier Ltd. All rights reserved. 
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The COVID-19 pandemic, that started in Wuhan (China) around 

ecember 2019 [1,2] , has now affected almost every country in 

he world. The total number of confirmed cases on July 30, 2020 

ere close to 17.5 million with close to 686,0 0 0 deaths [3] . One

f the serious concerns presently is that there is as yet no clear 

icture or consensus on the future evolution of the pandemic. It is 

lso not clear as to what is the ideal intervention strategy that a 

overnment should implement, while also taking into account the 

conomic and social factors. The role of mathematical models has 

een to provide guidance for policy makers [4–18] . 

One of the standard epidemiological model is the SEIR model 

19] which has four compartments of Susceptible ( S), Exposed ( E), 

nfected ( I) and Recovered ( R ) individuals with S + E + I + R = N

eing the total population of a region (the model can be applied 

t the level of a country or a state or a city and is expected to

ork better for well-mixed populations). The SEIR model is pa- 
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ameterized by the three parameters β, σ and γ that specify the 

ates of transitions from S → E, E → I and I → R respectively. In

erms of the data that is typically measured and reported, R cor- 

esponds to the total number of cases till the present date, while 

I would be the number of new cases per day. The number of 

eaths across different countries is some fraction ( ≈ 1 − 10% ) of 

 [20] while the number of hospital beds required at any time 

ould be ≈ new cases per day × typical days to recovery . An im- 

ortant parameter characterizing the disease growth is the repro- 

uctive number R 0 [21,22] — when this has a value greater than 1, 

he disease grows exponentially. Typical values reported in the lit- 

rature for COVID-19 are in the range R 0 = 2 − 7 [23] . For the SEIR

odel one has R 0 = β/γ [22] . 

The two main intervention schemes for controlling the pan- 

emic are social distancing (SD) and testing-quarantining (TQ). 

ockdowns (LD) impose social distancing and effectively reduce 

ontacts between the susceptible and infected populations, while 

esting-quarantining means that there is an extra channel to re- 

ove people from the infectious population. These two interven- 

https://doi.org/10.1016/j.chaos.2020.110595
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110595&domain=pdf
mailto:abhishek.dhar@icts.res.in
https://doi.org/10.1016/j.chaos.2020.110595


A. Das, A. Dhar, S. Goyal et al. Chaos, Solitons and Fractals 144 (2021) 110595 

t

w

w

t  

m  

d

f

s

i

d

t

c

f  

p  

i

v

a

s

f

w

R

r

t

T

u

c

t

d

t

S

t

v  

o

a  

g

r

w  

t

h  

t

f  

s

t

s

S

t

m

b

i

n

r

s

o

d

f

a  

h

q

o

a

p

t

S

t

1

s  

t  

s

l

c

 

D

f

T

ion schemes have to be incorporated in the model in distinctive 

ays [7,8] — SD effectively changes the infectivity parameter β
hile TQ changes the parameter γ . Intervention schemes attempt 

o reduce R 0 to a value less than 1. In the context of the SEIR

odel with R 0 = β/γ , it is clear that we can reduce it by either

ecreasing β or by increasing γ . In this work we point out that 

or the same reduction in R 0 value, the effect on disease progres- 

ion can be quite different for the two intervention strategies. 

Here we analyze an extended version of the SEIR model which 

ncorporates the fact that asymptomatic or mildly symptomatic in- 

ividuals [7–9,24] are believed to play a significant role in the 

ransmission of COVID-19. Our extended model considers eight 

ompartments of Susceptible ( S), Exposed ( E), asymptomatic In- 

ected ( I a ), presymptomatic Infected ( I p ), and a further four com-

artments ( U a , D a , U p , D p ), two corresponding to each of the two

nfectious compartments. These last four classes comprise of indi- 

iduals who have either recovered (at home or in a hospital) or 

re still under treatment or have died — they do not contribute to 

preading the infection. We do not include separate compartments 

or the number of hospitalized and dead since these extra details 

ould not affect our main conclusions. 

For this extended SEIR model we first provide, for the case with 

 0 > 1 , analytic expressions for peak infection numbers, time to 

each peak values, and asymptotic values of total affected popula- 

ions. These would provide useful guidance on disease progression. 

he linearized dynamics is accurate when the total affected pop- 

lation is small. We propose an accurate way of specifying initial 

onditions for the numerics (from insufficient data) using the fact 

hat the early time exponential growth is well-described by the 

ominant eigenvector of the linearized equations. We next discuss 

he performance of two different intervention strategies (namely 

D and TQ) in the disease dynamics and control. The aim of in- 

erventions is to reduce the reproductive number from it’s free 

alue R 0 to a target value R 
target 
0 

< R 0 . We study both the cases,

f strong interventions ( R 
target 
0 

< 1 aimed at disease suppression,) 

nd that of weak interventions ( R 
target 
0 

� 1 , aimed at disease miti-

ation). Apart from the reproductive number, R 0 , an important pa- 

ameter is the largest eigenvalue of the linear dynamics, which 

e denote as μ. For R 
target 
0 

> 1 , we have μ > 0 and this gives us

he exponential growth rate (doubling time ≈ 0 . 7 /μ). On the other 

and, for R 
target 
0 

< 1 , the corresponding μ is less than 0 and this

ells us that infections will decrease exponentially. We find that, 

or the same reduction of R 
target 
0 

to a value less than 1, the corre-

ponding μ magnitude can be very different for different interven- 

ion schemes. A larger magnitude of μ, corresponding to a faster 

uppression of the pandemic, is obtained from TQ than that from 

D. An important question for disease control is as to how much 

esting is required. In our work we relate the parameters of the 

odel related to TQ to testing rates and point out that for TQ to 

e successful: (a) it has to be based on contact-tracing and (b) it 

s necessary that testing numbers are scaled up according to the 

umber of new detected cases. Finally, we show that many of our 

esults provide a qualitative understanding of COVID-19 data from 

everal countries which have either achieved disease suppression 

r mitigation. 

The rest of the paper is structured as follows. In Section 1 we 

efine the extended SEIR model. A number of analytic results 

or the linearized model as well as the full nonlinear system 

re presented in Section 2 . In Section 3 , we discuss in detail

ow intervention strategies such as social distancing and testing- 

uarantining can be incorporated into the model, we comment 

n how real testing numbers enter the model parameters. We 

lso present numerical studies comparing different intervention 

rotocols and make qualitative comparisons of the predictions of 

he SEIR model with real data on the COVID-19 pandemic. In 
2 
ection 4 we make some heuristic predictions in the Indian con- 

ext. We summarize our results in Section 5 . 

. Definition of the extended SEIR model 

The extended SEIR model studied here is schematically de- 

cribed in Fig. 1 . It has eight variables ( S, E, I a , I p , U a , D a , U p , D p ) and

en parameters ( βa , βp , σ, γa , γp , α, νa , νp , r, u ), of which α repre-

ents the fraction of asymptomatic carriers while u, r, νa , νp are re- 

ated to intervention strategies. 

We consider a population of size N that is divided into eight 

ompartments: 

1. S = Susceptible individuals. 

2. E = Exposed but not yet contagious individuals. 

3. I a = Asymptomatic, either develop no symptoms or mild symp- 

toms. 

