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ABSTRACT

The Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological model is one of the standard models
of disease spreading. Here we analyse an extended SEIR model that accounts for asymptomatic carriers,
believed to play an important role in COVID-19 transmission. For this model we derive a number of
analytic results for important quantities such as the peak number of infections, the time taken to reach
the peak and the size of the final affected population. We also propose an accurate way of specifying
initial conditions for the numerics (from insufficient data) using the fact that the early time exponential
growth is well-described by the dominant eigenvector of the linearized equations. Secondly we explore
the effect of different intervention strategies such as social distancing (SD) and testing-quarantining (TQ).
The two intervention strategies (SD and TQ) try to reduce the disease reproductive number, Ry, to a
target value R;"* < 1, but in distinct ways, which we implement in our model equations. We find that
for the same RY"™*" < 1, TQ is more efficient in controlling the pandemic than SD. However, for TQ to be
effective, it has to be based on contact tracing and our study quantifies the required ratio of tests-per-
day to the number of new cases-per-day. Our analysis shows that the largest eigenvalue of the linearised
dynamics provides a simple understanding of the disease progression, both pre- and post- intervention,
and explains observed data for many countries. We apply our results to the COVID data for India to obtain
heuristic projections for the course of the pandemic, and note that the predictions strongly depend on

the assumed fraction of asymptomatic carriers.

© 2020 Elsevier Ltd. All rights reserved.

The COVID-19 pandemic, that started in Wuhan (China) around
December 2019 [1,2], has now affected almost every country in
the world. The total number of confirmed cases on July 30, 2020
were close to 17.5 million with close to 686,000 deaths [3]. One
of the serious concerns presently is that there is as yet no clear
picture or consensus on the future evolution of the pandemic. It is
also not clear as to what is the ideal intervention strategy that a
government should implement, while also taking into account the
economic and social factors. The role of mathematical models has
been to provide guidance for policy makers [4-18].

One of the standard epidemiological model is the SEIR model
[19] which has four compartments of Susceptible (S), Exposed (E),
Infected (I) and Recovered (R) individuals with S+ E+I+R=N
being the total population of a region (the model can be applied
at the level of a country or a state or a city and is expected to
work better for well-mixed populations). The SEIR model is pa-
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rameterized by the three parameters 8, o and y that specify the
rates of transitions from S — E, E — I and I — R respectively. In
terms of the data that is typically measured and reported, R cor-
responds to the total number of cases till the present date, while
yI would be the number of new cases per day. The number of
deaths across different countries is some fraction (=~ 1 — 10%) of
R [20] while the number of hospital beds required at any time
would be =~ new cases per day x typical days to recovery. An im-
portant parameter characterizing the disease growth is the repro-
ductive number Ry [21,22] — when this has a value greater than 1,
the disease grows exponentially. Typical values reported in the lit-
erature for COVID-19 are in the range Ry = 2 — 7 [23]. For the SEIR
model one has Ry = /y [22].

The two main intervention schemes for controlling the pan-
demic are social distancing (SD) and testing-quarantining (TQ).
Lockdowns (LD) impose social distancing and effectively reduce
contacts between the susceptible and infected populations, while
testing-quarantining means that there is an extra channel to re-
move people from the infectious population. These two interven-
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tion schemes have to be incorporated in the model in distinctive
ways [7,8] — SD effectively changes the infectivity parameter S
while TQ changes the parameter y. Intervention schemes attempt
to reduce Ry to a value less than 1. In the context of the SEIR
model with Ry = B/y, it is clear that we can reduce it by either
decreasing B or by increasing y. In this work we point out that
for the same reduction in Ry value, the effect on disease progres-
sion can be quite different for the two intervention strategies.

Here we analyze an extended version of the SEIR model which
incorporates the fact that asymptomatic or mildly symptomatic in-
dividuals [7-9,24] are believed to play a significant role in the
transmission of COVID-19. Our extended model considers eight
compartments of Susceptible (S), Exposed (E), asymptomatic In-
fected (Iy), presymptomatic Infected (Ip), and a further four com-
partments (Ug, Dg, Up, Dp), two corresponding to each of the two
infectious compartments. These last four classes comprise of indi-
viduals who have either recovered (at home or in a hospital) or
are still under treatment or have died — they do not contribute to
spreading the infection. We do not include separate compartments
for the number of hospitalized and dead since these extra details
would not affect our main conclusions.

For this extended SEIR model we first provide, for the case with
Rp > 1, analytic expressions for peak infection numbers, time to
reach peak values, and asymptotic values of total affected popula-
tions. These would provide useful guidance on disease progression.
The linearized dynamics is accurate when the total affected pop-
ulation is small. We propose an accurate way of specifying initial
conditions for the numerics (from insufficient data) using the fact
that the early time exponential growth is well-described by the
dominant eigenvector of the linearized equations. We next discuss
the performance of two different intervention strategies (namely
SD and TQ) in the disease dynamics and control. The aim of in-
terventions is to reduce the reproductive number from it’s free
value Ry to a target value R;"™ < Ry. We study both the cases,
of strong interventions (R;"®" < 1 aimed at disease suppression,)
and that of weak interventions (Ry"® > 1, aimed at disease miti-
gation). Apart from the reproductive number, R, an important pa-
rameter is the largest eigenvalue of the linear dynamics, which
we denote as p. For RG™ > 1, we have u > 0 and this gives us
the exponential growth rate (doubling time ~ 0.7/u). On the other
hand, for R{"™®* <1, the corresponding s is less than 0 and this
tells us that infections will decrease exponentially. We find that,
for the same reduction of Ri™ to a value less than 1, the corre-
sponding i magnitude can be very different for different interven-
tion schemes. A larger magnitude of u, corresponding to a faster
suppression of the pandemic, is obtained from TQ than that from
SD. An important question for disease control is as to how much
testing is required. In our work we relate the parameters of the
model related to TQ to testing rates and point out that for TQ to
be successful: (a) it has to be based on contact-tracing and (b) it
is necessary that testing numbers are scaled up according to the
number of new detected cases. Finally, we show that many of our
results provide a qualitative understanding of COVID-19 data from
several countries which have either achieved disease suppression
or mitigation.

