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Abstract

The emergence of acquired drug resistance in cancer represents a major barrier to treatment 

success. While research has traditionally focused on genetic sources of resistance, recent findings 

suggest that cancer cells can acquire transient resistant phenotypes via epigenetic modifications 

and other non-genetic mechanisms. Although these resistant phenotypes are eventually 

relinquished by individual cells, they can temporarily ’save’ the tumor from extinction and enable 

the emergence of more permanent resistance mechanisms. These observations have generated 

interest in the potential of epigenetic therapies for long-term tumor control or eradication. In this 

work, we develop a mathematical model to study how phenotypic switching at the single-cell level 

affects resistance evolution in cancer. We highlight unique features of non-genetic resistance, 

probe the evolutionary consequences of epigenetic drugs and explore potential therapeutic 

strategies. We find that even short-term epigenetic modifications and stochastic fluctuations in 

gene expression can drive long-term drug resistance in the absence of any bona fide resistance 

mechanisms. We also find that an epigenetic drug that slightly perturbs the average retention of the 

resistant phenotype can turn guaranteed treatment failure into guaranteed success. Lastly, we find 

that combining an epigenetic drug with an anti-cancer agent can significantly outperform 

monotherapy, and that treatment outcome is heavily affected by drug sequencing.
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1. Introduction

While cancer has traditionally been considered a genetic disease driven by Darwinian 

evolution at the somatic level, it is now increasingly recognized that non-genetic sources of 

phenotypic variation may play an important role in tumor initiation, tumor progression and 

the evolution of drug resistance [1, 2, 3, 4, 5, 6, 7, 8]. Common sources of non-genetic 

heterogeneity include DNA methylation, histone modifications and other epigenetic 

mechanisms that alter gene expression, without changing the genetic code, by controlling 

DNA accessibility during transcription, replication and repair [9]. Since these mechanisms 

frequently operate at a significantly faster rate than genetic mutations, they can serve as a 

substrate for natural selection and permanently influence tumor evolution in the absence of 

any genetic events [1, 2, 6]. Another common source of variation in gene expression is the 

inherent stochasticity of intracellular biochemical reactions, which includes transcriptional 

noise. This stochasticity may give rise to heritable expression levels, albeit on the short time 

scale of one to a few cell divisions, whereas retention of epigenetic modifications has been 

estimated on the order of 10-105 cell divisions [10, 11, 12]. As we will find, even such short-

term phenotypic states can dramatically impact the course of tumor evolution.

Here, we are primarily interested in the role of non-genetic mechanisms in conferring 

acquired resistance to anti-cancer treatment, as has been explored in several recent 

experimental works. In Sharma et al. [13], for example, the authors investigate the acute 

response of several cancer cell lines1 to targeted anti-cancer agents, and they consistently 

observe the emergence of a drug-tolerant phenotype (DTP) that is ‘transiently acquired and 

relinquished by individual cells within the population at a low frequency’. The authors draw 

an analogy between DTP’s and slowly-proliferating antibiotic-tolerant ‘persisters’ 

commonly observed in microbial populations [13, 14, 15], whose survival within a more 

rapidly proliferating population represents an evolutionary means of ‘bet-hedging’ against 

potential environmental stresses [16, 17, 18, 19]. Liau et al. [20] and Roesch et al. [21, 22] 

similarly describe slow-cycling DTP’s in glioblastoma and melanoma, respectively, and 

Knoechel et al. [23] identify a reversible drug-tolerant state in leukemia which appears to be 

epigenetically mediated. For even further examples of experimental studies describing (often 

stem-like) non-genetic phenotypces associated with tumorigenic potential or drug resistance 

in cancer, we refer to e.g. [24, 25, 26, 27, 28], as well as recent reviews by Reyes and Lahav 

[29] and Salgia and Kulkarni [30]. We now turn our attention to such studies that also 

incorporate a modeling component.

In Gupta et al. [31], the authors employ a mathematical model of stochastic switching 

between three cell types to infer the rates at which breast cancer cells transition between a 

1Non-small cell lung cancer, melanoma, colorectal cancer, breast cancer and gastric cancer.

Gunnarsson et al. Page 2

J Theor Biol. Author manuscript; available in PMC 2021 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



selectively resistant stem-like state and two non-stem-like states. Su et al. [32] show that 

phenotypic switching between a drug-sensitive and drug-resistant state in melanoma is well-

captured by a similar model, and their study reveals the critical role played by drug-induced 

adoption of the resistant state, relative to selection of preexisting cells in this state. Goldman 

et al. [33] further provide evidence of chemotherapy-induced switching to a resistant 

CD44HiCD24Hi expression status in breast cancer, and Pisco et al. [34] show that vincristine 

resistance in leukemia, mediated by overexpression of the multidrug resistance protein 1 

(MDR1), is primarily due to therapy-accelerated adoption of the overexpressed state. Thus, 

while reversible drug-tolerant cells may arise naturally in drug-naïve cell populations, their 

emergence can also be directly influenced by anti-cancer treatment. Further complicating the 

picture, Craig et al. [35] have hypothesized that genotypically and phenotypically distinct 

cells can cooperate to induce the adoption of drug tolerance, although the potential 

mechanism behind such cooperation remains unclear.

Whereas transiently resistant cells serve the immediate function of protecting the tumor 

population from extinction, their ultimate role appears to be to set the stage for the evolution 

of more permanent resistance mechanisms, both of the genetic and epigenetic kind. In 

Sharma et al. [13], for example, the authors report that during prolonged exposure of EGFR-

mutant non-small cell lung cancer (PC9) to erlotinib, a fraction of drug-tolerant cells 

become capable of proliferating normally in drug, and that this more aggressive phenotype 

reverts less readily to sensitivity once removed from drug. During even more prolonged 

exposure, Ramirez et al. [36] find that PC9 persister cells give rise to diverse genetic 

resistance mechanisms, including de novo adoption of the EGFRT790M gate-keeper mutation 

commonly observed in the clinic (see also Hata et al. [37]). Shaffer et al. [38] report findings 

conceptually similar to Sharma et al. for melanoma cells treated with vemurafenib, and they 

further report that prolonged drug exposure induces epigenetic reprogramming of the drug-

tolerant state, ultimately leading to a stable drug-resistant phenotype.

The above studies indicate that tumor cells in a wide variety of cancer types have the ability 

to adopt reversible drug-resistant phenotypes, which can in turn facilitate the eventual 

acquisition of bona fide resistance mechanisms. Such phenotypes can both preexist anti-

cancer treatment and be specifically induced or accelerated by therapy. The relatively fast 

rate at which non-genetic phenotypes can be adopted, as compared to resistance-conferring 

mutations, poses a major challenge for clinical strategies. A deeper understanding of these 

dynamics is crucial to furthering our understanding of cancer and to informing novel 

therapeutic efforts. Here, we develop a mathematical model to investigate the evolutionary 

dynamics of a cell population that is able to employ transiently resistant states as a survival 

strategy. Our goal is to gain quantitative insights into resistance evolution in this setting, to 

highlight some of its unique characteristics, and to discuss how an understanding of these 

dynamics can inform the design of treatment strategies.

2. Model description

We consider a multi-type branching process model [39], in which cells switch stochastically 

between two distinct phenotypes, the drug-sensitive type-0 phenotype and the drug-resistant 

type-1 phenotype. A type-0 cell divides into two type-0 cells at (Poisson) rate r0, it dies at 
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rate d0 and adopts the type-1 phenotype at rate μ > 0, with λ0 := r0 − d0 the net birth rate2. A 

type-1 cell divides at rate r1, dies at rate d1 and reverts to type-0 at rate ν > 0, with λ1 := r1 − 

d1 the net birth rate (Fig 1). To capture the drug-sensitivity of type-0 cells and drug-

resistance of type-1 cells, we assume that λ0 < 0 and λ1 > 0 in the presence of an anti-

cancer agent. Although this model assumes that switching between phenotypes can occur at 

any time during the cell cycle, it can easily be adjusted to allow switching to only occur at 

cell divisions (Appendix E).

These general two-type switching dynamics enable description of a variety of sources of 

phenotypic heterogeneity; for example, short-term drug-tolerant states conferred by 

transcriptional noise can be captured by a large reversion rate ν, while longer-term states 

induced by epigenetic phenomena are captured by a smaller ν. We also note that the 

switching rates μ and ν are in general distinct, since the mechanism underlying phenotypic 

switching is in general asymmetric. A simple example is DNA methylation/demethylation, 

where de novo methylation is carried out by the DNA methyltransferases DNMT3a and 

DNMT3b, while demethylation usually occurs due to a failure of the maintenance 
methyltransferase DNMT1 to faithfully preserve methylation patterns during cell division 

[40]. In what follows, we will usually refer to the transition from type-0 to type-1 as an 

epimutation and the transition back as a reversion, while keeping more general sources of 

non-genetic variation (e.g. transcriptional noise) in mind.

To capture the evolution of more permanent resistance mechanisms, we assume that under 

anti-cancer treatment, the type-1 phenotype undergoes epigenetic reprogramming to a stably 

resistant phenotype at rate η. Alternatively, type-0 and type-1 cells can acquire a resistance-

conferring mutation at rate ξ0 and ξ1 per cell division, respectively (i.e. the mutation rate per 

time unit is r0ξ0 for type-0 cells and r1ξ1 for type-1 cells), both in the presence and absence 

of the anti-cancer agent (Fig 1). Stably resistant (type-2) cells divide at rate r2 and die at rate 

d2, with λ2 := r2 – d2 > 0 the net birth rate. We assume throughout that no type-2 cell is 

present at detection, focusing on how acquired resistance develops during anti-cancer 

treatment.

We note that the model outlined above assumes that epigenetic reprogramming from type-1 

to type-2 occurs in a single stochastic event. Single-stage reprogramming is consistent e.g. 

with a model of epigenetic gene silencing under recruitment of chromatin regulators 

suggested in a recent paper by Bintu et al. [41], and with Brown et al.’s [6] notion 

of ’epigenetically poised’ states that evolve to fixed acquired-resistant states via DNA 

methylation. Conversely, a multi-stage (or more continuous) model appears more consistent 

e.g. with the findings of Sharma et al. [13] and Shaffer et al. [38] described above, although 

the data in these works are insufficient to infer an exact model. The distinction between 

single-stage and multi-stage reprogramming will not be important to much of our 

investigation, since in Sections 4.1–4.2, we focus on behavior in the absence of permanent 

resistance mechanisms (η = 0 and ξ0 = ξ1 = 0). In Sections 4.3–4.4, we work with the 

2This means that each type-0 cell waits an exponential amount of time with rate a0:= r0 + d0 + μ (i.e. the waiting time is exponentially 
distributed with mean 1/a0) before it either divides with probability r0/a0, dies with probability d0/a0, or adopts the type-1 phenotype 
with probability μ/a0.
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minimal single-stage model, as this allows us to gain theoretical insights into the role played 

by transiently resistant phenotypes in facilitating the evolution of more permanent resistance 

mechanisms in the simplest possible setting, in terms of a single reprogramming parameter 

η. Our results in these sections will still be meaningful for the multi-stage case if we 

interpret the type-2 phenotype more generally as a stabler and more aggressive form of 

epigenetic resistance, not necessarily representing a permanent acquired-resistant state. 