4. I p = Presymptomatic, those who would eventually develop 

strong symptoms. 

5. U a = Undetected asymptomatic individuals who have recovered. 

6. D a = Asymptomatic individuals who are detected because of 

directed testing-quarantining, may have mild symptoms, and 

would have been placed under home isolation (few in India). 

7. U p = Presymptomatic individuals who are detected at a late 

stage after they develop serious symptoms and report to hos- 

pitals. Here we assume that all individuals who develop signif- 

icant symptoms are eventually detected. 

8. D p = Presymptomatic individuals who are detected because of 

directed testing-quarantining. 

We have the constraint that N = S + E + I a + I p + U a + D a + U p +
 p . A standard dynamics for the population classes is given by the 

ollowing set of equations: 

dS 

dt 
= −u (βa I a + βp I p ) 

N 

S (1) 

dE 

dt 
= 

u (βa I a + βp I p ) 

N 

S − σE (2) 

dI a 

dt 
= ασE − γa I a − rνa I a (3) 

dI p 

dt 
= (1 − α) σE − γp I p − rνp I p (4) 

dU a 

dt 
= γa I a (5) 

dD a 

dt 
= rνa I a (6) 

dU p 

dt 
= γp I p (7) 

dD p 

dt 
= rνp I p . (8) 

he parameters in the above equations correspond to 

• α: fraction of asymptomatic carriers. 

• βa : infectivity of asymptomatic carriers. 

• βp : infectivity of presymptomatic carriers. 

• σ : transition rate from exposed to infectious. 
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Fig. 1. A schematic description of the extended SEIR dynamics studied in this work. The parameters βa , βp , σ, γa , γp , α are intrinsic to the disease, u quantifies the degree 

of social distancing while νa , νp , r are related to intervention arising from testing-quarantining. 
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• γa : transition rate of asymptomatic carriers to recovery or hos- 

pitalization. 

• γp : transition rate of presymptomatics to recovery or hospital- 

ization. 

• νa , νp : detection probabilities of asymptomatic carriers and 

symptomatic carriers. 

• u : intervention factor due to social distancing (time dependence 

will be specified later). 

• r: intervention factor due to testing-quarantining (time depen- 

dence to be specified later). This is a rate and depends on 

testing-quarantining rates. 

With our definitions, the total number of confirmed cases, C, 

nd the number of daily recorded new cases F would be 

 = D a + D p + U p , F = 

dC 

dt 
= rνa I a + (γp + rνp ) I p . (9) 

ote that we include U p because these are people who are not 

etected through directed tests but eventually get detected (after 

1 /γp days) when they get very sick and go to hospitals. On the 

ther hand the class D p get detected because of directed testing, 

ven before they get very sick. 

In the next section we will discuss the case where the inter- 

ention parameters u and r are kept fixed, and present a number 

f analytic results. In Section 3 we will discuss the case where u 

nd r are time-dependent. 

. Analytic results for model with constant parameters 

.1. Linear analysis of the dynamical equations 

Since at early times S ≈ N and all the other populations 

, I a , I p , D a , D p , U a , U p � N, one can perform a linearization of

he above equations. This tells us about the early time growth 

f the pandemic, in particular the exponential growth rate. 

et us define new variables to characterize the linear regime: 

 1 = S − N, x 2 = E, x 3 = I a , x 4 = I p , x 5 = U a , x 6 = D a , x 7 = U p , x 8 = D p . 

t early times when x i << N, the dynamics is captured by linear 

quations 

dX 

dt 
= MX, with X = (x 1 , x 2 , . . . , x 8 ) , (10) 
3 
 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 − ˜ βa − ˜ βp 0 0 0 0 

0 −σ ˜ βa 
˜ βp 0 0 0 0 

0 ασ − ˜ γa 0 0 0 0 0 

0 (1 − α) σ 0 − ˜ γp 0 0 0 0 

0 0 γa 0 0 0 0 0 

0 0 rνa 0 0 0 0 0 

0 0 0 γp 0 0 0 0 

0 0 0 rνp 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(11) 

here ˜ βa = uβa , ˜ βp = uβp , ˜ γa = γa + rνa , ˜ γp = γp + rνp . For the 

resent we ignore the time dependence of the SD factor u and the 

Q factor r. The matrix has 5 zero eigenvalues while the 3 non- 

anishing ones are given by the roots of the following cubic equa- 

ion for λ: 

3 + ( ̃  γa + ˜ γp + σ ) λ2 

+ [ ̃  γa ̃  γp + ˜ γa σ + ˜ γp σ − α ˜ βa σ − (1 − α) ̃  βp σ ] λ

+ σ
[

˜ γa ̃  γp − (1 − α) ̃  βp ̃  γa − α ˜ βa ̃  γp 

]
= 0 . (12) 

his can be re-written in the form 

3 + ( ̃  γa + ˜ γp + σ ) λ2 + [ ̃  γa ̃  γp + σ ( ̃  γa + ˜ γp ) ( 1 − Q ) ] λ

+ σ ˜ γa ̃  γp ( 1 − R 0 ) = 0 , (13) 

here ˜ βa = uβa , ˜ βp = uβp , ˜ γa = γa + rνa , ˜ γp = γp + rνp , Q = α ˜ βa /

 ̃  γa + ˜ γp ) + (1 − α) ̃  βp / ( ̃  γa + ˜ γp ) , and 

 0 = α
˜ βa 

˜ γa 
+ ( 1 − α) 

˜ βp 

˜ γp 

= α
uβa 

γa + rνa 
+ ( 1 − α) 

uβp 

γp + rνp 
(14) 

s the expected form for the reproductive number for the disease. 

ne can intuitively see this as follows. The reproductive num- 

er is the average number of secondary infection from one in- 

ected individual at the initial phase of the outbreak. In our model, 

n infected individual may either be asymptomatic or presymp- 

omatic with probabilities α or (1 − α) respectively. On average, 

hile an asymptomatic individual infects ˜ βa / ̃  γa number of people, 

 presymptomatic carrier infects ˜ βp / ˜ γp number of people. Conse- 

uently the expected number of secondary infection from an arbi- 

rarily chosen infected individual will be R with expression given 
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Fig. 2. Role of initial conditions: Plot showing I(t) , for a fixed population of size 

N = 10 7 , with 5 very different initial conditions : (1) E(0) = 100 , I a (0) = 0 , I p (0) = 

0 , (2) E(0) = 10 , I a (0) = 0 , I p (0) = 0 , (3) E(0) = 10 0 0 , I a (0) = 0 , I p (0) = 0 , (4) E(0) = 

233 , I a (0) = 100 , I p (0) = 75 , (5) E(0) = 233 , I a (0) = 10 0 0 , I p (0) = 75 . (Inset) A col- 

lapse of all the curves obtained by translating all the trajectories so that they start 

with the same value of I. 
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a  
y Eq. (14) . Noting the fact that Q < R 0 , it follows that the condi-

ion for at least one positive eigenvalue is 

 0 > 1 . (15) 

e denote the largest eigenvalue by μ and note that this is 

niquely related to the reproductive number R 0 by Eq. (13) . At 

arly times the number of cases detected would grow as ∼ e μt . For 

 0 ≈ 1 , we expect that the largest eigenvalue is close to zero and, 

fter neglecting the λ3 and λ2 terms in Eq. (13) , we can read off

he value as 

≈ σ (R 0 − 1) 