The rest of the paper is structured as follows. In Section 1 we
define the extended SEIR model. A number of analytic results
for the linearized model as well as the full nonlinear system
are presented in Section 2. In Section 3, we discuss in detail
how intervention strategies such as social distancing and testing-
quarantining can be incorporated into the model, we comment
on how real testing numbers enter the model parameters. We
also present numerical studies comparing different intervention
protocols and make qualitative comparisons of the predictions of
the SEIR model with real data on the COVID-19 pandemic. In
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Section 4 we make some heuristic predictions in the Indian con-
text. We summarize our results in Section 5.

1. Definition of the extended SEIR model

The extended SEIR model studied here is schematically de-
scribed in Fig. 1. It has eight variables (S, E, I, I, Ug, Dq, Up, Dp) and
ten parameters (Bq. Bp. 0. Va. Vp. &, Va, Vp, T, u), of which « repre-
sents the fraction of asymptomatic carriers while u, 1, vq, v are re-
lated to intervention strategies.

We consider a population of size N that is divided into eight
compartments:

1. S = Susceptible individuals.

2. E = Exposed but not yet contagious individuals.

3. I; = Asymptomatic, either develop no symptoms or mild symp-
toms.

4. I, = Presymptomatic, those who would eventually develop
strong symptoms.

5. Us = Undetected asymptomatic individuals who have recovered.

6. Dy = Asymptomatic individuals who are detected because of
directed testing-quarantining, may have mild symptoms, and
would have been placed under home isolation (few in India).

7. Up = Presymptomatic individuals who are detected at a late
stage after they develop serious symptoms and report to hos-
pitals. Here we assume that all individuals who develop signif-
icant symptoms are eventually detected.

8. Dp = Presymptomatic individuals who are detected because of
directed testing-quarantining.

We have the constraint that N=S+E +1Iq + 1y +Ug + Dg +Up +
Dy. A standard dynamics for the population classes is given by the
following set of equations:

ds . u(Balg + ﬂplp)5

T 5 (1)
% = ws —oE (2)
% =a0E — Yy — 1valg (3)
& — (1~ @)0E ~ yply ~ vy (4)
% — ela (5)
d‘ﬁa =14y (6)
% = Vplp (7)
% = rvplp. (8)

The parameters in the above equations correspond to

« «: fraction of asymptomatic carriers.

+ Baq: infectivity of asymptomatic carriers.

- Bp: infectivity of presymptomatic carriers.

« o transition rate from exposed to infectious.
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Fig. 1. A schematic description of the extended SEIR dynamics studied in this work. The parameters Bq, B,. 0, va. ¥p. @ are intrinsic to the disease, u quantifies the degree
of social distancing while v,, v, r are related to intervention arising from testing-quarantining.

Ya: transition rate of asymptomatic carriers to recovery or hos-
pitalization.

yp: transition rate of presymptomatics to recovery or hospital-
ization.

Vg, Vp: detection probabilities of asymptomatic carriers and
symptomatic carriers.

u: intervention factor due to social distancing (time dependence
will be specified later).

r: intervention factor due to testing-quarantining (time depen-
dence to be specified later). This is a rate and depends on
testing-quarantining rates.

With our definitions, the total number of confirmed cases, C,
and the number of daily recorded new cases F would be

dc
C=Dq+Dp+Up, F=— 9)

dt
Note that we include U, because these are people who are not
detected through directed tests but eventually get detected (after
~ 1/yp days) when they get very sick and go to hospitals. On the
other hand the class D, get detected because of directed testing,
even before they get very sick.

In the next section we will discuss the case where the inter-
vention parameters u and r are kept fixed, and present a number
of analytic results. In Section 3 we will discuss the case where u
and r are time-dependent.

=1Vala + (yp + 1vp)Ip.

2. Analytic results for model with constant parameters
2.1. Linear analysis of the dynamical equations

Since at early times S~ N and all the other populations
E,Ig,Ip,Dg,Dp,Uq,Up < N, one can perform a linearization of
the above equations. This tells us about the early time growth
of the pandemic, in particular the exponential growth rate.
Let us define new variables to characterize the linear regime:
X1 :S—N,XZ:E,X3=Ia,X4=Ip,X5=Ua,X5=Da,X7:Up,X8=Dp.
At early times when x; << N, the dynamics is captured by linear
equations
dx

; =MX, with X = (X1,X2,...,Xg),

I (10)

0 0 B« -B, 0 0 0 O
0 —o B B, 0O 0 0 O
0 oo % 0 0 0 0 0
v_|0 G-wo 0 -7 0 0 0 0O (11)
0 0 Ya 0 0 0 0 O
0 0 me 0 0 0 0 O
0 0 0 Yv» 0 0 0 0
0 0 0 rm, 0 0 0 0

where Bq=ufa, Bp=uPp.Va=Ya+TVa ¥p=yp+1rvp. For the
present we ignore the time dependence of the SD factor u and the
TQ factor r. The matrix has 5 zero eigenvalues while the 3 non-
vanishing ones are given by the roots of the following cubic equa-
tion for A:

Bt (Ja+ Pp+0)A?
+[FaPp + 70 + 7p0 — aPac — (1 —a) Bpo |1

+U[)7a)7p_ a _a)lép?a—aléa%] =0. (12)
This can be re-written in the form
Mt Fat Pp+ 02+ [Palp+0 (Fa+ 7p) (1 - Q)1

+0%a¥p(1 —Ro) =0, (13)

where fq = ufa, By = uBp, Ja = Ya+1va, Pp=yp+1vp, Q =B/
a+7p)+ (1 = Ol)ﬂp/();a + 7p), and

B By
0 Ya ( )Vp
L R L (14)
)/a-‘rTVa yp+r\)p

is the expected form for the reproductive number for the disease.
One can intuitively see this as follows. The reproductive num-
ber is the average number of secondary infection from one in-
fected individual at the initial phase of the outbreak. In our model,
an infected individual may either be asymptomatic or presymp-
tomatic with probabilities o or (1 —«) respectively. On average,
While an asymptomatic individual infects B’a/ya number of people,
a presymptomatic carrier infects 5p/)7p number of people. Conse-
quently the expected number of secondary infection from an arbi-
trarily chosen infected individual will be Ry with expression given
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by Eq. (14). Noting the fact that Q < Rq, it follows that the condi-
tion for at least one positive eigenvalue is

