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Abstract
The COVID-19 pandemic has affected more than 38 million people world-wide by person to person transmission of the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therapeutic and preventative strategies for SARS-CoV-2 remains a
significant challenge. Within the past several months, effective treatment options have emerged and now include repurposed
antivirals, corticosteroids and virus-specific antibodies. The latter has included convalescence plasma and monoclonal antibod-
ies. Complete viral eradication will be achieved through an effective, safe and preventative vaccine. To now provide a compre-
hensive summary for each of the pharmacotherapeutics and preventative strategies being offered or soon to be developed for
SARS-CoV-2.
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Introduction

The novel coronavirus, the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), after its first appearance in
Wuhan, China, speread globally and soon it was declared the
third global pandemic by zoonotic coronaviruses, successed by
SARS-CoV in 2003 and Middle East respiratory syndrome co-
ronavirus (MERS-CoV) in 2012 (Coronaviridae Study Group
of the International Committee on Taxonomy of V 2020; Lu
et al. 2020; Zhu et al. 2020). The disease is mainlymanifeced by
the acute respiratory distress syndrome (ARDS) causing pulmo-
nary demise and uptimately death especially affecting patients

with comorbid conditions like diabetes, hypertension (Machhi
et al. 2020; Xu et al. 2020; Yang et al. 2020a). The SARS-CoV-
2 enters the lung after binding to the epithelial angiotensin-
converting enzyme 2 (ACE2) receptors and spread to the distal
organs including heart, liver, kidney, gastrointestinal tract and
brain, to induce systemic inflammatory immune responses (Gu
and Korteweg 2007; Grasselli et al. 2020; Meredith Wadman
et al. 2020; Yuki et al. 2020). The rapidly spread of SARS-CoV-
2 demands immediate needs to develop containment treatment
with parallel adoption of public hygiene etiquette and practice
(National Institute of Health (NIH) 2020a, 2020b; Udugama
et al. 2020; Wölfel et al. 2020).
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Clinical Signs and Symptoms

Infection by SARS-CoV-2 ranges in outcome severity.
Among individuals testing positive for SARS-CoV-2, 56 to
88% report no symptoms at the time of testing (Arons et al.
2020; Mizumoto et al. 2020). Nonetheless, in the absence of
universal screening, estimating true asymptomatic rates re-
mains challenging. The clinical progression of COVID-19
disease is often associated with the length of the pathogen’s
incubation (Machhi et al. 2020). Most COVID-19 patients
develop symptoms three to six days after viral exposure
(Backer et al. 2020; Guan et al. 2020; Li et al. 2020b).
Similarly, the median time from symptom onset to the devel-
opment of pneumonia and the ARDS is up to eight days
(Wang et al. 2020b). Symptom duration is 13 days (Young
et al. 2020). A 14-day quarantine is recommended following
exposure to SARS-CoV-2. This is in accordance with the
upper limits of the virus’ incubation period. Mild COVID-
19, defined as no or mild respiratory compromise, is present
in 81% of infected persons (Wu and McGoogan 2020). At
presentation, the most common COVID-19 symptoms are fe-
ver, dry cough, and sore throat (Young et al. 2020). As disease
progresses, the signs of early infection include shortness of
breath, myalgias, and rhinorrhea. A minority of patients have
abdominal pain, nausea or diarrhea (Cheung et al. 2020).
Alternatively, smell and or taste dysfunctions are present at
the onset of disease in up to 19% of patients (Giacomelli et al.
2020). SARS-CoV-2 induces aggressive respiratory patholo-
gies in a subset of those infected. Severe disease, present in
14% of patients, is marked by dyspnea and hypoxia and can
be recorded by radiographic infiltrates in >50% of chest X-
rays or CT scans (Wu and McGoogan 2020). Approximately
5% of infected individuals progress to a state of critical dis-
ease, frequently requiring treatments in an ICU. Critical
COVID-19 complications encountered within the ICU in-
clude ARDS (19.6%), arrhythmia (16.7%), shock (8.7%),
acute cardiac (7.2%) or acute kidney (3.6%) injuries (Wu
and McGoogan 2020). ARDS is marked by respiratory fail-
ure. Like other viral pneumonias, COVID-19 ARDS is man-
aged with supplemental oxygen, prone positioning, mechani-
cal ventilation, antiviral or glucocorticoid therapies and extra-
corporeal membrane oxygenation (Murthy et al. 2020; Wang
et al. 2020b). Other atypical disease features can include der-
matologic findings and inflammatory syndrome-like manifes-
tations in children. Vesicular skin eruptions are described ear-
ly in the disease course whereas purple nodules on peripheral
digits have led to the term, “COVID toes” (Galvan Casas et al.
2020). SARS-CoV-2 infection appears milder in children,
with only 73% of those who are symptomatic reporting fever,
cough, or dyspnea compared to 93% of the symptomatic
adults (Centers for Disease Control and Prevention (CDC)
2020a). Some pediatric COVID-19 cases reported detail gas-
trointestinal symptoms and myocarditis, reflective of atypical