Moreover, once multi-stage models are better understood mechanistically and quantitatively, 

our analysis can be easily extended to capture these more complex dynamics, using the same 

multi-type branching process framework as employed below.

2.1. Parametrization

For demonstration purposes, we adopt a baseline parameter regime chosen to mimic in vitro 
behavior of EGFR-mutant non-small cell lung cancer (PC9) reported by Sharma et al. [13] 

and Hata et al. [37]. We estimate the birth and death rates of all phenotypes and the 

epimutation rate μ using these works, but refer to other works for estimation of the reversion 

rate ν and the rates η, ξ0 and ξ1 of stable resistance acquisition. Details are provided in 

Appendix A. The exact parameter values are not important to our investigation, but rather 

the qualitative setting encoded in the regime: Type-0 cells proliferate rapidly in the absence 

of an anti-cancer agent and die rapidly in its presence, while type-1 cells are able to maintain 

slow net proliferation under the anti-cancer agent. Epigenetic reprogramming is further 

assumed to occur at a faster rate than resistance-conferring mutations. To ensure that our 

main insights are not particular to our chosen regime, but that they apply more generally 

across cancer cell populations capable of adopting slow-cycling, transiently resistant 

phenotypes, we will usually examine a range of possible switching dynamics. We 

furthermore discuss the sensitivity of our results to main model parameters, and perform 

robustness analysis where appropriate. We finally note that the rapid in vitro dynamics that 

underlie Figures 2 can be translated into slower in vivo dynamics through appropriate 

rescaling of time, as is discussed in Section 4.

3. Mean behavior and survival probability

We begin by deriving expressions for the average number of type-0 and type-1 cells alive at 

any time t, assuming the absence of permanent resistance mechanisms (i.e. η = 0 and ξ0 = 

ξ1 = 0). These expressions will be useful both for analyzing long-term tumor evolution and 

for estimating the time at which permanent resistance first arises (Section 4.4).

Assume that the tumor consists of n type-0 cells and m type-1 cells at the start of anti-cancer 

treatment. We will both be interested in the case m = 0, where resistance is mediated by 

drug-induced adoption of the type-1 phenotype, and m ≫ 0, where transiently resistant cells 

preexist treatment (in significant numbers). The switching dynamics of tumor cells are 

encoded in the infinitesimal generator for the process,

A =
λ0 − μ μ

ν λ1 − ν , (1)
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where λ0 – μ (resp. λ1 – ν) is the net rate at which a type-0 (type-1) cell produces another 

type-0 cell, and μ (resp. ν) is the transition rate from type-0 to type-1 (type-1 to type-0). If 

we let ϕ0 (t) (resp. ϕ1(t)) denote the mean number of type-0 (type-1) cells alive at time t, we 

can calculate these means as

ϕ0(t) ϕ1(t) = [n m] exp(At), (2)

which allows use to derive the following expressions:

ϕ0(t) = nδ + m
δ + γ eσt + nγ − m

δ + γ eρt,

ϕ1(t) = γ(nδ + m)
δ + γ eσt − δ(nγ − m)

δ + γ eρt .
(3)

Details of the derivation are provided in Appendix B. The rate constants σ and ρ, with σ > ρ, 

are the (real) eigenvalues of the infinitesimal generator A, given by

λ0 − μ + λ1 − ν ± λ0 − μ − λ1 − ν 2 + 4μν
2 . (4)

In addition,

γ: = σ − λ0 − μ /ν > 0 (5)

is the long-run ratio between type-1 and type-0 cells in the tumor population, and

δ: = λ0 − μ − ρ /ν > 0 (6)

is the long-run ratio between the size of a clone derived from a single type-0 vs. a single 

type-1 cell. Note that the mean behavior of the process can either be expressed as a function 

of the fundamental constants λ0, λ1, μ and ν, which capture single-cell level dynamics, or 

as a function of the derived quantities γ, δ, σ and ρ, which capture long-run population-level 

behavior and may be more easily observable in an experimental setting. Also note that the 

above expressions only depend on the birth and death rates of each cell type through their 

net birth rates λ0 = r0 – d0 and λ1 = r1 – d1.

As expression (3) indicates, the long-run behavior of the tumor population is determined by 

the sign of the rate constant σ. The population survives with positive probability if and only 

if σ > 0, in which case it is said to be supercritical, while extinction is guaranteed for σ < 0, 

in which case it is subcritical (see e.g. [39] for further information). For a supercritical 

population, the survival probability can be computed by solving a system of two nonlinear 

equations, as is outlined in Appendix C.

4. Results

4.1. Resistance driven solely by phenotypic switching

We begin by investigating whether phenotypic switching can drive long-term resistance to 

continuous anti-cancer treatment, even in the absence of permanent resistance mechanisms 
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(i.e. η = 0 and ξ0 = ξ1 = 0). By examining when σ > 0, we can show that tumor survival is 

possible (i.e. the tumor cell population is supercritical) if and only if

νλ0 + μλ1 > λ0λ1 (7)

(see Appendix D for details). By rewriting this condition as· (recall that λ0 < 0 under anti-

cancer therapy)

ν/λ1 − μ/ λ0 < 1, (8)

we see that the rates ν/λ1 and μ/|λ0| of phenotypic switching, relative to net growth (or net 

decay) of each phenotype, determine whether the tumor can persist under therapy. It is 

furthermore easy to see that a sufficient condition for (8) is

ν/λ1 ≤ 1 or 1/ν ≥ 1/λ1, (9)

which can be interpreted as a simple condition on the time scale of ’phenotypic memory’: 

The tumor population has a chance of surviving treatment whenever the average memory 1/

ν of the resistant state equals or exceeds 1 /λ1.

If we assume that the growth characteristics of type-0 and type-1 cells (λ0 and λ1) are fixed, 

the condition (8) for supercriticality can be viewed as describing the region in the (μ, ν) 

plane that lies below the ’critical line’

ν = λ1/ λ0 ⋅ μ + λ1 . (10)

Since μ and ν are small, and they may differ by orders of magnitude, it is more instructive to 

visualize their relationship on a logarithmic scale. In Figure 2a, we show this log-

scale ’critical curve’ for two cases: (i) λ1 ≪ |λ0|, i.e. type-0 cells die rapidly and type-1 cells 

proliferate slowly under anti-cancer treatment, as in our baseline parameter regime, and (ii) 

λ1 ~ |λ0|, i.e. the type-1 net birth rate is of the same order as the type-0 net death rate. In 

both cases, the tumor population is supercritical for ν ≤ λ1 (region A), which is our 

sufficient condition from (9), but the population can still be supercritical for ν > λ1 (region 

B for λ1 ≪ |λ0| and regions B+C for λ1 ~ |λ0|), the degree to which is controlled by the 

slope λ1/|λ0| in (10).

We conclude from the above that phenotypic switching can in fact drive long-term drug 

resistance in the absence of more permanent resistance mechanisms, and we identify two 

qualitatively distinct evolutionary pathways to such resistance:

1. ν ≤ λ1: Population survival is driven by sufficiently long retention of the 

resistant phenotype, independently of the frate of epimutation (μ) and type-0 

sensitivity to the anti-cancer agent (λ0).

2. ν > λ1 and μ > λ0(1 – ν/λ1): Type-1 cells lose the resistant phenotype too 

quickly to sustain the tumor by themselves, but this loss is compensated by 

sufficiently fast adoption of the resistant state.
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If we assume d1 = 0, i.e. type-1 cells have a stem-like ability to proliferate indefinitely, the 

first condition implies that even single-generation phenotypic memory may be sufficient to 

confer long-term resistance, while the second condition implies that even non-heritable 

traits, e.g. stochastic variation in gene transcription, may be able to save the tumor from 

extinction.

To further elucidate the coevolutionary dynamics between type-0 and type-1 cells, we show 

in Figure 2b the long-term expected behavior of the population in the baseline parameter 

regime, assuming no transiently resistant cell is present at detection (m = 0). When the anti-

cancer agent is applied, sensitive type-0 cells initially die at a fast rate, while a small fraction 

of them adopts the resistant type-1 phenotype. Eventually, the population settles into an 

equilibrium where back-and-forth epimutations of type-0 cells and reversions of type-1 cells 

drive an expansion of both subpopulations, albeit at a slow rate. Once the type-1 population 

has reached a sufficient size, we can expect it to develop more permanent resistance 

mechanisms, as is discussed further in subsequent sections. In Figure 2c, we show long-term 

expected behavior under an alternative parameter regime, where |λ0| is reduced so that it is 

of the same order as λ1 (λ1 ~ |λ0|). In this regime, type-0 decay is less rapid under anti-

cancer treatment, which implies both that the type-1 population builds up more quickly, and 

that more type-0 cells remain at equilibrium. Note that the equilibrium proportion between 

type-1 and type-0 cells can in general be computed using expression (5) above.

By examining cell behavior at the individual level, we observe that each type-0 cell is almost 

guaranteed to go extinct in the baseline regime (it survives with probability 0.005%), while 

each type-1 cell survives with 4.9% probability (Equation C.1). Despite these odds, the anti-

cancer agent is unsuccessful in eradicating the drug-sensitive population due to the dynamic 

switching between phenotypes. In fact, the population as a whole is guaranteed to survive 

treatment (Equation C.2), which is due to the substantial buffer of type-1 cells that 

accumulates through type-0 epimutations at the start of treatment and protects the somewhat 

fragile type-1 population against extinction. These survival probabilities are generally robust 

to significant variation in r0, d0, r1 and d1, as we display in Table H.1 in Appendix H. The 

main exception occurs when r1 and d1 are changed so that the population becomes 

subcritical, in which case there is no chance of tumor survival. This transition from 

guaranteed tumor survival to guaranteed extinction can be quite abrupt, as we explore further 

in Section 4.2.

The above example allows us to glean two important insights: First of all, the relatively rapid 

adoption of an epigenetically-mediated resistant phenotype places less restrictions on the 

robustness of such a phenotype than what is the case for a rare genetic variant arising 

through mutation. Thus, even a barely viable non-genetic phenotype may allow the tumor 

population to escape anti-cancer therapy with 100% probability, in the absence of any more 

permanent resistance mechanisms. Secondly, a tumor population that appears to be static or 

slow-growing at the population level may in fact be driven be rapid switching dynamics at 

the single cell level, and uncovering the exact dynamics may be crucial to understanding 

how the population responds to treatment, which is the subject of our next section.
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4.2. Tumor survival when switching dynamics are perturbed

Targeted epigenetic agents, e.g. inhibitors of DNA methylation and histone deacetylation, 

have been considered both as a means of reversing the tumorigenic potential of cancer cells 

and of resensitizing resistant cells to anti-cancer therapy (see e.g. [42, 43, 44, 45, 46]). In 

this section, we examine how the probability of tumor survival under continuous anti-cancer 

treatment depends on the rate of epimutation (μ) and reversion (ν). We then extract insights 

into the potential benefits of a joint application of an anti-cancer agent, aimed at killing the 

tumor bulk, and an epigenetic drug, aimed at disrupting the phenotypic switching dynamics.