Ry > 1. (15)

We denote the largest eigenvalue by w and note that this is
uniquely related to the reproductive number Ry by Eq. (13). At
early times the number of cases detected would grow as ~ e#!. For
Ro ~ 1, we expect that the largest eigenvalue is close to zero and,
after neglecting the A3 and A% terms in Eq. (13), we can read off
the value as

A~ 0(Ro—-1)
T+o(@  +7,H1-Q)

Initial conditions: We discuss here the fact that all initial con-
ditions (which satisfy the condition S(0) ~ N) quickly move along
the direction of the dominant eigenvector and how this provides
us a way to choose the correct initial conditions from the knowl-
edge of one variable (e.g confirmed cases) at an early time. We
denote the right and left eigenvectors corresponding to an eigen-
value Aq by ¢q(i) and xq(i) respectively. The largest eigenvalue is
denoted by p with corresponding right and left eigenvectors ¢, (i)
and xm(i) respectively. The vector X = (X1, X2, X3, X4, X5, Xg, X7, Xg)
can be written as [27]

Xi(t) =Y cq™ 'y (i), (17)
q

(16)

where the coefficients ¢4 are determined by putting t = 0 and then
taking the inner product with the left eigenvector say xq(i). Do-
ing so, we get cq = >; Xq(j)x;(0) which when substituted back in
Eq. (17) gives

Xi(t) = ) da(Dxq())e™x;(0)

i 4q

Y Sm(D) xm (e x;(0),
i

R

P4

Cmm (i)e™, where cm =Y xm(J)x;(0) (18)
i

where the second last line is true at sufficiently large times when
only one eigenvalue @ dominates. This proves that the direction
of the vector X is independent of initial conditions. In particular,
using the explicit form of the dominant eigenvector we find the
following relation in the growing phase of the pandemic:

@) ¢m4) (A—-a)(u+7a)

Let us consider the initial condition X = (—€,0,0,€,0,0,0,0) so
that (noting that y, (1) =0)

Xi(t) ~ €pm (i) xm(4)e"" = aiee’, (20)

where a; = ¢m (i) xm(4). At a sufficiently large time t; (but still in
the very early phase of the pandemic) we equate the observed
confirmed number Cy on some day to xg(t;) + x7(t;) + xg(t;) which
therefore gives us the relation

G
ag+a7+ag'

ettt — 21)

This then tells us that we should start with the following initial
conditions, (now counting time t = 0 from the day of the observa-
tion Gp):

Gm (i)
¢m(6) + dn(7) + dm(8)

The crucial point is that the leading eigenvector fixes the direction of
the growth and then knowledge of linear combination fixes all the

xi(O) = Go. (22)
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Fig. 2. Role of initial conditions: Plot showing I(t), for a fixed population of size
N =107, with 5 very different initial conditions : (1)E(0) = 100,1,(0) = 0,1,(0) =
0, (2)E(0) =10,1,(0) = 0,1,(0) = 0, (3)E(0) = 1000, I,(0) = 0,1,(0) =0, (4) E(0) =
233,14(0) = 100, ,(0) = 75, (5) E(0) = 233,1,(0) = 1000, I,(0) = 75. (Inset) A col-
lapse of all the curves obtained by translating all the trajectories so that they start
with the same value of I.

other coordinates. Thus, independent of initial conditions, the vec-
tor describing all the system variables quickly points along the di-
rection of the eigenvector corresponding to the largest eigenvalue
[15,28]. Hence if we know any one variable (or a linear combina-
tion of all the variables) at sufficiently large times in the growing
phase, then the full vector is completely specified. This leads to an
accurate way of specifying initial conditions for the numerics (from
insufficient data) and will help in reducing the number of fitting
parameters in modeling studies, thereby increasing their accuracy
in predicting.

This fact also implies that different initial conditions (such as
different seed infections) will only cause a temporal shift of the
observed evolution. This also means that trajectories for different
initial conditions are identical up to a time translation. If one uses
identical parameters and intervention strategies, then all countries
should follow the same trajectory provided they start with the
same value for the normalized fraction of confirmed new cases
Fy/N. We illustrate this idea, for the extended SEIR dynamics, in
Fig. 2 where we show a plot of I(t) =I4(t) + Ip(t) for 5 different
initial conditions. The inset shows a collapse of all the trajectories
after an appropriate time translation of the different trajectories.
Can we see a similar collapse of the real data for different coun-
tries (after normalizing by the respective populations and with ap-
propriate time translation of the data)? In Fig. 3 we plot the data
with this normalization and initial condition and see a rough col-
lapse for several countries. The differences can be attributed to dif-
ferent parameter values and different control strategies in different
countries. We notice in particular that three of the Asian countries
(India, Pakistan, Indonesia) follow a distinctly different trajectory.

2.2. Final affected population

Let us define the asymptotic populations (i.e the populations at
very long times) in the different compartments as Uy, Dq, Up, Dy,
and let Rq = Ug + Da, Rp =Up+Dp, R =Rq + Rp. The total popula-
tion that would eventually be affected by the disease (and either
recover or die) is given by R and would have developed immunity.
A fraction U, (see below) would be undetected and uncounted.

It is possible to compute the final affected population R from
the dynamical equations in Egs. (1)-(8). For the moment let us
assume that u and r do not have any time dependence. We
also assume that Uy (0) =0, Uy(0) =0, Dg(0) =0, Dyp(0) =0 and
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Fig. 3. (left) Number of new cases per day for different countries. (right) Number of new cases normalized by the total population, with the time axis shifted so that every

country starts with the same normalized value. Data from [29]

S(0) ~ N. Then solving Eq. (1), we get

S = Ne—Jo" dt[Bala@+Boly ) ]N (23)

where ,3,1 and Bp are given after Eq. (13). Adding Eqgs. (5) and
(6) and then multiplying both sides by Ba/)?a we get BadRy _ Bala

Va dt
where R; = U, + Dy. Similarly, we also get %’%P :ﬁpl,, where
Rp =Up + Dp. Plugging these two equations into Eq. (23) then
gives
S — Ne~1(Ba/7)Ra/N+(Bo/ 75)Ro/NI (24)