1 + σ ( ̃  γ −1 
a + ˜ γ −1 

p )(1 − Q ) 
. (16) 

nitial conditions : We discuss here the fact that all initial con- 

itions (which satisfy the condition S(0) ≈ N) quickly move along 

he direction of the dominant eigenvector and how this provides 

s a way to choose the correct initial conditions from the knowl- 

dge of one variable (e.g confirmed cases) at an early time. We 

enote the right and left eigenvectors corresponding to an eigen- 

alue λq by φq (i ) and χq (i ) respectively. The largest eigenvalue is 

enoted by μ with corresponding right and left eigenvectors φm 

(i ) 

nd χm 

(i ) respectively. The vector X = (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 )

an be written as [27] 

 i ( t ) = 

∑ 

q 

c q e 
λq t φq ( i ) , (17) 

here the coefficients c q are determined by putting t = 0 and then 

aking the inner product with the left eigenvector say χq (i ) . Do- 

ng so, we get c q = 

∑ 

j χq ( j) x j (0) which when substituted back in

q. (17) gives 

 i ( t ) = 

∑ 

j 

∑ 

q 

φq ( i ) χq ( j ) e 
λq t x j ( 0 ) 

≈
∑ 

j 

φm 

( i ) χm 

( j ) e μt x j ( 0 ) , 

≈ c m 

φm 

( i ) e μt , where c m 

= 

∑ 

j 

χm 

( j ) x j ( 0 ) (18) 

here the second last line is true at sufficiently large times when 

nly one eigenvalue μ dominates. This proves that the direction 

f the vector X is independent of initial conditions. In particular, 

sing the explicit form of the dominant eigenvector we find the 

ollowing relation in the growing phase of the pandemic: 

I a (t) 

I p (t) 
= 

φm 

(3) 

φm 

(4) 
= 

α(μ + ˜ γp ) 

(1 − α)(μ + ˜ γa ) 
. (19) 

et us consider the initial condition X = (−ε, 0 , 0 , ε, 0 , 0 , 0 , 0) so

hat (noting that χm 

(1) = 0 ) 

 i (t) ≈ εφm 

(i ) χm 

(4) e μt = a i εe μt , (20) 

here a i = φm 

(i ) χm 

(4) . At a sufficiently large time t l (but still in

he very early phase of the pandemic) we equate the observed 

onfirmed number C 0 on some day to x 6 (t l ) + x 7 (t l ) + x 8 (t l ) which

herefore gives us the relation 

e μt l = 

C 0 
a 6 + a 7 + a 8 

. (21) 

his then tells us that we should start with the following initial 

onditions, (now counting time t = 0 from the day of the observa- 

ion C 0 ): 

 i (0) = 

φm 

(i ) 

φm 

(6) + φm 

(7) + φm 

(8) 
C 0 . (22) 

he crucial point is that the leading eigenvector fixes the direction of 

he growth and then knowledge of linear combination fixes all the 
4 
ther coordinates . Thus, independent of initial conditions, the vec- 

or describing all the system variables quickly points along the di- 

ection of the eigenvector corresponding to the largest eigenvalue 

15,28] . Hence if we know any one variable (or a linear combina- 

ion of all the variables) at sufficiently large times in the growing 

hase, then the full vector is completely specified. This leads to an 

ccurate way of specifying initial conditions for the numerics (from 

nsufficient data) and will help in reducing the number of fitting 

arameters in modeling studies, thereby increasing their accuracy 

n predicting. 

This fact also implies that different initial conditions (such as 

ifferent seed infections) will only cause a temporal shift of the 

bserved evolution. This also means that trajectories for different 

nitial conditions are identical up to a time translation. If one uses 

dentical parameters and intervention strategies, then all countries 

hould follow the same trajectory provided they start with the 

ame value for the normalized fraction of confirmed new cases 

 0 /N. We illustrate this idea, for the extended SEIR dynamics, in 

ig. 2 where we show a plot of I(t) = I a (t) + I p (t) for 5 different

nitial conditions. The inset shows a collapse of all the trajectories 

fter an appropriate time translation of the different trajectories. 

an we see a similar collapse of the real data for different coun- 

ries (after normalizing by the respective populations and with ap- 

ropriate time translation of the data)? In Fig. 3 we plot the data 

ith this normalization and initial condition and see a rough col- 

apse for several countries. The differences can be attributed to dif- 

erent parameter values and different control strategies in different 

ountries. We notice in particular that three of the Asian countries 

India, Pakistan, Indonesia) follow a distinctly different trajectory. 

.2. Final affected population 

Let us define the asymptotic populations (i.e the populations at 

ery long times) in the different compartments as Ū a , D̄ a , Ū p , D̄ p , 

nd let R̄ a = Ū a + D̄ a , R̄ p = Ū p + D̄ p , R̄ = R̄ a + R̄ p . The total popula-

ion that would eventually be affected by the disease (and either 

ecover or die) is given by R̄ and would have developed immunity. 

 fraction Ū a (see below) would be undetected and uncounted. 

It is possible to compute the final affected population R̄ from 

he dynamical equations in Eqs. (1) –(8) . For the moment let us 

ssume that u and r do not have any time dependence. We 

lso assume that U a (0) = 0 , U p (0) = 0 , D a (0) = 0 , D p (0) = 0 and
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Fig. 3. (left) Number of new cases per day for different countries. (right) Number of new cases normalized by the total population, with the time axis shifted so that every 

country starts with the same normalized value. Data from [29] 
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(0) ≈ N. Then solving Eq. (1) , we get 

 = Ne −
∫ ∞ 

0 dt [ ̃ βa I a ( t ) + ̃ βp I p ( t ) ] /N , (23) 

here ˜ βa and 

˜ βp are given after Eq. (13) . Adding Eqs. (5) and 

6) and then multiplying both sides by ˜ βa / ̃  γa we get 
˜ βa 
˜ γa 

dR a 
dt 

= 

˜ βa I a 

here R a = U a + D a . Similarly, we also get 
˜ βp 

˜ γp 

dR p 
dt 

= 

˜ βp I p where

 p = U p + D p . Plugging these two equations into Eq. (23) then

ives 

¯
 = Ne −[( ̃ βa / ̃ γa ) ̄R a /N+( ̃ βp / ̃ γp ) ̄R p /N] . (24) 

ext we note that (d /d t)(I a + R a ) = ασE and (d /d t)(I p + R p ) =
1 − α) σE. Hence, for the initial condition I a = I p = R a = R p = 0 ,

e find that the ratio [ I a (t) + R a (t)] / [ I p (t) + R p (t)] = α/ (1 − α) at

ll times. Since at large times I a,p → 0 , this means that the asymp-

otic values of R a and R p are given by 

 ̄a = αR̄ , and R̄ p = (1 − α) ̄R . (25) 

sing this in Eq. (24) , noting that S̄ + R̄ = N and defining x̄ = R̄ /N,

e then get the following simple equation that determines the 

symptotic total affected population: 

 − x̄ = e −R 0 ̄x , (26) 

here R 0 = α
˜ βa 
˜ γa 

+ (1 − α) 
˜ βp 

˜ γp 
is the reproductive number as stated 

arlier. We note that Eq. (26) has a non-zero solution only when 

 0 > 1 . In Fig. 4 we show the dependence of x̄ on R 0 , obtained

rom a numerical solution of Eq. (26) . For the simple SIR model 

he result of Eq. (26) is well known [25] , here we show that this is

alid for an extended model as well generally. This computation of 

he asymptotic population can be straightforwardly extended to a 

ore general model where one can have arbitrary number of com- 

artments for the infected and recovered populations. 