The probability of survival of the tumor cell population, derived in Appendix C, is shown in 

Figure 3a as a function of μ and ν. We consider first the case where no transiently resistant 

cell preexists treatment (m = 0) and permanent resistance mechanisms are absent (η = 0 and 

ξ0 = ξ1 = 0). We observe transitions in the dynamics around threshold values of μ′ ~ 10−6 

and ν′ ~ 10−3 per hour. The latter threshold reflects a regime change from supercriticality to 

subcriticality, since the baseline value for the net birth rate λ1 is of order 10−3 per hour (the 

population is supercritical below the ’critical curve’ in Fig 3a; see Section 4.1). When the 

population is subcritical, the tumor goes extinct with 100% probability, since the high 

reversion rate ν to sensitivity makes it impossible for type-1 cells to expand under treatment. 

In the supercritical regime, there is always some positive probability that the tumor survives, 

although this probability will be small for low epimutation rates (μ ≪ 10−6). For example, 

the tumor survival probability corresponding to μ = 10−10 and ν = 10−4 in Figure 3a is 

0.017%, since in this case, epimutations are so infrequent that the type- 1 state is unlikely to 

be adopted by any type-0 cell before the population goes extinct. For high epimutation rates 

(μ ≫ 10−6), however, the type-1 buffer that accumulates at the start of treatment becomes so 

large that tumor survival is guaranteed whenever the population is supercritical, while 

extinction is guaranteed whenever the population is subcritical.

The threshold value μ′ ~ 10−6 per hour represents the minimal epimutation rate at which 

tumor survival is certain, given a supercritical population. In Appendix F, we show that the 

epimutation rate at which the survival probability is at least 1−u (u ≪ 1) is

μ′ ≈ λ0 logu
nlog d1/r1

. (11)

The threshold value μ′ thus depends on the drug-sensitivity λ0 of type-0 cells, the 

robustness of the resistant phenotype (d1/r1 is the extinction probability of a type-1 clone, 

assuming no epimutations or reversions, see e.g. [47]), and the initial population size n. An 

order of magnitude change in λ0 or n will result in an order of magnitude change in μ′, and 

in Table H.2 in Appendix H, we show some examples of sensitivity to r1 and d1. For the 

baseline parameter regime and u = 0.001, expression (11) yields μ′ ≈ 3.59 · 10−6 per hour, 

compared to a type-0 birth rate of r0 = 0.04 per hour. This implies that if the resistant 

phenotype is adopted once in every 10,000 cell divisions during treatment, the tumor is 

guaranteed to survive, even if no resistant cell preexists in the population. For larger tumor 

sizes, e.g. n = 108 or n = 1010 cells, the required adoption rate lowers to once every 106 and 

once every 108 cell divisions, respectively, which are frequencies typical of resistance-

conferring mutations (Appendix A). Since epigenetic modifications and other non-genetic 
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mechanisms can operate much faster, the above discussion implies that the mere possibility 

of non-genetically conferred resistance can all but guarantee its emergence, especially when 

the tumor is large at detection.

It is worth noting that the transition from guaranteed tumor survival to guaranteed extinction 

in Figure 3a is much more gradual around the threshold value μ′ ~ 10−6 per hour on the μ-

axis than around the critical value ν′ ~ 10−3 on the ν-axis. This reflects the asymmetric role 

of type-0 and type-1 cells, and of epimutations and reversions, in the evolutionary dynamics. 

Lowering the epimutation rate μ will reduce the type-1 buffer that accumulates at the start of 

treatment, which gradually impairs the collective survival prospects of type-1 cells. On the 

other hand, since any reversion from type-1 to type-0 effectively amounts to cell death in our 

setting, increasing the reversion rate ν will directly affect the survival prospects of 

individual type-1 cells. As long as ν is smaller than the critical value, each type-1 cell has 

some positive probability of persisting therapy, and given a sufficiently large type-1 buffer 

(i.e. sufficiently high epimutation rate μ), the tumor as a whole can be guaranteed to survive. 

Once ν increases above the critical value, however, each individual type-1 cell becomes 

certain to go extinct, and the same goes for the tumor as a whole, no matter how large the 

buffer is. This explains why for high epimutation rates (μ ≫ 10−6), we observe such a sharp 

transition between guaranteed tumor survival and guaranteed extinction across the critical 

curve for ν.

Identifying where a particular cancer cell population falls within the (μ, ν) parameter space 

can yield important insights into the relative attractiveness of targeting μ and ν with an 

epigenetic drug, and the degree to which these parameters should be perturbed. When μ ~ 

10−6 and ν ≪ 10−3 per hour, for example (region (I) in Fig 3a), inhibiting epimutations 

(reducing μ) may significantly reduce the tumor survival probability, while inducing 

reversions (increasing ν) may accomplish little. When μ ≫ 10−6 and ν ~ 10−3 per hour, 

however (region (II) in Fig 3a), a slight perturbation to the reversion rate may be the 

difference between certain tumor survival and certain extinction. This suggests that even if 

no resistant cell preexists treatment, it may be more effective to revert resistant cells created 

during the initial stages of therapy than to prevent their emergence. We also note the 

importance of identifying the relationship between ν and λ1 for therapeutic considerations. 

Indeed, recognizing that a small perturbation to the average retention of the resistant 

phenotype may yield significant treatment benefits can help minimize the risk of any 

unwanted side effects of the epigenetic treatment.

For the case where permanent resistance mechanisms are assumed (η > 0 and ξ0, ξ1 > 0), 

the probability of tumor survival can be derived by solving a system of nonlinear equations 

as shown in Appendix G. Figure 3b shows that in this case, the tumor can survive even if the 

population of type-0 and type-1 cells is subcritical. Indeed, if the epimutation rate μ is 

sufficiently high, the large type-1 buffer created at the start of treatment may allow even a 

subcritical type-1 phenotype to hold off extinction long enough for bona fide resistance to 

develop.

If we assume that a significant number of resistant cells preexists therapy (m ≫ 0), the 

survival probability becomes insensitive to changes in μ under treatment, since the type-1 
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buffer needed to save the tumor from extinction will already be present at the onset (Fig 3c). 

It remains true, however, that a small perturbation to the reversion rate can turn certain 

therapy failure into certain success.

4.3. Pathway to stable resistance and rate of acquisition

We now examine the mode and speed of stable resistance acquisition (η > 0 and ξ0,ξ1 > 0) 

during continuous anti-cancer treatment. In Figure 4a, we show the average time at which 

the first stably resistant (type-2) cell arises in the population, as a function of the epimutation 

rate μ, given that a type-2 cell emerges before extinction of the population. In Figure 4b, we 

show the probability of the conditioning event, and the probability that stable resistance is 

conferred through mutation as opposed to epigenetic reprogramming.

We first assume that no transiently resistant (type-1) cell is present at the onset (m = 0; solid 

curves). We again note a transition in the dynamics around a threshold value of μ ~ 10−6 per 

hour, and interestingly, the average time to resistance is both non-monotonic and highly 

variable in μ (Fig 4a; solid curve). When μ is small (μ≪ 10−6), epimutations are so 

infrequent that the tumor can only survive via mutation in the type-0 population. Since 

type-0 cells decay at a fast rate, any such mutation has to occur early if it is to occur at all. 

As μ increases, the burden of saving the tumor from extinction moves increasingly from 

type-0 to type-1 cells (Fig 4b; light solid curve), which creates a new pathway for resistance 

acquisition at a later time. Once the role of type-0 and type-1 cells in conferring resistance 

becomes stabilized, however, the mean acquisition time starts to decrease as μ increases, 

since the type-1 population is created earlier and in greater numbers. If a significant number 

of type-1 cells is present at the onset (m ≫ 0), resistance will be guaranteed to form 

independently of the epimutation rate under treatment (Fig 4b; dark dashed curve), and the 

expected acquisition rate will be insensitive to μ for small μ (Fig 4a; dashed curve), since 

resistance will most likely develop through the type-1 population that preexists treatment 

(Fig 4b; light dashed curve).

In Figure 5a, we consider time to resistance as a function of the reversion rate ν instead. We 

again observe nonmonotonicity and significant variability, with resistance development 

being slowest around the critical value ν ~ 10−3 per hour. In this case, however, the rate of 

resistance acquisition is generally insensitive to changes in ν for small ν, and the transition 

around the critical value ν′ ~ 10−3 is much sharper than around the threshold value μ′ ~ 

10−6 in Figures 4a and 4b. For small ν, stable resistance is mediated primarily through 

epigenetic reprogramming (Fig 5b; light solid curve), so time to resistance is governed by 

the size of the type-1 population. Since the net proliferation rate λ1 – ν determines net 

growth of type-1 cells, the rate of resistance acquisition is not affected by ν as long as ν ≪ 
λ1. As ν approaches λ1, however, the net proliferation rate λ1 – ν approaches zero, and 

epigenetic reprogramming slows down considerably. As ν increases above λ1, the 

population becomes subcritical, and the probability of tumor survival decreases abruptly 

(Fig 5b; dark solid curve), similarly to what we observed in Section 4.2. During this sharp 

transition, the burden of saving the tumor from extinction moves from the type-1 to the 

type-0 population (Fig 5b; light solid curve), and since any mutation in the type-0 population 

must occur early if it is to occur at all, the time to resistance also decreases abruptly as ν 
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enters the subcritical regime. Contrary to Figures 4a and 4b, we now observe the same 

qualitative behavior for the m = 0 (solid curves) and m ≫ 0 (dashed curves) cases, which 

mirrors our discussion from Section 4.2.

The above observations add an interesting layer to our earlier discussion on the effect of 

manipulating μ and ν on treatment outcome. As an example, when μ ≫ 10−6 per hour, 

inhibiting epimutations (reducing μ) may not do much to prevent acquired resistance, but it 

can slow it down considerably. Moreover, any perturbation to the reversion rate ν when it is 

around its critical value may dramatically affect the rate of resistance acquisition. Note that 

when μ is around its threshold value of μ ~ 10−6, resistance will be expected to arise 

extremely late, while still being guaranteed to develop. The former is a consequence of the 

slow-cycling nature of the resistant phenotype, while the latter is a consequence of its rapid 

adoption under treatment. This is an important feature of epigenetically-mediated resistance, 

and this behavior stands in stark contrast to more robust genetically-resistant phenotypes that 

are adopted less frequently.