Next we note that (d/dt)(Is +Rq) =aoE and (d/dt)(I, +Rp) =
(1 - «a)oE. Hence, for the initial condition I =I, =Rs =Rp =0,
we find that the ratio [Io(t) + Ra(6)]/[Ip(t) + Rp(H)] = /(1 — ) at
all times. Since at large times I p — 0, this means that the asymp-
totic values of R; and R, are given by

Re=aR, and R,=(1-a)R. (25)

Using this in Eq. (24), noting that S+ R = N and defining X = R/N,
we then get the following simple equation that determines the
asymptotic total affected population:

1-—x=eRk¥, (26)
where Ry = a% + (1 - oz)%’ is the reproductive number as stated
earlier. We note that Eq. (26) has a non-zero solution only when
Ro > 1. In Fig. 4 we show the dependence of X on Ry, obtained
from a numerical solution of Eq. (26). For the simple SIR model
the result of Eq. (26) is well known [25], here we show that this is
valid for an extended model as well generally. This computation of
the asymptotic population can be straightforwardly extended to a
more general model where one can have arbitrary number of com-
partments for the infected and recovered populations.

The asymptotic population of all four compartments within R
are thus given by

Ri=aR, R,=(1-a)R

- Yo 5 = Ve =
=o————R, Dg=(1-a)————R,
=y, D=y
3 A, AV
Uy=a—F—R, D,=(1-a)———R. 27
P YptTVp p=( ))’p+r‘)p 7)

2.3. Peak infections and the time to reach the peak

The peak infection numbers and the time at which the peak
occurs are two important quantities that one would like to know
during a pandemic. Here we provide heuristic analytic formulas for

these, which are derived after making some simple physical as-
sumptions.

We start with the evolution equations for the infected popula-
tions, given by:

dl -
d—g = a0E — P4l,,
% = (1—)0E — Pyl (28)

Let us assume that in comparison to the time scale of the pan-
demic, E, I and I, all peak at roughly the same time say ¢, and
let us indicate by E(”‘),Iém),lém) the respective peak values. We
then obtain

Pa™ = aogEM

Pl = (1 —a)oEM. (29)

Defining I(M = [{™ +II(,"‘), Eq. (29) gives

Em) _ ﬁj(m) (30)
o

where y, = [, '+ (1 - )7, '] (31)

is an effective recovery rate. Substituting this in Eq. (29) yields

1™ = o Yegom,
Ya
I = (1 —a)Zegm, (32)
Vp

Let us further assume that Eq. (32) is valid in general (for all time)
and not just at the peak. Then, after defining I = I; + Ip, we have

Ve Ve
Lh=a—I, I,=(10-a)=1
¢ Va P Vp
Substituting Eq. (33) in the model Eqgs. (1)-(8), and defining R =
Uq + Dq + Up + Dy, we obtain the standard SEIR equations,

ds _ B

(33)

dt — N~ (34)
%f = %s —0oE, (35)
% =0E — vl (36)
%’f — ¥, (37)
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N

Fig. 4. (left) Plot of the asymptotic total affected population fraction, R/N, as a function of the reproductive number R,. The parameters used are
Ba=0.33,8,=0.5,0 =033, y, =0.125, y, = 0.083,r = 0.0 and u = 1.0. We also plot the quantity (I"/N)(o + y.)/o, obtained numerically from many different parame-
ter sets, and compare it with the theoretical predicted curve 1 — (1 +1InRy)/R, (green line). (right) Verification of the In(N) dependence of t™ in Eq. (40) for different
choices of Ry. The slopes of the straight lines compares well with ! as stated in Eq. (40). The parameters used which correspond to Eqs. (34)-(37) are o = 1/3,y. = 0.1
for all values of Ry and B = RyY.. The dominant eigenvalue p are computed using the linearised version of Eqs. (34)-(37) and slopes are obtained from the data. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Here, y, is given by Eq. (31) and Be = Rgye Where the reproductive
number Rq is given by Eq. (14). Assuming the initial conditions:
S(0) ~ N,R(0) =0, we can solve Egs. (34) and (37) to get:

S = Ne FoRN, (38)

At the peak, our assumption of dE/dt =0 gives from Eq. (35),
SM /N = EM™ /(Bel™) = ye/Be = Ry [using Eq. (30)]. The peak
value R(™ is then given from Eq. (38) by R™ /N = R;" In(Ry). Fi-
nally, using Eq. (30) and the fact that SN+ E/N+I/N+R/N =1

gives
o (1 B 1+logR0)N'
Yet O

Ro

For somewhat simpler models it is possible to obtain an analytical
estimate of the peak size [16] and for the time, t(™ required to
reach the infection peak [26]. In our case we estimate t(™ by not-
ing that the linearized dynamics is approximately valid (see pre-
vious section) up to the time I(t) reaches its peak 1™, Hence we
write 1M — [, et ™~to) where Iy = I(t = to) is the infection num-
ber at some early time (but already in the exponentially growing
regime). Hence we get

_ In[I'™ /L] _ In(Nye)
o wo

with 1™ given by Eq. (39) and c is a constant that depends on
initial conditions and model parameters.

In Fig. 4, we provide a numerical verification of the results in
Egs. (39) and (40) by solving the extended SEIR equations numer-
ically. One of the main assumptions required for the proof is the
validity of Eq. (33). In Fig. (5) we check this assumption in a nu-
merical example with a particular parameter set.

o — (39)

t™ _to (40)

3. Interventions: social distancing and testing-quarantining

We next consider the effect of different intervetion strategies
which are incorporated into the extended SEIR dynamical Egs. (1)-
(8), through the parameters u and r which we will now make time-
dependent. We discuss here the choices of the intervention func-
tions u and r. Note that u is a dimensionless number quantifying
the level of social contacts, while r is a rate which, as we will see,
is closely related to the testing rate.

Social distancing (SD): We multiply the constant factors Bgp
by the time dependent function, u(t), the “lockdown” function that
incorporates the effect of social distancing, i.e reducing contacts
between people. A reasonable form is one where u(t) has the con-
stant value (= 1) before the beginning of any interventions, and
then from time t,, it changes to a value 0 < u; < 1, over a charac-
teristic time scale ~ t,,. Thus we take a form

ut) =1
ul + (1 — ul)e*(t*ton)/tw’

t < ton,

(41)

t > ton.

The number u; indicates the lowering of social contacts.