Kawasaki’s disease (Jones et al. 2020). The mortality rate of
COVID-19 is between 3 and 6% worldwide (World Health
Organization (WHO) 2020b; Centers for Disease Control and
Prevention (CDC) 2020b). Deaths of COVID-19 in children
are rare. Among ICU patients, the mortality rate increases to
26% and more prevalent with male gender, age (> 63 years)
and hypertension (Grasselli et al. 2020). The main causes of
death is massive alveolar damage and respiratory failure with
pulmonary interstitial fibrosis (Tian et al. 2020). Serologic
hallmarks of terminal COVID-19 include elevated neutro-
phils, D-dimer, renal failure (high blood urea nitrogen and
creatinine) and lymphopenia (Wang et al. 2020b). SARS-
CoV-2 also promotes coagulation, neutrophilia and systemic
shock during acute infection, often precipitating a cytokine
storm and chronic immune exhaustion (Barnes et al. 2020;
Yang et al. 2020b). These events, along with hypoxia, may
stress the kidneys, contributing to final multisystem organ
failure (Meredith Wadman et al. 2020; Puelles et al. 2020).

Pharmacology and Pharmaceutics: Antivirals
and Immune Modulators

As the global coronavirus pandemic unfolds, treatments al-
ready approved by the U.S. FDA represent the only therapeu-
tics available to physicians. None of them are currently able to
prevent the spread of the infection, and most of the available
therapeutic options are adjuvants of supportive care, mainly
repurposed antiviral agents, or drugs to treat the immune re-
sponses to the infection.

Remdesivir and FavipiravirRemdesivir is a well-known, novel
nucleotide analogue developed initially as a treatment for
Ebola and Marburg viruses. Remdesivir has an acceptable
clinical safety profile. This was reported during prior clinical
research activities with ~500 individuals, including healthy
volunteers and patients treated for acute Ebola virus infection
(Mulangu et al. 2019). Remdesivir demonstrated antiviral ac-
tivity against different coronaviruses (including SARS and
MERS-CoV), both in vitro and in animal studies (Sheahan
et al. 2020). Recent reports showed its efficacy against
SARS-CoV-2 in vitro as well (Wang et al. 2020c).
Remdesivir has been evaluated in multiple clinical trials for
moderate to severe COVID-19 (Sheahan et al. 2017; Grein
et al. 2020). Remdesivir is given parenterally and has reported
side effects that include nausea, vomiting, and serum transam-
inase elevations. The use of remdesivir for COVID-19 also
has been described in several case series (Gilead 2020;
Holshue et al. 2020; Lescure et al. 2020). In one multicenter,
multinational study, 53 patients with severe COVID-19 and
hypoxia received remdesivir for up to 10 days with a median
of 18 days of follow-up. In this study, 68% of the patients had
clinical improvement with decreased oxygen requirements
and hospital discharge. Based upon these positive reports,
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remdesivir received EUA from the US FDA for COVID-19
treatment and recently extended its use in all hospitalized
suspected or confirmed adults and pediatric patients irrespec-
tive of the disease severity (Beigel et al. 2020; Grein et al.
2020). The largest double blinded, randomized, and placebo
controlled clinical study of remdesivir with more than 1000
patients demonstrated that mean recovery time for the
remdesivir treatment group (11 days) was significantly lower
compared to the placebo group (15 days) (P < 0.001). The
study also found a non-significant lower mortality rate after
14 days in the remdesivir treatment group compared to the
placebo group. Incidences of adverse effects due to remdesivir
treatment were comparable to the placebo group. Secondary
analysis looked at treatment efficacy among groups catego-
rized on the eight-category ordinal scale. The most apparent
benefit was seen in patients given remdesivir with a baseline
ordinal score of five (requiring oxygen). Baseline ordinal
scores of four (not receiving oxygen), six (receiving high flow
oxygen), and seven (receiving extracorporeal membrane oxy-
genation or mechanical ventilation) showed wide confidence
intervals. These findings underscore the importance of starting
antiviral therapies before severe pulmonary disease onset that
require mechanical ventilation (Beigel et al. 2020). Design
and development of drug delivery systems to improve drug
absorption and facilitate targeted remdesivir delivery to the
lungs are at various stages of preclinical development. Such
approaches include development of inhalable particles for lo-
calized drug delivery (UT News 2020). Furthermore, strate-
gies to enhance the antiviral potency of remdesivir (higher-
dose regimens in combination with other antivirals or SARS-
CoV-2 neutralizing antibodies) and to mitigate immunopath-
ological host responses contributing to COVID-19 severity
(e.g., inhibitors of IL-1, IL-6 or tumor necrosis factor alpha
(TNFα)), will require rigorous studies in patients with severe
COVID-19 (Wang et al. 2020e). Favipiravir, an RNA poly-
merase inhibitor previously used for the treatment of influen-
za, is now being evaluated for SARS-CoV-2 infection. In an
open-labelled study, favipiravir has shortened viral clearance
time and improved CXR test results in COVID-19 patients
compared to the lopinavir/ritonavir (Cai et al. 2020). Both
remdesivir and favipiravir are promising therapies for
COVID-19.