4.4. Evaluation of combination treatment strategies

To further illustrate how our model can aid medical decisionmaking, we now examine a 

combination treatment of an anti-cancer agent and a hypothetical epigenetic drug that 

directly targets the rates of epimutation (μ) and reversion (ν). Our main questions are 

whether such a combination is likely to be effective, and whether the epigenetic drug should 

be applied as pretreatment, posttreatment, or simultaneously with the anti-cancer agent. To 

evaluate treatment outcome, we use the following expression for the probability that a 

successful type-2 cell (i.e. a type-2 cell that gives rise to a clone that does not go extinct) has 

emerged by time t,

1 − exp − λ2
r2 ∫0

t
ξ0r0ϕ0(s) + ξ1r1ϕ1(s) + ηϕ1(s) ds (12)

derived in Appendix G. Using (3), we can derive explicit expressions for the integrals in (12) 

as follows:

∫
0

t
ϕ0(s)ds = − β

σ 1 − eσt − α
ρ 1 − eρt ,

∫
0

t
ϕ1(s)ds = − γβ

σ 1 − eσt + δα
ρ 1 − eρt ,

(13)

assuming σ ≠ 0 and ρ ≠ 0. These two integrals can be interpreted as the average ’total mass’ 

of type-0 and type-1 cells, respectively, up until time t.

We assume that each treatment cycle consists of three two-day blocks and we examine four 

schedules. In Schedule A, the epigenetic drug is applied as pretreatment to the anti-cancer 

agent, whereas in Schedules B, C and D, the anti-cancer agent is applied during the first two 

blocks of each cycle, and the epigenetic drug is applied during the first, second or third 

block, respectively (Fig 6a). We show results assuming that the epigenetic drug increases the 

reversion rate ν by two orders of magnitude and decreases the epimutation rate μ to the same 
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extent, while noting that our insights are robust to significant variation in this assumption 

(Appendix H). We also note that the relatively short duration of each treatment cycle is a 

function of the rapid in vitro dynamics of our baseline parameter regime. If each rate 

constant in the baseline regime is reduced by an order of magnitude, which may more 

accurately represent in vivo dynamics, the results shown below will continue to hold 

unchanged if we use 60-day treatment cycles instead of 6-day cycles.

Figure 6b indicates that whereas the anti-cancer agent alone is guaranteed to fail, combining 

it with a drug that disturbs the epigenetic switching dynamics has the potential to eradicate 

the tumor with high probability. Pretreatment with the epigenetic drug performs the worst by 

far (Schedule A; red solid curve), which is due to the fast proliferation of type-0 cells in the 

absence of the anti-cancer agent, and the relatively fast acquisition of the resistant phenotype 

in its presence. This both increases the risk of a resistance-conferring mutation during the 

initial pretreatment phase, and ensures that type-1 cells killed during this phase are rapidly 

replenished once the anti-cancer agent is applied (Fig 6c). Schedule A continues to perform 

the worst even if we assume that the tumor population cannot expand beyond its initial size 

due to spatial constraints, which we model by setting r0 = d0 = 0.04 per hour during the 

initial pretreatment phase (red dashed curves). This implies that pretreatment with an 

epigenetic drug may not be judicious when drug-sensitive type-0 cells proliferate too rapidly 

in the absence of the anti-cancer agent and/or when the resistant type-1 phenotype is adopted 

too quickly under treatment. This insight is consistent with experimental findings by Sharma 

et al. [13], where the authors observe that simultaneous application of erlotinib and the 

histone deacetylase inhibitor TSA to PC9 cells eliminates the emergence of resistant clones, 

whereas a substantial number of such clones arises when extended pretreatment with TSA is 

followed by exposure to erlotinib.

Focusing now on the other three schedules (B, C and D), we note that the number of type-1 

cells remaining at the end of each treatment cycle is similar for each of them (Fig 6c). 

Schedule B performs the best, however, since it contains the type-1 population as early as 

possible in each cycle, which reduces the ’total mass’ of type-1 cells in the presence of the 

anti-cancer agent and slows down epigenetic reprogramming by (12). This finding is robust 

to significant perturbation of main model parameters, and the relative attractiveness of 

Schedule B over the other schedules can be much more pronounced than shown here, e.g. 

when the rate of epimutation (μ) or epigenetic reprogramming (η) is higher, or the initial 

tumor size (n + m) is larger (Appendix H). As an example, when n = 108 · 0.999 and m = 

108 · 0.001, with other parameters unchanged, resistance will be all but guaranteed to form 

in Schedules A, C and D, while Schedule B is capable of preventing resistance via 

epigenetic reprogrammming with high probability (Fig H.1d).

Our results indicate both that combining an epigenetic drug with an anti-cancer agent can 

vastly outperform anti-cancer only treatment, and that the epigenetic drug should be applied 

simultaneously with the anti-cancer agent. These insights are consistent with experimental 

findings e.g. by Su et al. [32], who find that simultaneous in vitro inhibition of the NfκB p65 

and MEK/ERK signaling axes in melanoma, in combination with the anti-cancer agent 

vemurafenib, significantly outperforms monotherapy, by arresting cell-state transitions to a 

drug-tolerant state. In Goldman et al. [33], the authors find that applying the SFK inhibitor 
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dasatinib in vivo on days 8–11 of breast cancer treatment, following two maximum tolerated 

doses of the anti-cancer agent docetaxal (DTX) on days 2 and 5, is much more effective than 

DTX-alone treatment. They further show that this treatment is preferable to applying 

dasatinib on days 2–5 (Schedule I), which shows modest improvement over stand-alone 

DTX treatment, and applying dasatinib on days 14–17 (Schedule II), which shows no 

improvement over stand-alone treatment. Although the authors in [33] refer to Schedule I as 

a ’simultaneous schedule’, the application of dasatinib on days 2–5 should not necessarily be 

expected to inhibit epimutations following the large DTX dose on day 5. Application on 

days 8–11 may be better timed both to revert already drug-tolerant cells to sensitivity and to 

“target the induction phase of DTX-induced cell state transition” as the authors put it. 

Nevertheless, this example serves as an important reminder that actual in vivo dynamics are 

likely to be more complex than captured by our simple abstraction. As an example, if the 

epimutation rate μ is influenced by anti-cancer treatment, but this effect is delayed, there 

may be reason to delay application of the epigenetic drug. Any substantial presence of drug-

tolerant cells that preexist treatment will then create a trade-off between attacking these two 

temporally distinct sources of resistance. Indeed, a more complete mechanistic and 

quantitative understanding of the dynamics of phenotypic switching at the single-cell-level, 

and how these dynamics are influenced by anti-cancer treatment, will give rise to more 

complex mathematical questions, as we address further in the discussion section.

5. Discussion

The pervasiveness of acquired drug resistance remains one of the major challenges during 

clinical management of cancer patients. We have established through our evolutionary 

modeling that non-heritable stochastic fluctuations in gene expression and short-term 

epigenetic modifications can ‘save’ a tumor from extinction in the absence of any more 

permanent resistance mechanisms. We have also seen that the potential for rapid adoption of 

non-genetic resistance implies that such resistance can be all but guaranteed to develop, even 

if no resistant cell preexists treatment and the resistant phenotype is barely viable. This 

suggests ample opportunity for non-genetic mechanisms to induce failure of conventional 

anti-cancer therapy, and it may help explain why so many tumors develop resistance without 

acquiring mutations in drug targets or activated pathways [7].

Throughout, we have highlighted how thinking in terms of our mathematical model can aid 

medical decision-making. In Section 4.2, we saw how a quantitative understanding of the 

dynamics of epimutation and reversion at the single-cell level can yield important insights 

into which parameter to attack with an epigenetic drug and the extent to which it needs to be 

perturbed. As an example, when the average retention 1/ν of the resistant phenotype is near 

a critical value of 1/λ1, a slight perturbation to ν can turn guaranteed treatment failure into 

guaranteed success. In Section 4.3, we further saw how a quantitative understanding of the 

underlying switching dynamics, and the rate at which any permanent resistance mechanisms 

are adopted, can allow us to predict the mode and time scale of resistance acquisition. We 

noted that when the resistant type-1 phenotype is slow-cycling, the expected time at which 

permanent resistance arises in the population can vary greatly depending on the epimutation 

rate μ, and that when μ is near a certain threshold value, resistance can be expected to 

develop extremely late while still being guaranteed to emerge.
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In Section 4.4, we finally observed that combining an epigenetic drug with an anti-cancer 

agent can significantly outperform anti-cancer only treatment, and that the epigenetic drug 

should be applied simultaneously with the anti-cancer agent rather than as pretreatment or 

posttreatment. We also noted that pretreatment with the epigenetic drug is not advisable 

especially when drug-sensitive cells proliferate too rapidly in the absence of the anti-cancer 

agent, or the resistant phenotype is adopted too quickly in its presence. It should of course 

be stressed that our model is highly simplified. As an example, we have not assumed any 

delay in the potential drug-induced adoption of transient resistance under anti-cancer 

treatment, and we have not assumed any interaction between the anti-cancer agent and the 

epigenetic drug. Also, whereas we have assumed that the drug-resistant phenotype is 

continuously slow-cycling, it may respond to drug pressure by entering a quiescent state 

before resuming proliferation. Finally, our model does not incorporate spatial effects or 

toxicity constraints, all of which may call for modifications or extensions to the model as our 

biological understanding accumulates.

Our analysis represents, as far as we know, a first attempt toward a deeper understanding of 

the evolutionary dynamics of a population that is able to employ transiently resistant cell 

states to escape anti-cancer therapy. The model presented is flexible in that it enables 

description of a variety of sources of phenotypic heterogeneity, and the analytical 

expressions we have derived allow for easy estimation and comparison of treatment 

outcomes under different regimens. Our investigation is theoretical in nature, however, and 

the true power of our mathematical model will only be realized through a more complete 

mechanistic understanding of the dynamics of phenotypic switching at the single-cell-level, 

and through new methods to infer these dynamics quantitatively. Our hope is that a 

combined biological and mathematical effort will pave the way toward the design of novel 

therapeutic strategies, as well as mathematical optimization of already available drug 

combinations and treatment schedules [48, 49].
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Appendix A. Parametrization

To parametrize the model, we rely on Sharma et al.’s [13] investigation of an EGFR-mutant 

non-small-cell lung cancer (NSCLC) population (PC9) treated with 2 μM erlotinib, with 

fresh drug added every 3 days, and Hata et al.’s [37] study of the evolution of resistance 

conferred by the EGFRT790M gate-keeper mutation in PC9 cells.

Most of the discussion in the main text concerns behavior in the presence of an anti-cancer 

agent, so we start with those dynamics. Following Hata et al. [37], we assume that drug-

tolerant type-1 cells give birth at rate r1 = 0.0162 per hour and die at rate d1 = 0.015 per 

hour, and that stably resistant type-2 cells give birth at rate r2 = 0.04 and die at rate d2 = 

0.0015. Although these rates apply to treatment with 300 nM gefitinib as opposed to 2 μM 
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erlotinib, viability curves presented in [13] indicate that it is reasonable to assume similar 

rates for the case of 2 μM erlotinib treatment.