Testing-quarantining (TQ): We expect that testing and quar-
antining will take out individuals from the infectious population
and this is captured by the terms rvaly and rvpl, in the dynamical
equations. A reasonable choice for the TQ function is perhaps to
take

rt)=0 t<tl,
—(t=ti )/, /
=1 —ne (o)t po g (42)
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Fig. 5. Comparison of values of I, I, I obtained from direct numerics with those
from the approximate assumed forms, II", I;h from Eq. (33) (I taken from the nu-
merics). We also plot the predicted peak value of ™. The parameters in the numer-
ics were taken as N =107, =0.67, 8, =0.333,8,=0.5,4=1/8,y, = 1/12,0 =
1/3,va=1/3, v, =1/2,u=1,r=0.5, which gives Ry = 1.26, u = 0.039. We see in
this case the assumption is valid to a high degree of accuracy.



A. Das, A. Dhar, S. Goyal et al.

Chaos, Solitons and Fractals 144 (2021) 110595

) 100_“
o ]
o
5]
o
<
=1
<
3
3 107!
= ]
—
-
(53
[s¥
3
17}
QO
-
=2
2107
= ]
2
‘s —— India — Ttaly Pakistan
A |— Belgium — United States — Indonesia
— Russia — United Kingdom — South Korea
1073 |—— Switzerland
|
TP PP P LPISFTFP PP D
SNSRI AN RN NN ARG SN N I S\
Date

Fig. 6. Data of number of tests per day per thousand in several countries on a log-scale. Data from [20].

where one needs a final rate r; > 0. In general the time at which
the TQ begins to be implemented t;, and the time required for it
to be effective t}, could be different from those used for SD.

A useful quantity to characterize the system with interventions
is the time-dependent effective reproductive number given by

u(t)ﬂa u(t)ﬂp
Ya+1(t)Vq Yo +r()vy

At long times this goes to the targeted reproduction number

RST(t) = +(1-a) (43)

target _ peff - Ui Ba u Bp
Ry ™ =Rj (tew)_am—l—(l—a)m.
The time scale for the intervention target to be achieved is given
by tw and t},.

Relation of the TQ function r(t)to the number of tests done
per day: Let us suppose that the number of tests per person per
day is given by T.. We show in Fig. 6 the data for the number of
tests per 1000 people per day across a set of countries and see
that this is around 0.05 for India which means that T, = 0.00005. If
tests are done completely randomly, then the number of detected
people (assuming that the tests are perfect) would be T, x I and
so it is clear that we can identify r(t) = T (t). It is then clear that
this would have no effect on the pandemic control. To have any
effect we would need r > yp ~ 0.1 which means around 100 tests
per 1000 people per day which is clearly not practical.

However, a better strategy is to do focused tests on the contacts
of all those who have been detected on a given day. We now give
an estimate of the rate r if we followed this strategy. For simplicity
of presentation of our argument we here assume vg = v, =1 and
Ya = yp. From our extended SEIR model the number of detected
cases per day is given by F(t) =rvalg+ (rvp + yp)lp = 11+ yplp.
In the growing phase we have, from Eq. (19), that I = ol and
Iy = (1 — a)l. Hence we get F(t) = yI with =7+ (1 — a)yp. The
total number of contacts of the I =F(t)/y individuals would be
AF(t)/y, where A is the mean number of contacts of a single in-
fected person. If we perform T tests per day on this pool, then the
rate of detections will be given by

r= 77-]7
= AF(D)

(44)

(45)

Denoting ¢ = T/(AF) and noting that  =r+ (1 — )y, we self-
consistently solve the above equation to find
c(1-a)yp

= ——. 46

¢ (46)
Now it is clear that unless r and y, = y} are of the same order, TQ
will not have much effect on the dynamics and the change in Ry
will be small. Setting r > y;, then gives us the condition

AF(t)
>
TZ> o

(47)

Note that in our model we identify r(t) as our control rate func-
tion that changes from the value O to a value r; ~ y, over the
time scales of a week or so. This means that we would need to
change the testing rate in a controlled way such that the condition
T(t) ~ AF(t) is maintained. Thus the number of tests/per day has
to be proportional to number of new detections/per day and in fact
the ratio T/F has to be larger than the average number of contacts,
A, that each infectious person makes. The number A is expected to
depend on the population density and also how well SD is being
implemented. The table in Fig. 7 shows data for the ratio T(t)/F(t)
for a set of countries and also how this ratio has evolved over time.
While the value of T(t)/F(t) ~ 25 (around May 15) for India ap-
pears to be large, it may not be sufficient given that the population
densities are much larger than in many other countries and imple-
mentation of SD may be less effective. If we assume 20 contacts
a day and the number of days before isolation of the individual
to be 5 we get the rough estimate of A~ 100 and then the ratio
T/F thus has to be at least ~ 100. This is the minimum value of
testing-to-detected ratio that has to be targeted at localities with
high infection rates. The details of the arguments presented here
are largely independent of the specifics of the particular SEIR model
that we study.

3.1. Comparision of intervention strategies

The model details are given in Section 1. We recall that at any
given time the total infectious population size is I =1y +1I,, the
cumulative affected population (recovered, in hospital or dead) is
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R=Uqy+Dq +Up+Dp, the reported total confirmed cases is C =
Dq+Dp+Up, and the reported new daily cases is F =dC/dt =
vala + (Vp +1vp)lp.

A useful quantity to characterize the system with interventions
is the targeted reproduction number [see Eqs. (43) and (44)]

Rlarget _ au B 1- Ol)ullgp (48)
0 Ya+TiVa  ¥Vp+TiVp
We classify intervention strategies by the targeted Ry"**" value. A

strong intervention is one where Rgarget < 1 and will achieve sup-
pression of the disease while a weak intervention is one with
RG> 1 and will only mitigate the effects of the disease.

Other than Ry, an important quantity to characterize the dis-
ease growth is the largest eigenvalue w of the linearized dynamics
(see Section 2.1). In the early phase of the pandemic, all popula-
tions other than S grow exponentially with time as ~ e/, As we
will see, for the case of strong intervention, u becomes negative
and gives the exponential decay rate of the disease.