The asymptotic population of all four compartments within R 

re thus given by 

R̄ a = αR̄ , R̄ p = ( 1 − α) ̄R 

¯
 a = α

γa 

γa + rνa 
R̄ , D̄ a = ( 1 − α) 

rνa 

γa + rνa 
R̄ , 

¯
 p = α

γp 

γp + rνp 
R̄ , D̄ p = ( 1 − α) 

rνp 

γp + rνp 
R̄ . (27) 

.3. Peak infections and the time to reach the peak 

The peak infection numbers and the time at which the peak 

ccurs are two important quantities that one would like to know 

uring a pandemic. Here we provide heuristic analytic formulas for 
5 
hese, which are derived after making some simple physical as- 

umptions. 

We start with the evolution equations for the infected popula- 

ions, given by: 

dI a 

dt 
= ασE − ˜ γa I a , 

dI p 

dt 
= ( 1 − α) σE − ˜ γp I p . (28) 

et us assume that in comparison to the time scale of the pan- 

emic, E, I a and I p all peak at roughly the same time say t m 

, and

et us indicate by E (m ) , I (m ) 
a , I (m ) 

p the respective peak values. We 

hen obtain 

˜ γa I 
( m ) 
a = ασE ( m ) 

˜ p I 
( m ) 
p = ( 1 − α) σE ( m ) . (29) 

efining I (m ) = I (m ) 
a + I (m ) 

p , Eq. (29) gives 

 

(m ) = 

γe 

σ
I (m ) , (30) 

here γe = [ α ˜ γ −1 
a + (1 − α) ̃  γ −1 

p ] −1 (31) 

s an effective recovery rate. Substituting this in Eq. (29) yields 

 

( m ) 
a = α

γe 

˜ γa 
I ( m ) , 

 

( m ) 
p = ( 1 − α) 

γe 

˜ γp 
I ( m ) . (32) 

et us further assume that Eq. (32) is valid in general (for all time) 

nd not just at the peak. Then, after defining I = I a + I p , we have 

 a = α
γe 

˜ γa 
I, I p = (1 − α) 

γe 

˜ γp 
I. (33) 

ubstituting Eq. (33) in the model Eqs. (1) –(8) , and defining R = 

 a + D a + U p + D p , we obtain the standard SEIR equations, 

dS 

dt 
= −βe I 

N 

S, (34) 

dE 

dt 
= 

βe I 

N 

S − σE, (35) 

dI 

dt 
= σE − γe I, (36) 

dR = γe I, (37) 

dt 



A. Das, A. Dhar, S. Goyal et al. Chaos, Solitons and Fractals 144 (2021) 110595 

Fig. 4. (left) Plot of the asymptotic total affected population fraction, R̄ /N, as a function of the reproductive number R 0 . The parameters used are 

βa = 0 . 33 , βp = 0 . 5 , σ = 0 . 33 , γa = 0 . 125 , γp = 0 . 083 , r = 0 . 0 and u = 1 . 0 . We also plot the quantity (I (m ) /N)(σ + γe ) /σ, obtained numerically from many different parame- 

ter sets, and compare it with the theoretical predicted curve 1 − (1 + ln R 0 ) /R 0 (green line). (right) Verification of the ln (N) dependence of t (m ) in Eq. (40) for different 

choices of R 0 . The slopes of the straight lines compares well with μ−1 as stated in Eq. (40) . The parameters used which correspond to Eqs. (34) –(37) are σ = 1 / 3 , γe = 0 . 1 

for all values of R 0 and β = R 0 γe . The dominant eigenvalue μ are computed using the linearised version of Eqs. (34) –(37) and slopes are obtained from the data. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Comparison of values of I a , I p , I obtained from direct numerics with those 

from the approximate assumed forms, I th a , I 
th 
p from Eq. (33) ( I taken from the nu- 

merics). We also plot the predicted peak value of I (m ) . The parameters in the numer- 

ics were taken as N = 10 7 , α = 0 . 67 , βa = 0 . 333 , βp = 0 . 5 , γa = 1 / 8 , γp = 1 / 12 , σ = 

1 / 3 , νa = 1 / 3 , νp = 1 / 2 , u = 1 , r = 0 . 5 , which gives R 0 = 1 . 26 , μ = 0 . 039 . We see in 

this case the assumption is valid to a high degree of accuracy. 
ere, γe is given by Eq. (31) and βe = R 0 γe where the reproductive 

umber R 0 is given by Eq. (14) . Assuming the initial conditions: 

(0) ≈ N, R (0) = 0 , we can solve Eqs. (34) and (37) to get: 

 = Ne −R 0 R/N . (38) 

t the peak, our assumption of d E/d t = 0 gives from Eq. (35) ,

 

(m ) /N = σE (m ) / (βe I 
(m ) ) = γe /βe = R −1 

0 
[using Eq. (30) ]. The peak

alue R (m ) is then given from Eq. (38) by R (m ) /N = R −1 
0 

ln (R 0 ) . Fi-

ally, using Eq. (30) and the fact that S/N + E/N + I/N + R/N = 1

ives 

 

(m ) = 

σ

γe + σ

(
1 − 1 + log R 0 

R 0 

)
N. (39) 

or somewhat simpler models it is possible to obtain an analytical 

stimate of the peak size [16] and for the time, t (m ) , required to

each the infection peak [26] . In our case we estimate t (m ) by not-

ng that the linearized dynamics is approximately valid (see pre- 

ious section) up to the time I(t) reaches its peak I (m ) . Hence we

rite I (m ) = I 0 e 
μ(t (m ) −t 0 ) , where I 0 = I(t = t 0 ) is the infection num-

er at some early time (but already in the exponentially growing 

egime). Hence we get 

 

(m ) − t 0 = 

ln [ I (m ) /I 0 ] 

μ
∼ ln (N/c) 

μ
, (40) 

ith I (m ) given by Eq. (39) and c is a constant that depends on 

nitial conditions and model parameters. 

In Fig. 4 , we provide a numerical verification of the results in 

qs. (39) and (40) by solving the extended SEIR equations numer- 

cally. One of the main assumptions required for the proof is the 

alidity of Eq. (33) . In Fig. (5 ) we check this assumption in a nu-

erical example with a particular parameter set. 