In Sharma et al. [13], the authors report that under 9 days of continuous anti-cancer 

treatment, almost all cells in the population die, while persister cells corresponding to 

around 0.27% ± 0.21% of the original population survive. Assuming exponential decay of 

the drug-sensitive type-0 population, we estimate a net birth rate of λ0 = −0.04 per hour for 

type-0 cells and set r0 = 0.04 and d0 = 0.08, where we assume without loss of generality that 

the anti-cancer agent increases the death rate of type-0 cells without affecting their birth rate 

(the birth rate of type-0 cells in the absence of the anti-cancer agent is r0 = 0.04 as is 

discussed below). Note that if we assume instead that the drug decreases the birth rate of 

type-0 cells, with the net birth rate λ0 = −0.04 unchanged, the type-0 population will decay 

at the same net rate as before, but the mutation rate r0ξ0 of type-0 cells will decrease 

proportionally to the decrease in r0. We can therefore view variation in the effect of the drug 

on the birth rate r0 as equivalent to variation in the mutation rate ξ0.

The rates μ of epimutation and v of reversion are more difficult to estimate, since it is not 

clear in [13] how many of the type-1 persister cells that survive the first 9 days of treatment 

are present at the onset. However, the authors do conclude from experiments applying the 

histone deacetylase inhibitor TSA as pretreatment to erlotinib that type-1 cells do emerge de 
novo during treatment. For our baseline parameter regime, we will assume that around half 

the cells that survive the first 9 days of treatment are present at the onset and set μ = 4 · 10−5 

per hour accordingly, which implies that an epimutation occurs once in every 1,000 divisions 

of a type-0 cell. In determining v, we assume that cells transition more freely out of the 

resistant state than into it and set v = 4 · 10−4, which is consistent with observed phenotypic 

switching dynamics between persister cells and normal cells in Escherichia coli bacterial 

populations [50], and between stem-like and non-stem-like cells in breast cancer [31].

The point mutation rate per nucleotide per cell division has been estimated as 5 · 10−10 [47]. 

To obtain the rate of mutations that confer resistance to anti-cancer therapy, this number 

needs to be multiplied by the number of resistance-conferring point mutations. Following 

e.g. [37] and [51], we assume a baseline rate of ξ0 = ξ1 = 10−7 per cell division, although a 

reasonable range can be anywhere from 10−9 to 10−5, which is the range suggested by [47] 

for mutations leading to cancer. This assumption on ξ0 and ξ1 translates into a mutation rate 

of r0ξ0 = 4 · 10−9 per hour for type-0 cells and r1ξ1 = 1.62 · 10−9 per hour for type-1 cells.

Table A.1:

Baseline parameter regime in the presence of an anti-cancer agent. All rates are measured 

per hour, except the mutation rates ξ0 and ξ1, which are measured per cell division.

Presence of drug

r0 0.04

d0 0.08

r1 0.0162

d1 0.015
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Presence of drug

μ 4 · 10−5

ν 4 · 10−4

η 4 · 10−7 or 4 · 10−8

ξ0 = ξ1 10−7

r2 0.04

d2 0.0015

As for the rate η of epigenetic reprogramming, we note that measurements provided by 

Bintu et al. [41] of the dynamics of epigenetic silencing under recruitment of chromatin 

regulators suggest that it may be natural to assume that η is around 1–2 orders of magnitude 

lower than μ. We will apply η = 4 · 10−7 or η = 4 · 10−8 as our baseline rate depending on 

the context, which is 2–3 orders of magnitude smaller than μ, and 1–2 orders of magnitude 

larger than the mutation rates r0ξ0 and r1ξ1. As is the case for the mutation rate, one can 

expect significant variation in the epigenetic reprogramming rate depending on the cancer 

type, the anti-cancer agent being applied and the concentration of this agent. We also note 

that ‘stable epigenetic resistance’ may not even be a well-defined concept if epigenetic 

reprogramming occurs in a multi-stage or continuous fashion, with each stage leading to an 

increasingly stable phenotype, which is either less likely to revert back to sensitivity once 

removed from drug or does so on a longer time scale.

In the main text, we show all results assuming an initial population size of 106 cells, 

following the in vitro experiments conducted by Sharma et al. We note that 106 refers to the 

effective population size, i.e. those tumor cells that are capable of undergoing phenotypic 

switching, which may only apply to a subset of tumor cells [52]. We also note that the initial 

population size should be viewed in context of the mutation rates r0ξ0 = 4 · 10−9 and r1ξ1 = 

1.62 · 10−9 and the reprogramming rates η = 4 · 10−7 or η = 4·10−8, since the relationship 

between these three parameters largely determines the dynamics of resistance acquisition.

The only section in the main text where tumor dynamics in the absence of an anti-cancer 

agent are considered is Section 4.4. Since most of the data referenced above concerns 

behavior in the presence of drug, we will mostly assume that the dynamics on and off drug 

are identical, with the important exception of the birth and death rate of type-0 cells, which 

we assume to be r0 = 0.04 and d0 = 0.0015 off drug, following Hata et al. [37]. The resulting 

parameter values (Table A.2) therefore reflect the qualitative setting where type-0 cells 

proliferate rapidly in the absence of drug but die rapidly in its presence, and type-1 cells 

proliferate slowly both on and off drug. The assumption that type-1 cells are at a selective 

disadvantage off drug is not essential to our results, as is discussed in Appendix H below.
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Table A.2:

Baseline parameter regime in the absence of an anti-cancer agent. All rates are measured per 

hour, except the mutation rates ξ0 and ξ1, which are measured per cell division.

Absence of drug

r0 0.04

d0 0.0015

r1 0.0162

d1 0.015

μ 4 · 10−5

ν 4 · 10−4

η 0

ξ0 = ξ1 10−7

r2 0.04

d2 0.0015

We finally note that according to the above dynamics, type-1 cells will constitute around 

0.11% of the population during long-term expansion in the absence of drug and at the start 

of treatment. In the main text, we generally consider both the case where no type-1 cell is 

present at the start of anti-cancer treatment (m = 0), and the case where type-1 cells 

constitute 0.1% of the population at the onset (m ≫ 0).

Appendix B. Two-type Markovian branching processes

Here, we derive expression (3) in the main text and describe some of its properties. For the 

case η = 0 and ξ0 = ξ1 = 0 our model reduces to a two-type continuous-time Markovian 

branching process [39]. Let X(t) = (X0(t), X1(t)) denote such a process, where the two types 

are designated as type-0 and type-1. Associated with X(t) is the mean matrix M(t) = {mij(t) : 
(i, j) ∈ {0,1}2}, defined by

mij(t) = E Xj(t) X(0) = ei , (i, j) ∈ 0, 1 2,

where ei denotes the unit vector with 1 in the i-th coordinate, and the infinitesimal generator 
A = {aij : (i, j) ∈ {0, 1}2}, which satisfies

M(t) = exp(At), t ≥ 0.

We can interpret mij(t) as the mean number of type-j particles alive at time t, given that the 

process is started by a single type-i cell, and aij as the infinitesimal rate at which a type-i cell 

produces a type-j cell. We assume that a12, a21 > 0, i.e. the rates of switching between types 

are strictly positive. For further discussion on the above matrices, see [39].
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Let ϕ0
(n, m)(t) and ϕ1

(n, m)(t) denote the mean number of type-0’s and type-1’s alive at time t, 

assuming initial conditions (X0(0), X1(0)) = (n, m), where n and m are nonnegative integers 

with n + m > 0. Using the mean matrix, we can easily compute these means as

[ϕ0
(n, m)(t) ϕ1

(n, m)(t)] = [n m]M(t) . (B.1)

Note that the infinitesimal generator A possesses distinct real eigenvalues ρ < σ given by

a11 + a22 ± a11 − a22
2 + 4a12a21

2 , (B.2)

which follows from our assumption that a12 > 0 and a21 > 0. The eigenvalues of M(t) = 

exp(At) are then easily obtained as eρt and eσt. If we define δ := (a11 − ρ)/a21 and γ := (σ – 

a11)/a21, it is easily established that v = [1 δ] and w = [1 γ] are left eigenvectors of A with 

respect to ρ and σ, respectively. Decomposing [n m] in terms of v and w, we can then 

compute the means in (B.1) explicitly as

ϕ0
(n, m)(t) = nδ + m

δ + γ eσt + nγ − m
δ + γ eρt,

ϕ1
(n, m)(t) = γ(nδ + m)

δ + γ eσt − δ(nγ − m)
δ + γ eρt .

(B.3)

If we define α := (nγ – m)/(δ + γ) and β := (nδ + m)/(δ + γ), we can simplify these 

expressions further to

ϕ0
(n, m)(t) = βeσt + αeρt,

ϕ1
(n, m)(t) = γβeσt − δαeρt .

(B.4)

Note that although we do not show it explicitly, the constants α and β depend on the initial 

conditions (n, m), whereas γ, δ, σ and ρ are completely determined by the infinitesimal 

generator A.

We next establish that that a11 – ρ > 0 and σ – a11 > 0, which will imply that γ > 0, δ > 0 

and β > 0 in (B.3) and (B.4). By rewriting (B.3) as

ϕ0
(n, m)(t) = n

δ + γ δeσt + γeρt + m
δ + γ eσt − eρt ,

ϕ1
(n, m)(t) = nδγ

δ + γ eσt − eρt + m
δ + γ γeσt + δeρt ,

and noting that ρ < σ, it will also follow that the expected number of type-0’s and type-1’s is 

strictly positive for all t > 0, i.e. X(t) is a positive-regular process [39].

To show that a11 – ρ > 0 and σ – a11 > 0, we first note that since ρ is an eigenvalue for A, we 

have (a11 – ρ)(a22 – ρ) = a12a21. By our assumption that a12, a21 > 0, the terms a11 – ρ and 

a22 – ρ must then be nonzero and have the same sign. Using (B.2), we get since a12, a21 > 0:

Gunnarsson et al. Page 19

J Theor Biol. Author manuscript; available in PMC 2021 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ρ =
a11 + a22 − a11 − a22 2 + 4a12a21

2
<

a11 + a22 − a11 − a22
2

=
a11 if a11 ≤ a22
a22 if a11 > a22 .

This implies that a11 – ρ > 0 or a22 – ρ > 0 depending on the relationship between a11 and 

a22. Since a11 – ρ and a22 – ρ have the same sign, one being positive implies that the other 

one is as well, so in both cases, we have a11 − ρ > 0 and a22 − ρ > 0. A similar argument 

confirms that σ − a11 > 0.