In our numerical study we choose, for the purpose of illus-
tration, the following parameter set: « = 0.67 and the rates 8, =
0.333,8p=0.5,0 = 1/3,y4 = 1/8, yp = 1/12 all in units of day~I.
For the specified choice of parameter values (free case with u =
1.0,r = 0.0) we get i = 0.158 which is close to the value observed
for the early time data for confirmed cases in India. The corre-
sponding free value of Ry is 3.7665. Note that w is not uniquely
fixed by Ry (and vice versa) and different choices of parameters
can give the same observed p but different values of R

Choosing these typical parameter values for COVID-19, we
now compare the efficacy of strong and weak interventions im-
plemented in four different ways: (1) 6WLD-NTQ: Six weeks
lockdown (strong value of SD parameter) and no testing-
quarantining, (2) ELD-NTQ: Extended lockdown and no testing-
quarantining,(3)NSD-ETQ: No social distancing and extended
testing-quarantining, (4) ESD-ETQ: Extended social distancing and
extended testing-quarantining. The case with no social distancing
and no testing-quarantining is indicated as NSD-NTQ.

We work with a population N =107 and initial conditions
E(0) = 100, 1(0) =1,(0) = Uq(0) = Dg(0) =Up(0) =Dp(0) =0
and S(0) =N —E —Is — Iy —Ug — Dg — Up — Dp. In all cases, we will
assume that intervention strategies are switched on when the
confirmed number of cases reaches 50 and after that the full
intervention values are attained over a time scale of 5 days.

3.11. Strong intervention (R§"**" < 1)

In this case, the exponential growth stops around the time
when RE(t) crosses the value 1. After this time, the infection num-
bers will start decaying exponentially. Since the infection numbers

are still small compared to the total population, one can work with
the linearized theory and the magnitude of the largest eigenvalue
1 (now negative) determines the exponential decay rate. For illus-
trating this case, we take:

Parameter set I [R5 = 0.667] — We choose three SD and TQ
strengths as (i) SD: u; =0.177,r;, =0, (ii) TQ: u;=1,r,=1.2 and
(iii) SD-TQ: u; = 0.461, r; = 0.4. This choice corresponds to chang-
ing the free value of Ry = 3.766 to a target value R;"**" = 0.667, for
all the three different strategies. The largest eigenvalue w changes
from the free value p =0.158 to the values (i) u = —0.027, (ii)
= —0.077 (iii) u = —0.0546 respectively. The results of the nu-
merical solution of the extended SEIR equations are presented
Fig. 8(a) and (b).

Main observations:

1. A six week (or eight week) lockdown is insufficient to end the
pandemic and will lead to a second wave. If the interventions
are carried on indefinitely, the pandemic is suppressed and only
affects a very small fraction of the population (less than 0.1%).
We can understand all features of the dynamics from the lin-
ear theory. In Fig. 8(a,b), intervention is switched on after ~ 2
weeks and the peak in infections appears roughly after a period
of 5 days. Thereafter however, the decay in the number of in-
fections occurs slowly, the decay rate being given by the largest
eigenvalue p (now negative and smaller in magnitude than u
in the growth phase).

. We find that for the same target R3"®" < 1, different intervention
schemes (ELD-NTQ, NSD-ETQ, or ESD-ETQ) can give very differ-
ent values of the decay rate ju and, in general we find that TQ is
more effective than SD. We see that ELD-NTQ ends the pandemic
in about 10 months while NSD-ETQ would take around 3.5
months. This can be understood from the fact that the corre-
sponding w values (post-intervention) are given by u = —0.027
and u = —0.077 respectively, i.e, they differ by a factor of about
3. With a mixed strategy where one allows almost three times
more social contacts (u; = 0.431) than for LD case and that re-
quires three times less testing (r; = 0.4) than for TQ case, we
see that the disease is controlled in about 5 months. Hence this
appears to be the most practical and effective strategy.

. The expected time for the pandemic to die would be roughly
given by

In(Peak infection number)
|upost—intervention|

fend ~ , (49)

and so it is important that intervention schemes are imple-
mented early and as strongly as possible.
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Fig. 8. Parameter set I [Rg"ge‘ = 0.667]: (a) Total number of infected cases I = I, +I,, for different intervention strategies. The solid and dashed black lines indicate the peak
infected cases 1™ as given by Eq. (39) and the corresponding value of I;’"). (b) Total number of confirmed cases C = U, + Dy + Dp. The dashed lines indicate the total affected
population R = C + U, at the end of one year, for the different strategies. In the absence of interventions this is close to 96% and is given by Eq. (26). The total population
was taken as N = 107. Parameter set II [R"" = 1.205]: (c) Total number of infected cases I =1, +1I, for different intervention strategies. (d) Total number of confirmed
cases C = Up + Dy + Dp. The dashed lines indicate the total affected population R =C + U, at the end of one year, for the different strategies. Total population was taken as

N=10".

3.1.2. Weak intervention (Rj" > 1)

In this case, a finite fraction of the population is eventually af-
fected, but the intervention succeeds in reducing this from its orig-
inal free value and in delaying considerably the date at which the
infections peak. We take the following parameter set for this study:

Parameter set II [R;"*" = 1.205] — we choose three SD and TQ
strengths as (i) SD: u; =0.32,r; =0, (ii) TQ: u; = 1,1, = 0.536 and
(iii) SD-TQ: u; = 0.634, r; = 0.24. This choice corresponds to chang-
ing the free value of Ry =3.766 to a fixed target value R;"™ =
1.205 for all the three different strategies. The largest eigenvalue
/0 remains positive and changes from the free value p = 0.158 to
the values (i) 4 =0.0152, (ii) u = 0.032 (iii) u = 0.0248 respec-
tively. The results of the numerical solution of the extended SEIR
equations are presented Fig. 8(c) and (d).

Main observations:

1. We find that in this case the peak infections, peak infection
time and the final affected population can be obtained from
the analytic expressions given by Egs. (26), (39) and (40) in
terms of the basic disease parameters, using their values af-
ter interventions are introduced. We assume that the interven-
tion parameters change from the values u = 0, = 0 to their full
strength u = u;, r = r; over a short time scale and thereafter re-
main constant.

2. We find that the peak infection numbers are smallest for the
case with ELD-NTQ and they occur at a later stage. These re-
sults can also be understood mathematically from the expres-
sions in Eqgs. (39) and (40) using the post-intervention values
of y and p (from the linear theory).