. Interventions: social distancing and testing-quarantining 

We next consider the effect of different intervetion strategies 

hich are incorporated into the extended SEIR dynamical Eqs. (1) –

8) , through the parameters u and r which we will now make time- 

ependent. We discuss here the choices of the intervention func- 

ions u and r. Note that u is a dimensionless number quantifying 

he level of social contacts, while r is a rate which, as we will see, 

s closely related to the testing rate. 
6 
Social distancing (SD) : We multiply the constant factors βa,p 

y the time dependent function, u (t) , the “lockdown” function that 

ncorporates the effect of social distancing, i.e reducing contacts 

etween people. A reasonable form is one where u (t) has the con- 

tant value (= 1) before the beginning of any interventions, and 

hen from time t on it changes to a value 0 < u l < 1 , over a charac-

eristic time scale ∼ t w 

. Thus we take a form 

 ( t ) = 1 t < t on , 

= u l + ( 1 − u l ) e 
−( t−t on ) /t w , t > t on . (41) 

he number u l indicates the lowering of social contacts. 

Testing-quarantining (TQ) : We expect that testing and quar- 

ntining will take out individuals from the infectious population 

nd this is captured by the terms rνa I a and rνp I p in the dynamical 

quations. A reasonable choice for the TQ function is perhaps to 

ake 

 ( t ) = 0 t < t ′ on , 

= r l − r l e 
−( t −t ′ on ) /t ′ w , t > t ′ on . (42) 
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Fig. 6. Data of number of tests per day per thousand in several countries on a log-scale. Data from [20] . 
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here one needs a final rate r l > 0 . In general the time at which

he TQ begins to be implemented t ′ on and the time required for it 

o be effective t ′ w 

could be different from those used for SD. 

A useful quantity to characterize the system with interventions 

s the time-dependent effective reproductive number given by 

 

eff 
0 (t) = α

u (t) βa 

γa + r(t) νa 
+ (1 − α) 

u (t) βp 

γp + r(t) νp 
. (43) 

t long times this goes to the targeted reproduction number 

 

target 
0 

= R 

eff 
0 (t → ∞ ) = α

u l βa 

γa + r l νa 
+ (1 − α) 

u l βp 

γp + r l νp 
. (44) 

he time scale for the intervention target to be achieved is given 

y t w 

and t ′ w 

. 

Relation of the TQ function r(t) to the number of tests done 

er day : Let us suppose that the number of tests per person per

ay is given by T r . We show in Fig. 6 the data for the number of

ests per 10 0 0 people per day across a set of countries and see

hat this is around 0.05 for India which means that T r = 0 . 0 0 0 05 . If

ests are done completely randomly, then the number of detected 

eople (assuming that the tests are perfect) would be T r × I and 

o it is clear that we can identify r(t) = T r (t) . It is then clear that

his would have no effect on the pandemic control. To have any 

ffect we would need r � γp ≈ 0 . 1 which means around 100 tests

er 10 0 0 people per day which is clearly not practical. 

However, a better strategy is to do focused tests on the contacts 

f all those who have been detected on a given day. We now give

n estimate of the rate r if we followed this strategy. For simplicity 

f presentation of our argument we here assume νa = νp = 1 and 

a = γp . From our extended SEIR model the number of detected 

ases per day is given by F (t) = r νa I a + (r νp + γp ) I p = r I + γp I p .

n the growing phase we have, from Eq. (19) , that I a = αI and

 p = (1 − α) I. Hence we get F (t) = ˆ γ I with ˆ γ = r + (1 − α) γp . The

otal number of contacts of the I = F (t) / ̂  γ individuals would be

F (t) / ̂  γ , where A is the mean number of contacts of a single in-

ected person. If we perform T tests per day on this pool , then the

ate of detections will be given by 

 = 

T ˆ γ

AF (t) 
(45) 
c

7 
enoting c = T / (AF ) and noting that ˆ γ = r + (1 − α) γp , we self-

onsistently solve the above equation to find 

 = 

c(1 − α) γp 

1 − c 
. (46) 

ow it is clear that unless r and γa = γp are of the same order, TQ 

ill not have much effect on the dynamics and the change in R 0 
ill be small. Setting r � γp then gives us the condition 

 � 

AF (t) 

2 − α
. (47) 

ote that in our model we identify r(t) as our control rate func- 

ion that changes from the value 0 to a value r l ≈ γp over the 

ime scales of a week or so. This means that we would need to 

hange the testing rate in a controlled way such that the condition 

 (t) ∼ AF (t) is maintained. Thus the number of tests/per day has 

o be proportional to number of new detections/per day and in fact 

he ratio T /F has to be larger than the average number of contacts, 

, that each infectious person makes. The number A is expected to 

epend on the population density and also how well SD is being 

mplemented. The table in Fig. 7 shows data for the ratio T (t) /F (t)

or a set of countries and also how this ratio has evolved over time. 

hile the value of T (t) /F (t) ≈ 25 (around May 15) for India ap-

ears to be large, it may not be sufficient given that the population 

ensities are much larger than in many other countries and imple- 

entation of SD may be less effective. If we assume 20 contacts 

 day and the number of days before isolation of the individual 

o be 5 we get the rough estimate of A ≈ 100 and then the ratio

 /F thus has to be at least ≈ 100 . This is the minimum value of

esting-to-detected ratio that has to be targeted at localities with 

igh infection rates. The details of the arguments presented here 

re largely independent of the specifics of the particular SEIR model 

hat we study . 

.1. Comparision of intervention strategies 

The model details are given in Section 1 . We recall that at any 

iven time the total infectious population size is I = I a + I p , the

umulative affected population (recovered, in hospital or dead) is 
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Fig. 7. Data from different countries on the number of tests per detected case T (t ) /F (t ) for 10 countries (left) on the dates April 8 (colored bar), May 9 (black bar) and 

(right) the change over time of this ratio. Data from [20] 

R  

D  

r

i

R

W

s

p

R

e

(

t

w

a

t

0  

F

1  

f

s

fi

c

n

p

l

q

q

t

e

a

E  

a  

a

c

i

3

w

b

a

t

μ
t

 

s  

(  

i  

a

f  

μ  

m

F

 

 

mented early and as strongly as possible. 
 = U a + D a + U p + D p , the reported total confirmed cases is C =
 a + D p + U p , and the reported new daily cases is F = dC / dt =
νa I a + (γp + rνp ) I p . 

A useful quantity to characterize the system with interventions 

s the targeted reproduction number [see Eqs. (43) and (44) ] 

 

target 
0 

= 

αu l βa 

γa + r l νa 
+ 

(1 − α) u l βp 

γp + r l νp 
. (48) 

e classify intervention strategies by the targeted R 
target 
0 

value. A 

trong intervention is one where R 
target 
0 

< 1 and will achieve sup- 

ression of the disease while a weak intervention is one with 

 

target 
0 

� 1 and will only mitigate the effects of the disease. 

Other than R 0 , an important quantity to characterize the dis- 

ase growth is the largest eigenvalue μ of the linearized dynamics 

see Section 2.1 ). In the early phase of the pandemic, all popula- 

ions other than S grow exponentially with time as ∼ e μt . As we 

ill see, for the case of strong intervention, μ becomes negative 

nd gives the exponential decay rate of the disease. 