Now let

ϕ(n, m)(t): = ϕ0
(n, m)(t) + ϕ1

(n, m)(t)

denote the expected total number of cells (type-0 and type-1) alive at time t, starting from n 
type-0 cells and m type-1 cells. By (B.4), we can write

ϕ(n, m)(t) = β(1 + γ)eσt + α(1 − δ)eρt . (B.5)

We then obtain the following expressions for the expected size of a clone, at time t, started 

by a single cell of each type:

ϕ(1, 0)(t) = δ(1 + γ)
δ + γ eσt + γ(1 − δ)

δ + γ eρt,

ϕ(0, 1)(t) = 1 + γ
δ + γ eσt − 1 − δ

δ + γ eρt .
(B.6)

We conclude by discussing large-t asymptotics. Since σ > ρ, the long-run behavior will be 

dominated by the former term in (B.3), (B.4), (B.5) and (B.6). In particular, we can write

ϕ0
(n, m)(t) = βeσt + o eσt ,

ϕ1
(n, m)(t) = γβeσt + o eσt ,

(B.7)

and

ϕ(1, 0)(t) = δ(1 + γ)
δ + γ eσt + o eσt ,

ϕ(0, 1)(t) = 1 + γ
δ + γ eσt + o eσt ,

(B.8)

where o(eσt) denotes a function that satisifies o(eσt)/eσt → 0 as t → ∞. Note that from 

(B.7), it is clear that γ is the long-run ratio between type-1’s and type-0’s in the population, 

and from (B.8), we see that δ is the long-run ratio between mean clone size started by a 

single type-0 cell vs. a single type-1 cell. This gives an intuitive interpretation of δ and γ in 
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(B.3), (B.4), (B.5) and (B.6), while α and β depend on n, m, δ and γ through α = (nγ − m)/

(δ + γ) and β = (nδ + m)/(δ + γ).

Appendix C. Extinction probabilities

We continue to assume the absence of permanent resistance mechanisms (η = 0 and ξ0 = ξ1 

= 0), which implies that our model still reduces to a two-type branching process 

(X0(t),X1(t)). Define

p0: = P X0(t) + X1(t) = 0 for some t X0(0) = 1, X1(0) = 0 ,
p1: = P X0(t) + X1(t) = 0 for some t X0(0) = 0, X1(0) = 1 ,

as the extinction probabilities of clones started by a single cell of each type. Note that if we 

start the process with a single type-0 cell, the initial event in the process will be a (i) cell 

division with probability r0/(r0 + d0 + μ), (ii) cell death with probability d0/(r0 + d0 + μ), and 

a switch to type-1 with probability μ/(r0 + d0 + μ). If the initial event is a cell division, an 

additional type-0 cell will be created and the process goes extinct if and only if both cells go 

extinct, which occurs with probability p0
2. If the initial event is a switch between types, the 

new type-1 cell will go extinct with probability p1. Therefore, by conditioning on whether 

the initial event is a division, death or switch between types, we can derive the following 

conditions for p0 and p1:

p0 =
r0

r0 + d0 + μ ⋅ p0
2 +

d0
r0 + d0 + μ ⋅ 1 + μ

r0 + d0 + μ ⋅ p1,

which yields

r0 + d0 + μ ⋅ p0 = r0p0
2 + d0 + μp1 .

By the same argument for a process started with a single type-1 cell, we obtain the following 

nonlinear system for p0 and p1:

r0 + d0 + μ ⋅ p0 = r0p0
2 + d0 + μp1,

r1 + d1 + ν ⋅ p1 = r1p1
2 + d1 + νp0 . (C.1)

When σ > 0 and the process is supercritical, we have p0 < 1 and p1 < 1 which are uniquely 

determined by these two equations, while when σ < 0, we have p0 = 1 and p1 = 1 [39].

Note that the classification into supercritical and subcritical is independent of the initial 

conditions (X0(0), X1(0)) = (n, m) (a change in initial conditions does not affect the 

extinction probability of a single-cell derived clone). The initial conditions do however 

affect the survival probability of the population as a whole. Indeed, the survival probability 

for a population starting with n type-0 cells and m type-1 cells is

Gunnarsson et al. Page 21

J Theor Biol. Author manuscript; available in PMC 2021 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 − p0
np1

m, (C.2)

since the population goes extinct if and only if each individual type-0 cell and each 

individual type-1 cell goes extinct, which occurs with probability p0
np1

m by independence.

Appendix D. Conditions for supercriticality

Here, we derive condition (7) in the main text. We again let (X0(t), X1(t)) denote the 

stochastic process corresponding to the model in the absence of permanent resistance 

mechanisms (η = 0 and ξ0 = ξ1 = 0).

Lemma 1. Assume λ0 < 0, λ1 > 0, μ > 0 and ν > 0.

1. (X0(t), X1(t)) is subcritical if νλ0 + μλ1 < λ0λ1, critical if νλ0 + μλ1 = λ0λ1 

and supercritical if νλ0 + μλ1 > λ0λ1.

2. A sufficient condition for supercriticality is λ1 ≥ ν.

Proof. It is trivial to check, by determining the sign of the larger eigenvalue σ in (4) in the 

main text, that

i. (X0(t),X1(t)) is subcritical if λ0+λ1 < μ+ν and νλ0+μλ1 < λ0λ1.

ii. (X0(t),X1(t)) is critical if λ0 + λ1 < μ + ν and νλ0 + μλ1 = λ0λ1

iii. (X0(t), X1(t)) is supercritical if λ0 + λ1 ≥ μ + ν or νλ0 + μλ1 > λ0λ1.

What remains to show is that the first condition is redundant in each case, and that (iii) is 

satisfied when λ1 ≥ ν.

Note first that if λ1 ≥ ν, we have

νλ0 + μλ1 − λ0λ1 = λ0 ν − λ1 + μλ1 ≥ μλ1 > 0.

since λ0 < 0, μ > 0 and λ1 > 0, from which supercriticality follows. This establishes (2). 

Then note that since λ1 ≥ ν implies: νλ0 + μλ1 > λ0λ1, and we have ν – λ0 > 0, we get

νλ0 + μλ1 ≤ λ0λ1 λ1 < ν λ1 < μ + ν − λ0,

which shows that the first condition in (i) and (ii) above is implied by the second condition. 

Using what we have proven, we additionally have

λ0 + λ1 ≥ μ + ν λ1 ≥ ν νλ0 + μλ1 − λ0λ1 > 0,

showing that the second condition in (iii) above contains the first one. □

Gunnarsson et al. Page 22

J Theor Biol. Author manuscript; available in PMC 2021 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix E. Alternate version of the model

In our baseline model, we assume that epimutations and reversions can occur at any time 

during the cell cycle. If we instead want a model where these events only occur at cell 

divisions, we proceed as follows, assuming again the absence of permanent resistance 

mechanisms (η = 0 and ξ0 = ξ1 = 0).

Let u denote the probability of epimutation at each division of a type-0 cell and v denote the 

probability of reversion at each division of a type-1 cell. A type-0 cell then divides into two, 

type-0 cells at rate r0(1 − u) and it produces one type-0 and one type-1 cell at rate r0u. 

Similarly, a type-1 cell divides into two type-1 cells at rate r1(1 − ν) and it produces one 

type-0 and one type-1 cell at rate r1ν. These dynamics can be captured by the: infinitesimal 

generator

A =
r0(1 − u) − d0 r0u

r1ν r1(1 − ν) − d1
=

λ0 − r0u r0u
r1ν λ1 − r1ν .

Note that this infinitesimal generator has the same form as the generator (1) for our baseline 

model if we define μ := r0u and: ν := r1ν. This implies that the mean behavior of this new 

model· is identical to the mean behavior of our original model, and all expressions of 

Appendix B apply by making the above substitution. The models are distinct, however, on a 

sample-path basis, which is reflected e.g. in distinct extinction probabiltities. These 

probabilities are now determined by the equations

r0 + d0 ⋅ p0 = r0(1 − u)p0
2 + d0 + r0up0p1,

r1 + d1 ⋅ p1 = r1(1 − ν)p1
2 + d1 + r1νp0p1,

which in general yield different solutions to (C.1).

Appendix F. Threshold value for μ

In the main text, we examine the survival probability of a tumor under continuous anti-

cancer therapy, assuming no transiently resistant cell is present at the start of treatment (m = 

0). We observe a threshold value μ′ which is the minimal epimutation rate that guarantees 

long-term survival of the resistant population. Here, we are interested in deriving an 

expression for this threshold value.

Let Y0(t) denote the number of type-0 cells still alive t time units into anti-cancer treatment, 

and let Y1(t) denote the number of type-1 cells that have been produced through type-0 

epimutations up until time t. Since we are only interested in what happens during the initial 

stages of treatment, and the type-1 population is assumed to be small compared to the initial 

type-0 population, we ignore reversions from type-1 to type-0 and thus assume that the 

type-0 population decays at an exponential rate |λ0|, with initial population size Y0(0) = n.

Note that given Y0(s) for 0 ≤ s ≤ t, the type-0 population produces a type-1 cell at rate 

μY0(s) at time s. Therefore,
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E Y1(t) Y0(s), s ≤ t = ∫0
t
μY0(s)ds,

from which we conclude

E Y1(t) = ∫0
t
μne− λ0 sds = nμ

λ0
1 − e− λ0 t .

Note that E Y 1(t) nμ/ λ0  as t → ∞, so approximately

nμ/ λ0 (F.1)

type-1 cells are created during the initial stages of treatment, during which most of the 

type-0 population is eradicated.

Now let u ≪ 1. The number of type-1 cells, N1, needed to guarantee that the resistant 

population survives with probability 1 − u satisfies

1 − d1/r1 N1 ≥ 1 − u,

where we use that d1/r1 is the extinction probability of a type-1 clone, assuming no 

reversions to type-0 [47]. We therefore conclude that

N1 ≥ logu
log d1/r1

(F.2)

(recall that r1 > d1 by assumption). To determine the threshold epimutation rate μ′ that 

guarantees survival probability of at least 1 − u under treatment, we combine (F.1) and (F.2) 

to get

μ′ ≈ λ0 logu
nlog d1/r1

. (F.3)

Appendix G. Time to stable resistance

We are now interested in analyzing the time at which the first successful type-2 cell emerges 

in the population during continuous anti-cancer therapy. Let Z0(s) and Z1(s) denote the 

number of type-0 and type-1 cells alive at time s, now assuming the presence of permanent 

resistance mechanisms (η > 0 and ξ0,ξ1 > 0). Assume the initial conditions (Z0(0), Z1(0)) = 

(n, m) and that no permanently resistant (type-2) cell is present at the onset. Let ηeff be the 

‘effective’ reprogramming rate, i.e. the rate at which epigenetic reprogramming produces a 

successful type-2 cell (a type-2 cell that gives rise to a clone that does not go extinct), and let 

ξ0
eff and ξ1

eff be the ‘effective’ mutation rates. Then ηeff = ηλ2/r2, ξ0
eff = ξ0λ2/r2 and 
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ξ1
eff = ξ1λ2/r2, since type-2 cells form a single-type binary branching process with extinction 

probability d2/r2 = 1 − λ2/r2 [47].