3. We note that while weak interventions can slow down and re-
duce the impact of the pandemic, they do not lead to develop-
ment of herd immunity of the population (assuming that all the
recovered people develop immunity). It is well known that herd
immunity is attained when a fraction 1 — 1/R; of the popula-
tion has developed immunity. Thus herd immunity in the above
example would require that 1 — Ral ~ 0.74, i.e 74% of the pop-
ulation be affected, while Eq. (26) with Ry = 1.205 predicts
that only about 31% of the population is affected.

3.2. Observation of strong and weak intervention in COVID-19 data

In Fig. 9 we give some examples of data for number of new
cases for nine countries where we see that some of the qualita-
tive features seen in the model results in Fig. 8(a,b). In particular
we see the fast exponential growth phase and then a much slower
decay phase for the first six countries which have succeeded in
controlling the disease with various levels of success. On the other
hand we see that India, Brazil and Pakistan continue to show a
positive w and it is clear that intervention schemes need to be
strengthened.

4. Difficulties in making predictions from the extended SEIR
model: case study for India

In the following we make some heuristic predictions, based on
the analytic results in Eqs. (26), (39) and (40) and the present
observed data, for daily new cases in India (N~ 1.3 x 10°), in
the state of Delhi (N~ 1.9 x 107) and in the city of Mumbai
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Fig. 9. Number of new cases per day for nine different countries. The dashed orange vertical lines in some of the figures denote the day of the implementation of lockdown.
We note that the first six data sets exhibits the same broad features that we see for the model predictions in Fig. 8(a,b). In particular we see the fast exponential growth
and slow exponential decrease in new cases (following strong interventions). The two countries UK and US show a very slow decay rate, indicating that disease suppression
has barely been achieved. The data for India, Brazil and Pakistan show the behavior corresponding to model predictions in Fig. 8(c,d) and have only been able to achieve
mitigation so far (Rf)arger > 1, u > 0). Data from [29] and the end date is June 10. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

(N~ 1.3 x 107). The analysis here is based on the assumption of
a best case scenario where the value of Rj"™®*, achieved after vari-
ous intervention schemes is maintained at a constant value.

Here we assume that intervention has effectively been through
SD, with r <<y being neglected. We consider the following
choice of parameter values which appears to be reasonable for
getting a conservative estimate: o = 1/2, Bp = B, Ba = 28/3, 7p =
Yp=Y,Va="Va=3y/2, i.e, we assume that asymptomatics are
2/3rd less infectious and recover 3/2 times faster. This gives us
[using Eq. (31)] ve=y/(1 —a/3) and the effective reproductive
number as RG"* = (1 — 5a/9)B/y. From this last relation we can
write B = yR;"™% /(1 - 5a/9). Plugging this into the equation for
the eigenvalues, Eq. (13), and replacing A by the observed mean
exponential growth rate (we choose the values of u =0.05 and
= 0.035 which are representative of the values observed in India
since around April 10), we see that we basically get an equation
for R™"®* in terms of «, o,y and ju. For specific choices of «, o
and y, the observed values of p before and after intervention will
then give us the corresponding values of Rg.

For our analysis we need to know the total infections I(0) on
some day (we take this as April 11) and we estimate it in the
following way. Suppose that the daily observed cases on this day
was F,(0) (assuming that only the symptomatics are detected).

Then we have I,(0) = F,(0)/yp. From Eq. (32) we have ll(,m) =
(1-a)yel™/y, and so the time to the peak can be estimated
as tm = ;-1 ln[Il()m)/Ip(O)]. We use Eq. (39) to compute the peak

10

number of infections I and the peak daily cases (PDC) is then
obtained as PDC= Fp(m) = ypll(,m) = (1—a) x ¥ x I The total af-
fected population fraction X, can be computed from Eq. (26), using
only the knowledge of R;"". If we assume the number of deaths
is 1% of all symptomatic cases this gives us an estimate for the
total number of deaths as Nx(1 — «)/100.

The observed daily new cases in India, Delhi and Mumbai on
April 10 were around F,(0) =~ 900, F,(0) ~ 115 and F,(0) ~ 195 re-
spectively [30]. For a range of choice of the parameters with o =
0.5, 0.4, y =0.2, 0.143 and of o = 0.67, 0.9, and two representa-
tive values of the post-intervention growth rates, u = 0.05, 0.035,
we compute the corresponding values obtained for Ry and Rj"™.

These and the estimates for PDC= Fp(m),t("” and X are given in
Tables 1-3 for u = 0.05 and in Tables 4-6 for p = 0.035, for India,
Delhi and Mumbai. Note that while the peak numbers and total
affected population and deaths simply scale with population size,
the time to peak depends on the daily detected numbers on April
10, and this leads to the observed differences in the time to the
peak for the three cases. We also note here that changing the ini-
tial conditions by about 10% causes a change of few days in the
peak time while the other quantities remain unchanged. The full
numerical solution in Fig. 10 also shows that the complete sup-
pression of the disease takes more than 6 months after the peak.
In Fig. 10 we show results of a numerical solution of the dy-
namical equations in presence of intervention (SD) for one of the
parameter sets in Table 3 and find excellent agreement with our
analytic formula in Egs. (26), (31) and (39). We see that the pre-
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Growth rate o = 0.05: Predictions for India with different choices of parameter values.

o y o Ry (free) REet Peak daily cases (PDC) Time of peak Total affected Total deaths
0.5 0.2 0.67 2.28 133 2,456,630 158 (2nd week September) 45% 1,936,000
0.5 0.2 0.9 2.16 1.3 686,770 132 (3rd week August) 42% 550,700
0.4 0.143 0.67 2.82 1.45 2,956,600 161 (3rd week September) 55% 2,363,700
0.4 0.143 0.9 2.65 1.41 832,890. 136 (4th week August) 52% 676,140
Table 2
Growth rate o = 0.05: Predictions for Delhi with different choices of the asymptomatic fraction .
o y o Ry (free) RE"E Peak daily cases (PDC) Time of peak Total affected Total deaths
0.5 0.2 0.67 2.28 133 35,904 114 (1st week August) 45% 28,296
0.5 0.2 0.9 2.16 13 10,037 89 (2nd week July) 42.3% 8048
0.4 0.143 0.67 2.82 1.45 43,212 118 (2nd week August) 55% 34,546
04 0.143 0.9 2.65 1.41 12,173 93 (2nd week July) 52% 9882
Table 3