In our numerical study we choose, for the purpose of illus- 

ration, the following parameter set: α = 0 . 67 and the rates βa = 

 . 333 , βp = 0 . 5 , σ = 1 / 3 , γa = 1 / 8 , γp = 1 / 12 all in units of day −1 .

or the specified choice of parameter values (free case with u = 

 . 0 , r = 0 . 0 ) we get μ = 0 . 158 which is close to the value observed

or the early time data for confirmed cases in India. The corre- 

ponding free value of R 0 is 3.7665. Note that μ is not uniquely 

xed by R 0 (and vice versa) and different choices of parameters 

an give the same observed μ but different values of R 0 
Choosing these typical parameter values for COVID-19, we 

ow compare the efficacy of strong and weak interventions im- 

lemented in four different ways: (1) 6WLD-NTQ: Six weeks 

ockdown (strong value of SD parameter) and no testing- 

uarantining, (2) ELD-NTQ: Extended lockdown and no testing- 

uarantining,(3)NSD-ETQ: No social distancing and extended 

esting-quarantining, (4) ESD-ETQ: Extended social distancing and 

xtended testing-quarantining. The case with no social distancing 

nd no testing-quarantining is indicated as NSD-NTQ. 

We work with a population N = 10 7 and initial conditions 

(0) = 100 , I a (0) = I p (0) = U a (0) = D a (0) = U p (0) = D p (0) = 0

nd S(0) = N − E − I a − I p − U a − D a − U p − D p . In all cases, we will

ssume that intervention strategies are switched on when the 

onfirmed number of cases reaches 50 and after that the full 

ntervention values are attained over a time scale of 5 days. 

.1.1. Strong intervention ( R 
target 
0 

< 1 ) 

In this case, the exponential growth stops around the time 

hen R eff 
0 

(t) crosses the value 1. After this time, the infection num- 

ers will start decaying exponentially. Since the infection numbers 
8 
re still small compared to the total population, one can work with 

he linearized theory and the magnitude of the largest eigenvalue 

(now negative) determines the exponential decay rate. For illus- 

rating this case, we take: 

Parameter set I [ R 
target 
0 

= 0 . 667 ] — We choose three SD and TQ

trengths as (i) SD: u l = 0 . 177 , r l = 0 , (ii) TQ: u l = 1 , r l = 1 . 2 and

iii) SD-TQ: u l = 0 . 461 , r l = 0 . 4 . This choice corresponds to chang-

ng the free value of R 0 = 3 . 766 to a target value R 
target 
0 

= 0 . 667 , for

ll the three different strategies. The largest eigenvalue μ changes 

rom the free value μ = 0 . 158 to the values (i) μ = −0 . 027 , (ii)

= −0 . 077 (iii) μ = −0 . 0546 respectively. The results of the nu-

erical solution of the extended SEIR equations are presented 

ig. 8 (a) and (b). 

Main observations : 

1. A six week (or eight week) lockdown is insufficient to end the 

pandemic and will lead to a second wave. If the interventions 

are carried on indefinitely, the pandemic is suppressed and only 

affects a very small fraction of the population (less than 0 . 1% ). 

We can understand all features of the dynamics from the lin- 

ear theory. In Fig. 8 (a,b), intervention is switched on after ≈ 2 

weeks and the peak in infections appears roughly after a period 

of 5 days. Thereafter however, the decay in the number of in- 

fections occurs slowly, the decay rate being given by the largest 

eigenvalue μ (now negative and smaller in magnitude than μ
in the growth phase). 

2. We find that for the same target R 
target 
0 

< 1 , different intervention 

schemes (ELD-NTQ, NSD-ETQ, or ESD-ETQ) can give very differ- 

ent values of the decay rate μ and, in general we find that TQ is 

more effective than SD . We see that ELD-NTQ ends the pandemic 

in about 10 months while NSD-ETQ would take around 3.5 

months. This can be understood from the fact that the corre- 

sponding μ values (post-intervention) are given by μ = −0 . 027 

and μ = −0 . 077 respectively, i.e, they differ by a factor of about 

3. With a mixed strategy where one allows almost three times 

more social contacts ( u l = 0 . 431 ) than for LD case and that re-

quires three times less testing ( r l = 0 . 4 ) than for TQ case, we

see that the disease is controlled in about 5 months. Hence this 

appears to be the most practical and effective strategy. 

3. The expected time for the pandemic to die would be roughly 

given by 

t end ∼
ln ( Peak infection number ) 

| μpost −intervention | , (49) 

and so it is important that intervention schemes are imple- 
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Fig. 8. Parameter set I [ R target 
0 

= 0 . 667 ] : (a) Total number of infected cases I = I a + I p for different intervention strategies. The solid and dashed black lines indicate the peak 

infected cases I (m ) as given by Eq. (39) and the corresponding value of I (m ) 
p . (b) Total number of confirmed cases C = U p + D a + D p . The dashed lines indicate the total affected 

population R = C + U a at the end of one year, for the different strategies. In the absence of interventions this is close to 96% and is given by Eq. (26) . The total population 

was taken as N = 10 7 . Parameter set II [ R target 
0 

= 1 . 205 ] : (c) Total number of infected cases I = I a + I p for different intervention strategies. (d) Total number of confirmed 

cases C = U p + D a + D p . The dashed lines indicate the total affected population R = C + U a at the end of one year, for the different strategies. Total population was taken as 

N = 10 7 . 
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.1.2. Weak intervention ( R 
target 
0 

� 1 ) 

In this case, a finite fraction of the population is eventually af- 

ected, but the intervention succeeds in reducing this from its orig- 

nal free value and in delaying considerably the date at which the 

nfections peak. We take the following parameter set for this study: 

Parameter set II [ R 
target 
0 

= 1 . 205 ] — we choose three SD and TQ

trengths as (i) SD: u l = 0 . 32 , r l = 0 , (ii) TQ: u l = 1 , r l = 0 . 536 and

iii) SD-TQ: u l = 0 . 634 , r l = 0 . 24 . This choice corresponds to chang-

ng the free value of R 0 = 3 . 766 to a fixed target value R 
target 
0 

=
 . 205 for all the three different strategies. The largest eigenvalue 

remains positive and changes from the free value μ = 0 . 158 to 

he values (i) μ = 0 . 0152 , (ii) μ = 0 . 032 (iii) μ = 0 . 0248 respec-

ively. The results of the numerical solution of the extended SEIR 

quations are presented Fig. 8 (c) and (d). 

Main observations : 

1. We find that in this case the peak infections, peak infection 

time and the final affected population can be obtained from 

the analytic expressions given by Eqs. (26) , (39) and (40) in 

terms of the basic disease parameters, using their values af- 

ter interventions are introduced. We assume that the interven- 

tion parameters change from the values u = 0 , r = 0 to their full

strength u = u l , r = r l over a short time scale and thereafter re-

main constant. 