Let τ denote the time of first occurrence of a successful type-2 cell. Note that at any time s, 

the total rate at which cells acquire a resistance-conferring mutation is 

r0ξ0
effZ0(s) + r1ξ1

effZ1(s), and the total rate of epigenetic reprogramming is ηeffZ1(s). If we 

condition on the history of the type-0 and type-1 population up until some time t, the number 

of type-2 cells that have emerged by time t is then Poisson distributed with mean

∫0
t

ξ0
effr0Z0(s) + ξ1

effr1Z1(s) + ηeffZ1(s) ds,

which implies that

P τ > t Z0(s), Z1(s) s ≤ t

= exp −∫0
t

ξ0
effr0Z0(s) + ξ1

effr1Z1(s) + ηeffZ1(s) ds ,

since {τ > t} is the event that no type-2 cell has emerged by time t. Taking expectations, we 

arrive at

P(τ > t)

= E exp −∫0
t

ξ0
effr0Z0(s) + ξ1

effr1Z1(s) + ηeffZ1(s) ds .

We now argue that Z0(s) and Z1(s) in the exponent can be well approximated by their means. 

Assuming the initial condition (Z0(0), Z1(0)) = (n, m), we can write

Z0(s), Z1(s) = ∑
j = 1

n
Z0, j

(0) (s), Z1, j
(0) (s) + ∑

j = 1

m
Z0, j

(1) (s), Z1, j
(1) (s) ,

where Zi, j
(k)(t) represents the number of type-i cells present at time t descended from a single 

type-k cell and {Zi, j
(k)(t): j ∈ {1, 2, …}} is an i.i.d. sequence of such random variables. Given 

sufficiently large n and m, we know by the law of large numbers that the approximation 

(Z0(s),Z1(s)) ≈ (ϕ0(s), ϕ1(s)) should be justified. To examine fluctuations around the mean, 

we note that by the central limit theorem,

∑
j = 1

n
Z0, j

(0) (s), Z1, j
(0) (s) ≈ n E[Z0, 1

(0) (s)], E[Z1, 1
(0) (s)]

+ n W 1 Var(Z0, 1
(0) (s)), W 2 Var(Z1, 1

(0) (s))

where (W1, W2) is a mean-zero bivariate Gaussian. By equation (21) of Section V.7 of [39] 

we know that there exists a C > 0 such that
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Var(Zi, 1
(0)(s)) ≤ CE[Zi, 1

(0)(s)], s > 0.

We can therefore write

∑
j = 1

n
Z0, j

(0) (s), Z1, j
(0) (s) ≈ n E[Z0, 1

(0) (s)], E[Z1, 1
(0) (s)] (1 + C/ n) .

A similar result holds for the descendants of the type-1 cells. Ignoring the second-order 

term, we arrive at

P(τ > t)
≈ exp −∫

0

t
ξ0

effr0ϕ0(s) + ξ1
effr1ϕ1(s) + ηeffϕ1(s) ds . (G.1)

Figure G.1: 
Comparison of expression (G.1) (whole curves) with simulation results (dotted curves) in the 

baseline parameter regime, assuming a starting population of n = 104 (bottom curve; left 

axis), n = 105 (middle curve; left axis) or n = 106 cells (top curve; right axis). Simulation 

results are based on 2000 runs of the process. Other parameter values are r0 = 0.04 (per 

hour), d0 = 0.08, r1 = 0.0162, d1 = 0.015, μ = 4 · 10−5, ν = 4 · 10−4, η = 4 · 10−7, ξ0 = ξ1 = 

10−7 (per cell division), and m = 0.

To test the quality of this approximation, we show in Figure G.1 a comparison between 

(G.1) and simulation results for as few as n = 104 starting cells. To calculate the mean 

number of type-0 and type-1 cells alive at time s, ϕ0(s) and ϕ1(s) in (G.1), we can apply (3) 

in the main text. Technically, the birth rates r0 and r1 should be replaced by r0 1 − ξ0
eff  and 

Gunnarsson et al. Page 26

J Theor Biol. Author manuscript; available in PMC 2021 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



r1 1 − ξ1
eff , and the death rate d1 should be replaced by d1 + ηeff, to reflect the introduction 

of permanent resistance mechanisms, but assuming ξ ≪ 1 and η ≪ d1, we can safely ignore 

this minor complication. Using (3), we can therefore calculate

∫
0

t
ϕ0(s)ds = − β

σ 1 − eσt − α
ρ 1 − eρt ,

∫
0

t
ϕ1(s)ds = − γβ

σ 1 − eσt + δα
ρ 1 − eρt ,

(G.2)

which gives an explicit expression for (G.1) assuming σ ≠ 0 and ρ ≠ 0. Note that the 

expressions in (G.2) can be interpreted as the ‘total mass’ of type-0 and type-1 cells, 

respectively, up until time t.

In the main text, we apply (G.1) and (G.2) to evaluate interval treatment strategies, where the 

anti-cancer agent is intermittently applied and removed. This can create a problem, since our 

calculations of ηeff, ξ0
eff and ξ1

eff assume that the rates r2 and d2 of birth and death of type-2 

cells do not change over time. However, since we make the assumption in our baseline 

parameter regime that r2 and d2 are identical on and off the anti-cancer agent, we do not 

have to make any adjustments to (G.1) to use it to evaluate interval treatment strategies. In 

fact, since we assume r2 = 0.04 and d2 = 0.0015 with λ2/d2 ≈ 1, we can effectively take ηeff 

= η,ξ0
eff = ξ0 and ξ1

eff = ξ1.

To determine whether stable resistance develops at all during continuous anti-cancer therapy, 

we consider the event {τ = ∞}. It is possible to estimate its probability by taking t → ∞ in 

(G.1), but then we first have to condition on whether the overall population of type-0 and 

type-1 cells goes extinct or not, since ϕ0(s) and ϕ1(s) blow up as s → ∞ for any supercritical 

process, irrespective of the likelihood that the population survives. However, it is more 

straightforward to proceed as follows. Let p0, p1 and p2 denote the extinction probabilities of 

clones started by a single cell of each type. By conditioning on the initial event, we derive 

the following conditions for these probabilities:

r0 + d0 + μ ⋅ p0 = r0 1 − ξ0 p0
2 + d0 + μp1 + r0ξ0p0p2,

r1 + d1 + ν + η ⋅ p1 = r1 1 − ξ1 p1
2 + d1 + νp0 + r1ξ1p1p2 + ηp2,

p2 = d2/r2,
(G.3)

where we use that fact that type-2 cells form a single-type binary branching process with 

extinction probability d2/r2. Note that these equations reduce to (C.1) if we set ξ0 = ξ1 = 0 

and η = 0. We can then calculate

P(τ = ∞) = p0
np1

m, (G.4)

which gives the probability that stable resistance does not develop at all during continuous 

administration of anti-cancer treatment. The probability that stable resistance does develop is 

then
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P(τ < ∞) = 1 − p0
np1

m . (G.5)

Appendix H. Robustness analysis

Survival probability

Table H.1 shows how survival probability, both at the indidividual cell level and for the 

tumor population as a whole, responds to changes in r0, d0, r1 and d1, pertinent to the 

discussion of Section 4.1.

Table H.1:

Response of the survival probability of (i) a clone started by a single type-0 cell (1 – p0), (ii) 

a clone started by a single type-1 cell (1 – p1), and (iii) the overall population of n = 106 

type-0 and m = 0 type-1 cells 1 − p0
np1

m , to changes in r0, r1, d0 and d1. The probabilities p0 

and p1 can be calculated using (C.1). In the top row, we show the baseline parameter values 

for r0, d0, r1 and d1, and the survival probabilities given these values. In the remaining lines, 

we adjust one or two parameters at a time as indicated and display survival probabilities 

given these changes. All rates are measured per hour.

r0 d0 r1 d1 1 – p0 1 – p1 1 − p0
np1

m

0.04 0.08 0.0162 0.015 0.0049% 4.94% 100%

+10% 0.0055% 4.94% 100%

+10% 0.0041% 4.94% 100%

+10% +10% 0.0045% 4.94% 100%

+10% 0.0136% 13.58% 100%

+10% 0% 0% 0%

+10% +10% 0.0052% 5.16% 100%

+50% 0.0099% 4.94% 100%

+50% 0.0025% 4.94% 100%

+50% +50% 0.0033% 4.94% 100%

+50% 0.0366% 36.63% 100%

+50% 0% 0% 0%

+50% +50% 0.0058% 5.76% 100%
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Table H.2:

Response of the threshold value μ′, as given by (11), to changes in r1 and d1. We use +∞ to 

indicate that there is no value for μ for which tumor survival is guaranteed, which is the case 

when the population is subcritical. All rates are measured per hour.

r1 d1 μ′

0.0162 0.015 3.59 · 10−6

+10% 1.60 · 10−6

+10% +∞

+10% +10% 3.59 · 10−6

+50% 0.57 · 10−6

+50% +∞

+50% +50% 3.59 · 10−6

Threshold value for μ

Table H.2 shows how the threshold value for μ, denoted as μ′ and given by (11), responds to 

to changes in r1 and d1, pertinent to the discussion of Section 4.2.

Evaluation of combination treatment strategies

We now discuss various possible changes to the assumptions underlying Figure 6 in the 

main text. In this section, we let μd and νd denote the rates of epimutation and reversion 

when the epigenetic drug is being applied to distinguish them from the rates μ and ν off the 

epigenetic drug.

Tumor size and rates of mutation and reprogramming

In the main text, we assume an initial population size of n = 106 · 0.999 and m = 106 · 0.001 

cells, an epigenetic reprogramming rate of η = 4 · 10−7 per hour, and a mutation rate of ξ0 = 

ξ1 = 10−7 per cell division. If we assume that the rate of epigenetic reprogramming is 

increased by an order of magnitude to η = 4 · 10−6, the relative attractiveness of Schedule B 

over the other schedules becomes even more pronounced than in the baseline case (Fig 

H.1a). If we also increase the mutation rate an order of magnitude to ξ0 = ξ1 = 10−6, it 

becomes more difficult to eradicate the tumor, but the relative attractiveness of the schedules 

remains unchanged (Fig H.1b).

If we increase the population size one order of magnitude to n = 107·0.999 and m = 

107·0.001, assuming the baseline values η = 4 · 10−7 and ξ0 = ξ1 = 10−7 for the rates of 

reprogramming and mutation (figure not shown), the effects will be similar to those shown 

in Figure H.1b, where the population size is as in the baseline case but both rate parameters 

are increased an order of magnitude. Thus, the relationship between initial population size 

and the rate of mutation and epigenetic reprogramming is more important than the absolute 

value of each in isolation, and any effect of increasing the population size can be negated by 
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a proportional decrease in the these rates. We also note that if the anti-cancer agent being 

applied reduces the birth rate r0 of type-0 cells, this will have the same effect as reducing the 

mutation rate ξ0 (see discussion in Appendix A above).