Growth rate o = 0.05: Predictions for Mumbai with different choices of the asymptomatic fraction c.

o y o Ry (free) RE Peak daily cases (PDC) Time of peak Total affected Total deaths
0.5 0.2 0.67 228 133 24,566 97 (3rd week July) 45% 19,360
0.5 0.2 0.9 2.16 1.3 6867 71 (4th week June) 42.5% 5507
0.4 0.143 0.67 2.82 1.45 29,566 100 (3rd week July) 55% 23,637
0.4 0.143 0.9 2.65 1.41 8328 75 (4th week June) 52% 6761
Table 4
Growth rate = 0.035: Growth rate p = 0.035: Predictions for India with different choices of parameter values.
o y o Ry (free) RGeS Peak daily cases (PDC) Time of peak Total affected Total deaths
0.5 0.2 0.67 2.28 1.23 1,331,400 208 (1st week November) 34.5% 1,482,000
0.5 0.2 0.9 2.16 1.207 368,809 172 (1st week October) 32% 418,500
0.4 0.143 0.67 2.82 1.31 1,651,200 214 (1st week November) 43% 1,856,300
0.4 0.143 0.9 2.65 1.28 459,776 178 (1st week October) 40.5% 526,222
Table 5

Growth rate u = 0.035:

Predictions for Delhi with different choices of the asymptomatic fraction .

o y a Ry (free) RGeS Peak daily cases (PDC) Time of peak Total affected Total deaths
0.5 0.2 0.67 2.28 1.227 19,458 146 (1st week September) 34.5% 21,661
0.5 0.2 0.9 2.16 1.207 5390 109 (4th week July) 32% 6117
0.4 0.143 0.67 2.82 1.31 24,132 152 (1st week September) 43% 27,131
0.4 0.143 0.9 2.65 1.28 6719 116 (1st week August) 40.5% 7691
Table 6
Growth rate o = 0.035: Predictions for Mumbai with different choices of the asymptomatic fraction c.
o y o Ry (free) Rg“g“ Peak daily cases (PDC) Time of peak Total affected Total deaths
0.5 0.2 0.67 2.28 1.23 13,316 120 (1st week August) 34.5% 14,821
0.5 0.2 0.9 2.16 1.21 3688 84 (1st week July) 32% 4185
0.4 0.143 0.67 2.82 1.31 16,512 126 (2nd week August) 43% 18,563
0.4 0.143 0.9 2.65 1.28 4597 90 (2nd week July) 40.5% 5262

dicted peak time is off by about 10%. The numerics also shows that
the complete suppression of the disease takes more than 6 months
after the peak.

We point out that the mixed-population assumption of the SEIR
model is expected to be more accurate for a smaller population
and so the estimates for Delhi and Mumbai would be more reliable
than the one for India. For a big and highly in-homogeneous coun-
try like India, smaller regions (states or cities) would have differ-
ent values of u and Ry and also different initial conditions, hence
the global values would not capture the local dynamics correctly.
It is likely that the numbers in Table 1 are an over-estimate of the
true future trajectory. For the state of Delhi and the city of Mumbai

1

these would be more accurate, however we see that the uncertainty
in the true value of « and other parameters leads to a huge uncer-
tainty in the predictions.

5. Discussion

Several earlier work have discussed, using determinsitic com-
partmentalized models, the effect of asymptomatic affected popu-
lation and the effect of intervention measures on the COVID pan-
demic [7-18]. Here we present a somewhat different choice of
compartments and perform a careful quantitative comparison of
different intervention strategies. A distinction from earlier studies
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Fig. 10. Plot of the new daily cases (y,l,) and total affected population fraction (R),
as a function number of months for one of the parameter sets in Table 3 for the
city of Mumbai. Parameter values were o = 0.5, 7 = 0.2, = 0.9, Ry = 2.16 before
intervention and R§"** = 1.3. The dashed lines give the analytic predictions for the
peak daily cases (black line) and the final affected population (green line), and show
the good agreement with the numerics. The arrows indicate the date when initial
condition was specified y,I,(0) =195 and the peak infection date, which occurs
about 15 days after the date predicted from Eq. (40). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

is that we present a number of analytic results which we believe
will be useful beyond their immediate application to epidemiolog-
ical modeling, in more general studies of population dynamics.

To summarize our findings, a modified version of the SEIR
model, incorporating asymptomatic individuals, was analyzed in
detail. We have obtained a number of analytical results for the
full nonlinear model which can be useful in making empirical esti-
mates of various important quantities that provide information on
disease progression. We believe that the derivation of these results
can be extended to more sophisticated SIR type models including
more compartments and more complex interactions. From the lin-
earized dynamics we point out a simple but important property,
namely that at early times the motion of the system quickly set-
tles along the direction of the dominant eigenvector. This allows
one to determine accurately initial conditions from sparse data. We
provided numerical examples to illustrate these ideas and in ad-
dition have provided comparisons with real COVID-19 data. Look-
ing at COVID-19 data in several countries, we find that the ex-
tended SEIR model captures some important qualitative features
and hence could provide guidance in policy-making

We used the extended SEIR model for analyzing the effective-
ness of different intervention protocols in controlling the growth
of the COVID-19 pandemic. Non-clinical interventions can be either
through social distancing or testing-quarantining. Our results indi-
cate that a combination of both, implemented over an extended
period may be the most effective and practical strategy. We have
attempted to relate real testing rates to the parameters of the
model and comment on what the minimum testing rates should
be in order for testing-quarantining to be an effective control
strategy.

Finally we have used our analytic formulas to make predictions
for disease peak numbers and expected time to peak for India,
the state of Delhi and the city of Mumbai, pointing out that these
predictions would be highly unreliable for India (due to big inho-
mogeneity in disease progression across the country) and perhaps
more reliable for the cases of Delhi and Mumbai. Our main conclu-
sion here is that the lack of precise knowledge of the disease pa-
rameters (e.g the fraction of asymptomatic carriers) and changing
control strategies lead to rather large uncertainties in the predic-
tions. Nevertheless, we believe that they could perhaps be used to
obtain reasonable bounds.
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