2. We find that the peak infection numbers are smallest for the 

case with ELD-NTQ and they occur at a later stage. These re- 

sults can also be understood mathematically from the expres- 

sions in Eqs. (39) and (40) using the post-intervention values 

of γ and μ (from the linear theory). 
9 
3. We note that while weak interventions can slow down and re- 

duce the impact of the pandemic, they do not lead to develop- 

ment of herd immunity of the population (assuming that all the 

recovered people develop immunity). It is well known that herd 

immunity is attained when a fraction 1 − 1 /R 0 of the popula- 

tion has developed immunity. Thus herd immunity in the above 

example would require that 1 − R −1 
0 

≈ 0 . 74 , i.e 74% of the pop-

ulation be affected, while Eq. (26) with R 
target 
0 

= 1 . 205 predicts 

that only about 31% of the population is affected. 

.2. Observation of strong and weak intervention in COVID-19 data 

In Fig. 9 we give some examples of data for number of new 

ases for nine countries where we see that some of the qualita- 

ive features seen in the model results in Fig. 8 (a,b). In particular 

e see the fast exponential growth phase and then a much slower 

ecay phase for the first six countries which have succeeded in 

ontrolling the disease with various levels of success. On the other 

and we see that India, Brazil and Pakistan continue to show a 

ositive μ and it is clear that intervention schemes need to be 

trengthened. 

. Difficulties in making predictions from the extended SEIR 

odel: case study for India 

In the following we make some heuristic predictions, based on 

he analytic results in Eqs. (26) , (39) and (40) and the present 

bserved data, for daily new cases in India ( N ≈ 1 . 3 × 10 9 ), in

he state of Delhi ( N ≈ 1 . 9 × 10 7 ) and in the city of Mumbai
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Fig. 9. Number of new cases per day for nine different countries. The dashed orange vertical lines in some of the figures denote the day of the implementation of lockdown. 

We note that the first six data sets exhibits the same broad features that we see for the model predictions in Fig. 8 (a,b). In particular we see the fast exponential growth 

and slow exponential decrease in new cases (following strong interventions). The two countries UK and US show a very slow decay rate, indicating that disease suppression 

has barely been achieved. The data for India, Brazil and Pakistan show the behavior corresponding to model predictions in Fig. 8 (c,d) and have only been able to achieve 

mitigation so far ( R target 
0 

> 1 , μ > 0 ). Data from [29] and the end date is June 10. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

(  

a

o

S

c

g  

γ  

2  

[

n  

w  

t

e

μ
s

f

a

t

s

f

w

T  

(

a  

n

o  

f

o

i

t

A  

s

0  

t  

w

T  

T  

D

a

t

1

p

t

p

n

p

n

p

 N ≈ 1 . 3 × 10 7 ). The analysis here is based on the assumption of

 best case scenario where the value of R 
target 
0 

, achieved after vari- 

us intervention schemes is maintained at a constant value. 

Here we assume that intervention has effectively been through 

D, with r << γ being neglected. We consider the following 

hoice of parameter values which appears to be reasonable for 

etting a conservative estimate: σ = 1 / 2 , ˜ βp = β, ˜ βa = 2 β/ 3 , ˜ γp =
p = γ , ˜ γa = γa = 3 γ / 2 , i.e, we assume that asymptomatics are

 / 3 rd less infectious and recover 3 / 2 times faster. This gives us

using Eq. (31) ] γe = γ / (1 − α/ 3) and the effective reproductive 

umber as R 
target 
0 

= (1 − 5 α/ 9) β/γ . From this last relation we can

rite β = γ R 
target 
0 

/ (1 − 5 α/ 9) . Plugging this into the equation for

he eigenvalues, Eq. (13) , and replacing λ by the observed mean 

xponential growth rate (we choose the values of μ = 0 . 05 and 

= 0 . 035 which are representative of the values observed in India 

ince around April 10), we see that we basically get an equation 

or R 
target 
0 

in terms of α, σ, γ and μ. For specific choices of α, σ
nd γ , the observed values of μ before and after intervention will 

hen give us the corresponding values of R 0 . 

For our analysis we need to know the total infections I(0) on 

ome day (we take this as April 11) and we estimate it in the 

ollowing way. Suppose that the daily observed cases on this day 

as F p (0) (assuming that only the symptomatics are detected). 

hen we have I p (0) = F p (0) /γp . From Eq. (32) we have I (m ) 
p =

1 − α) γe I 
(m ) /γp and so the time to the peak can be estimated 

s t (m ) = μ−1 ln [ I (m ) 
p /I p (0)] . We use Eq. (39) to compute the peak
a  

10 
umber of infections I (m ) and the peak daily cases (PDC) is then 

btained as PDC = F (m ) 
p = γp I 

(m ) 
p = (1 − α) × γe × I (m ) . The total af-

ected population fraction x̄ , can be computed from Eq. (26) , using 

nly the knowledge of R 
target 
0 

. If we assume the number of deaths 

s 1% of all symptomatic cases this gives us an estimate for the 

otal number of deaths as N ̄x (1 − α) / 100 . 

The observed daily new cases in India, Delhi and Mumbai on 

pril 10 were around F p (0) ≈ 900 , F p (0) ≈ 115 and F p (0) ≈ 195 re-

pectively [30] . For a range of choice of the parameters with σ = 

 . 5 , 0 . 4 , γ = 0 . 2 , 0 . 143 and of α = 0 . 67 , 0 . 9 , and two representa-

ive values of the post-intervention growth rates, μ = 0 . 05 , 0 . 035 ,

e compute the corresponding values obtained for R 0 and R 
target 
0 

. 

hese and the estimates for PDC = F (m ) 
p , t (m ) and x̄ are given in

ables 1–3 for μ = 0 . 05 and in Tables 4–6 for μ = 0 . 035 , for India,

elhi and Mumbai. Note that while the peak numbers and total 

ffected population and deaths simply scale with population size, 

he time to peak depends on the daily detected numbers on April 

0, and this leads to the observed differences in the time to the 

eak for the three cases. We also note here that changing the ini- 

ial conditions by about 10% causes a change of few days in the 

eak time while the other quantities remain unchanged. The full 

umerical solution in Fig. 10 also shows that the complete sup- 

ression of the disease takes more than 6 months after the peak. 

In Fig. 10 we show results of a numerical solution of the dy- 

amical equations in presence of intervention (SD) for one of the 

arameter sets in Table 3 and find excellent agreement with our 

nalytic formula in Eqs. (26) , (31) and (39) . We see that the pre-



A. Das, A. Dhar, S. Goyal et al. Chaos, Solitons and Fractals 144 (2021) 110595 

Table 1 

Growth rate μ = 0 . 05 : Predictions for India with different choices of parameter values. 

σ γ α R 0 (free) R target 
0 

Peak daily cases (PDC) Time of peak Total affected Total deaths 

0.5 0.2 0.67 2.28 1.33 2,456,630 158 (2nd week September) 45% 1,936,000 

0.5 0.2 0.9 2.16 1.3 686,770 132 (3rd week August) 42% 550,700 

0.4 0.143 0.67 2.82 1.45 2,956,600 161 (3rd week September) 55% 2,363,700 

0.4 0.143 0.9 2.65 1.41 832,890. 136 (4th week August) 52% 676,140 

Table 2 

Growth rate μ = 0 . 05 : Predictions for Delhi with different choices of the asymptomatic fraction α. 