For an even larger initial tumor size of n = 108 · 0.999 and m = 108 · 0.001, a resistance-

conferring mutation will be guaranteed to arise no matter which schedule is applied (figure 

not shown), although we recover the same behavior as for the n = 107 · 0.999 and m = 107 · 

0.001 case if the change in size is accompanied by a smaller reprogramming rate, η = 4 · 

10−8, and a smaller mutation rate, ξ0 = ξ1 = 10−8. However, even if the initial population 

size is n = 108·0.999 and m = 108·0.001, with unchanged rates of mutation and 

reprogramming, there can still be benefits to applying a combination of an anti-cancer agent 

and an epigenetic drug, since Schedule B can prevent resistance conferred through 

epigenetic reprogramming (Fig H.1c). In fact, if we assume that the epigenetic drug is 

stronger than in the main text, so that it increases the reversion rate ν by three orders of 

magnitude and decreases the epimutation rate to the same extent, then Schedule B is able to 

prevent resistance through epigenetic reprogramming with high probability, whereas 

resistance is effectively guaranteed under any other schedule (Fig H.1d).

Different epigenetic drug action

In the main text, we assume that the epigenetic drug increases the reversion rate ν by two 

orders of magnitude, and decreases the epimutation rate μ to the same extent. In Figures 

H.1e and H.1f, we show results first assuming that the change in each is one order of 

magnitude (Fig H.1e), and then three orders of magnitude (Fig H.1f). We note that Schedule 

B continues to be the most attractive schedule, and in Figure H.1e, the difference between 

Schedule B and Schedules C,D becomes more pronounced than for the case shown in the 

main text.

Faster or slower switching dynamics

In the main text, we assume an epimutation rate of μ = 4 · 10−5 in the absence of the 

epigenetic drug, in accordance with our baseline parameter regime. In Figures H.2a and 

H.2b, we show results assuming μ = 4 · 10−4 (Fig H.2a) and μ = 4 · 10−6 (Fig H.2b), with the 

epimutation rate μd in the presence of the epigenetic drug obtained by reducing μ by two 

orders of magnitude in each case. As before, the qualitative dynamics remain similar, with 

the difference between Schedule B and the other schedules even more pronounced in Figure 

H.2a than for the baseline case.

Different treatment block sizes

In the main text, we assume that each treatment block is 2 days. In Figures H.2c and H.2d, 

we show results assuming that each block is 1 day (Fig H.2c) or 3 days (Fig H.2d), and 

observe similar results as before.
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Resistant phenotype is not at a selective disadvantage off drug

In our baseline regime, we assume that the resistant type-1 phenotype is at a selective 

disadvantage to drug-sensitive type-0 cells in the absence of the anti-cancer agent. Figure 

H.2e reveals that our results do not depend on this assumption, as if we assume r1 = r0 = 

0.04 and d1 = d0 = 0.0015 off the anti-cancer agent, Schedule B continues to perform the 

best.

Figure H.1: 
Time-evolution of the probability of successful type-2 emergence for the treatment schedules 

examined in Figure 6 in the main text. Parameters behave as in Figure 6 except in (a), η = 4 · 

10−6 (per hour), in (b), η = 4 · 10−6 and ξ0 = ξ1 = 10−6 (per cell division), in (c), n = 108 · 

0.999, m = 108 · 0.001 and ξ0 = ξ1 = 0, in (d), n = 108 · 0.999, m = 108 · 0.001, ξ0 = ξ1 = 0, 

μd = μ · 10−3 and νd = ν · 103, in (e), μd = μ · 10−1 and νd = ν · 101, and in (f), μd = μ · 10−3 

and νd = ν · 103.
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Figure H.2: 
Time-evolution of the probability of successful type-2 emergence for the treatment schedules 

examined in Figure 6 in the main text. Parameters behave as in Figure 6 except in (a), μ = 

4·10−4 in the absence of epigenetic drug, in (b), μ = 4 · 10−6 in the absence of epigenetic 

drug, in (c), the size of each treatment block is 1 day as opposed to 2 days, in (d), the size of 

each block is 3 days, and in (e), r1 = 0.04 (per hour) and d1 = 0.0015 in the absence of the 

anti-cancer agent.
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Highlights

• A mathematical model of non-genetic cancer drug resistance is investigated.

• Vulnerability of transiently resistant cells to epigenetic therapies is explored.

• Even non-heritable traits can drive long-term resistance via phenotypic 

switching.

• Small disruptions to switching dynamics can vastly improve therapy outcome.

• Combination treatment outcome depends heavily on correct drug sequencing.
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Figure 1: 
Graphical representation of the model. Type-0 (drug-sensitive) cells transition to type-1 

(transiently resistant) cells at rate μ and type-1 cells transition back at rate ν. Each 

phenotype has distinct growth characteristics, with r0 and r1 denoting the rates of cell 

division and d0 and d1 denoting the rates of cell death. In the presence of an anti-cancer 

agent, the transiently resistant type-1 phenotype undergoes epigenetic reprogramming to 

stable drug resistance at rate η. Additionally, each cell type can acquire a resistance-

conferring mutation at rate ξ0 and ξ1 per cell division, respectively, on and off drug. Stably 

resistant (type-2) cells divide at rate r2 and die at rate d2.
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Figure 2: 
(a) Graphical depiction of the region in the (μ, ν) plane where the tumor cell population is 

supercritical (the region below the line in (10)), displayed here on a logarithmic scale for 

two cases (λ1 ≪ |λ0| and λ1 ~ |λ0|). The two curves are drawn assuming r1 = 0.0162 (per 

hour) and d1 = 0.015, and r0 = 0.04 and d0 = 0.08 for the λ1 ≪ |λ0| case (baseline parameter 

regime), and r0 = 0.004 and d0 = 0.008 for the λ1 ~ |λ0| case. Since the slope of (10) is λ1/|

λ0| > 0, and it intercepts the ν-axis at ν = λ1, the population is supercritical whenever ν ≤ 

λ1, independently of the relationship between λ0 and λ1 (region A). When phenotypic 

memory is short (ν > λ1), the population can still be supercritical, the degree to which 

depends on the slope λ1/|λ0| (region B for λ1 ≪ |λ0| and regions B+C for λ1 ~ |λ0|). (b) 
Time-evolution of the expected number (log-scale) of type-0 cells (dark curve) and type-1 

cells (light curve) during continuous anti-cancer treatment, assuming no transiently resistant 

cell is present at detection (m = 0), calculated using (3). Parameter values are r0 = 0.04 (per 

hour), d0 = 0.08, r1 = 0.0162, d1 = 0.015, μ = 4 · 10−5, ν = 4 · 10−4, η = 0, ξ0 = ξ1, n = 106 

and m = 0. (c) Same as (b), except now r0 = 0.004 (per hour) and d0 = 0.008.
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Figure 3: 
(a) Probability that the tumor survives continuous anti-cancer therapy, as a function of μ and 

ν, assuming n = 106 and m = 0 and the absence of permanent resistance mechanisms (η = 0 

and ξ0 = ξ1 = 0), calculated using (C.2). The black dotted curve (’critical curve’) separates 

the regions in the (μ, ν) plane where the population is subcritical (top) and supercritical 

(bottom). This curve can be extracted from expression (10) upon logarithmic scaling (see 

Fig 2a). Region (I) in the figure indicates a parameter regime where inhibiting epimutations 

(decreasing μ) with an epigenetic drug can be an effective treatment strategy, whereas 

inducing reversions (increasing ν) does little. The reverse is true in the parameter regime of 

region (II), where a slight perturbation to the reversion rate ν can guarantee eradication of 

the tumor cell population. (b) Same as (a), now assuming η = 4 · 10−7 (per hour) and ξ0 = ξ1 

= 10−7 (per cell division), calculated using (G.5). (c) Same as (a), now assuming n = 106 · 

0.999 and m = 106 · 0.001, calculated using (C.2). Other parameter values are r0 = 0.04 (per 

hour), d0 = 0.08, r1 = 0.0162, d1 = 0.015, μ = 4 · 10−5 and ν = 4 · 10−4.
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Figure 4: 
(a) Expected time at which the first type-2 cell emerges in the population as a function of the 

epimutation rate μ, conditioned on the event that a type-2 cell emerges before extinction, 

first assuming n = 106 and m = 0 (solid curve), and then n = 106 · 0.999 and m = 106 · 0.001 

(dashed curve). Produced via simulation by running the process until a type-2 cell emerged 

on 1000 different occasions and calculating an average. (b) Probability of type-2 emergence 

(dark curves) and probability that the first type-2 cell arises through mutation (light curves). 

Other parameter values are r0 = 0.04 (per hour), d0 = 0.08, r1 = 0.0162, d1 = 0.015, ν = 4 · 

10−4, η = 4 · 10−8 and ξ0 = ξ1 = 10−7 (per cell division).
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Figure 5: 
(a) Expected time at which the first type-2 cell emerges in the population as a function of the 

reversion rate ν, conditioned on the event that a type-2 cell emerges before extinction, first 

assuming n = 106 and m = 0 (solid curve), and then n = 106 · 0.999 and m = 106 · 0.001 

(dashed curve). Produced via simulation by running the process until a type-2 cell emerged 

on 1000 different occasions and calculating an average. (b) Probability of type-2 emergence 

(dark curves) and probability that the first type-2 cell arises through mutation (light curves). 

Other parameter values are r0 = 0.04 (per hour), d0 = 0.08, r1 = 0.0162, d1 = 0.015, μ = 4 · 

10−5, η = 4 · 10−8 and ξ0 = ξ1 = 10−7 (per cell division).
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Figure 6: 
(a) Schematic representation of one treatment cycle in the schedules considered. Each 

schedule is identified by a distinct color which is also applied in (b) and (c). (b) Time-

evolution of the probability of successful type-2 emergence, first when the anti-cancer agent 

is applied alone during the first two blocks of each cycle (blue curve), and then for the four 

schedules depicted in (a), calculated using (12). Under the anti-cancer agent, r0 = 0.04 (per 

hour) and d0 = 0.08, while off it, r0 = 0.04 and d0 = 0.0015. Under the epigenetic drug, μ = 4 

· 10−7 and ν = 4 · 10−2, while off it, μ = 4 · 10−5 and ν = 4 · 10−4. The dashed red line shows 

a modification of Schedule A where r0 = d0 = 0.04 during the first 2-day block of the first 

treatment cycle. (c) Time-evolution of the expected number of type-1 cells for the same 

schedules as considered in (b), calculated using (3). Parameters not mentioned above are 

fixed at r1 = 0.0162 (per hour), d1 = 0.015, η = 4 · 10−7, ξ0 = ξ1 = 10−7 (per cell division), n 
= 106 · 0.999 and m = 106 · 0.001. The vertical broken lines in (b) and (c) signify treatment 

cycles.
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