σ γ α R 0 (free) R target 
0 

Peak daily cases (PDC) Time of peak Total affected Total deaths 

0.5 0.2 0.67 2.28 1.33 35,904 114 (1st week August) 45% 28,296 

0.5 0.2 0.9 2.16 1.3 10,037 89 (2nd week July) 42.3% 8048 

0.4 0.143 0.67 2.82 1.45 43,212 118 (2nd week August) 55% 34,546 

0.4 0.143 0.9 2.65 1.41 12,173 93 (2nd week July) 52% 9882 

Table 3 

Growth rate μ = 0 . 05 : Predictions for Mumbai with different choices of the asymptomatic fraction α. 

σ γ α R 0 (free) R target 
0 

Peak daily cases (PDC) Time of peak Total affected Total deaths 

0.5 0.2 0.67 2.28 1.33 24,566 97 (3rd week July) 45% 19,360 

0.5 0.2 0.9 2.16 1.3 6867 71 (4th week June) 42.5% 5507 

0.4 0.143 0.67 2.82 1.45 29,566 100 (3rd week July) 55% 23,637 

0.4 0.143 0.9 2.65 1.41 8328 75 (4th week June) 52% 6761 

Table 4 

Growth rate μ = 0 . 035 : Growth rate μ = 0 . 035 : Predictions for India with different choices of parameter values. 

σ γ α R 0 (free) R target 
0 

Peak daily cases (PDC) Time of peak Total affected Total deaths 

0.5 0.2 0.67 2.28 1.23 1,331,400 208 (1st week November) 34.5% 1,482,000 

0.5 0.2 0.9 2.16 1.207 368,809 172 (1st week October) 32% 418,500 

0.4 0.143 0.67 2.82 1.31 1,651,200 214 (1st week November) 43% 1,856,300 

0.4 0.143 0.9 2.65 1.28 459,776 178 (1st week October) 40.5% 526,222 

Table 5 

Growth rate μ = 0 . 035 : Predictions for Delhi with different choices of the asymptomatic fraction α. 

σ γ α R 0 (free) R target 
0 

Peak daily cases (PDC) Time of peak Total affected Total deaths 

0.5 0.2 0.67 2.28 1.227 19,458 146 (1st week September) 34.5% 21,661 

0.5 0.2 0.9 2.16 1.207 5390 109 (4th week July) 32% 6117 

0.4 0.143 0.67 2.82 1.31 24,132 152 (1st week September) 43% 27,131 

0.4 0.143 0.9 2.65 1.28 6719 116 (1st week August) 40.5% 7691 

Table 6 

Growth rate μ = 0 . 035 : Predictions for Mumbai with different choices of the asymptomatic fraction α. 

σ γ α R 0 (free) R target 
0 

Peak daily cases (PDC) Time of peak Total affected Total deaths 

0.5 0.2 0.67 2.28 1.23 13,316 120 (1st week August) 34.5% 14,821 

0.5 0.2 0.9 2.16 1.21 3688 84 (1st week July) 32% 4185 

0.4 0.143 0.67 2.82 1.31 16,512 126 (2nd week August) 43% 18,563 

0.4 0.143 0.9 2.65 1.28 4597 90 (2nd week July) 40.5% 5262 
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icted peak time is off by about 10% . The numerics also shows that 

he complete suppression of the disease takes more than 6 months 

fter the peak. 

We point out that the mixed-population assumption of the SEIR 

odel is expected to be more accurate for a smaller population 

nd so the estimates for Delhi and Mumbai would be more reliable 

han the one for India. For a big and highly in-homogeneous coun- 

ry like India, smaller regions (states or cities) would have differ- 

nt values of μ and R 0 and also different initial conditions, hence 

he global values would not capture the local dynamics correctly. 

t is likely that the numbers in Table 1 are an over-estimate of the

rue future trajectory. For the state of Delhi and the city of Mumbai 
d

11 
hese would be more accurate, however we see that the uncertainty 

n the true value of α and other parameters leads to a huge uncer- 

ainty in the predictions . 

. Discussion 

Several earlier work have discussed, using determinsitic com- 

artmentalized models, the effect of asymptomatic affected popu- 

ation and the effect of intervention measures on the COVID pan- 

emic [7–18] . Here we present a somewhat different choice of 

ompartments and perform a careful quantitative comparison of 

ifferent intervention strategies. A distinction from earlier studies 
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Fig. 10. Plot of the new daily cases ( γp I p ) and total affected population fraction ( R ), 

as a function number of months for one of the parameter sets in Table 3 for the 

city of Mumbai. Parameter values were σ = 0 . 5 , ̃  γp = 0 . 2 , α = 0 . 9 , R 0 = 2 . 16 before 

intervention and R target 
0 

= 1 . 3 . The dashed lines give the analytic predictions for the 

peak daily cases (black line) and the final affected population (green line), and show 

the good agreement with the numerics. The arrows indicate the date when initial 

condition was specified γp I p (0) = 195 and the peak infection date, which occurs 

about 15 days after the date predicted from Eq. (40) . (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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s that we present a number of analytic results which we believe 

ill be useful beyond their immediate application to epidemiolog- 

cal modeling, in more general studies of population dynamics. 

To summarize our findings, a modified version of the SEIR 

odel, incorporating asymptomatic individuals, was analyzed in 

etail. We have obtained a number of analytical results for the 

ull nonlinear model which can be useful in making empirical esti- 

ates of various important quantities that provide information on 

isease progression. We believe that the derivation of these results 

an be extended to more sophisticated SIR type models including 

ore compartments and more complex interactions. From the lin- 

arized dynamics we point out a simple but important property, 

amely that at early times the motion of the system quickly set- 

les along the direction of the dominant eigenvector. This allows 

ne to determine accurately initial conditions from sparse data. We 

rovided numerical examples to illustrate these ideas and in ad- 

ition have provided comparisons with real COVID-19 data. Look- 

ng at COVID-19 data in several countries, we find that the ex- 

ended SEIR model captures some important qualitative features 

nd hence could provide guidance in policy-making 

We used the extended SEIR model for analyzing the effective- 

ess of different intervention protocols in controlling the growth 

f the COVID-19 pandemic. Non-clinical interventions can be either 

hrough social distancing or testing-quarantining. Our results indi- 

ate that a combination of both, implemented over an extended 

eriod may be the most effective and practical strategy. We have 

ttempted to relate real testing rates to the parameters of the 

odel and comment on what the minimum testing rates should 

e in order for testing-quarantining to be an effective control 

trategy. 

Finally we have used our analytic formulas to make predictions 

or disease peak numbers and expected time to peak for India, 

he state of Delhi and the city of Mumbai, pointing out that these 

redictions would be highly unreliable for India (due to big inho- 

ogeneity in disease progression across the country) and perhaps 

ore reliable for the cases of Delhi and Mumbai. Our main conclu- 

ion here is that the lack of precise knowledge of the disease pa- 

ameters (e.g the fraction of asymptomatic carriers) and changing 

ontrol strategies lead to rather large uncertainties in the predic- 

ions. Nevertheless, we believe that they could perhaps be used to 

btain reasonable bounds. 
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