The mechanism of action for both drugs involves the inhi-
bition of the viral RNA translation (Fig. 1a). After encoding,
genomic RNA of SARS-CoV-2 acts as a mRNA for produc-
ing two polyproteins (pp1a and pp1b). Proteolytic cleavage of
the polyproteins results in the production of RNA-dependent
RNA polymerase (RdRP), helicase, and non-structural pro-
teins 3, 4 & 6 (nsp3, nsp4 & nsp6). Nsp3, nsp4 & nsp6 are
responsible for anchoring the SARS-CoV-2 replication tran-
scription complex by recruitment of intracellular endoplasmic
reticulum membranes to form double-membrane vesicles
(DMV). RdRP and helicase localize to double-membrane

vesicles and drive the production of subatomic RNAs, from
which the structural and accessory proteins are produced in
the next phase of translation. Early testing of both remdesivir
and favipiravir showed that they can inhibit RdRP and, there-
fore, could be useful in the management and treatment of early
or mid-stage COVID-19 (Furuta et al. 2017; Gordon et al.
2020) (Fig. 1a).

Dexamethasone Dexamethasone is a potent anti-
inflammatory corticosteroid and its nanoformuation is well
known for the development of macrophages depot after intra-
venous and inhalation administration (Lammers et al. 2020).
The long-acting nanoformulation of anti HIV-1 drugs showed
success as a macrophage-based drug carrier for anti-HIV-1
therapy compared to the free drug (Dash et al. 2020;
Kevadiya et al. 2020; Kulkarni et al. 2020; Mukadam et al.
2020). Hence, this strategy might also work in COVID-19
treatment if alveolar macrophages targeting dexamethasone
nanoparticles are designed (Fig. 2). A recent study on
SARS-CoV-2-infected patients showed that dexamethasone
decreased mortality in COVID-19 patients. The UK-based
firm and the RECOVERY Collaborative Group carried out a
randomized, controlled clinical trial consisting of 2140 pa-
tients receiving dexamethasone, either by oral or inhalation
route, while 4321 patients received standard care. The study
showed that in hospitalized COVID-19 patients, the use of
dexamethasone resulted in lowered 28-day mortality among
those who were receiving either invasive mechanical ventila-
tion or oxygen alone, but not in those without respiratory
support (Group RC 2020).

Hydroxychloroquine (HCQ) and Chloroquine (CQ) Despite the
widespread use of HCQ and CQ to treat COVID-19, few
controlled clinical trials were performed; hence, the drug ben-
efits remain controversial (Khuroo 2020; Patel et al. 2020).
While past successes were reported for the treatment of ma-
laria, rheumatoid arthritis and systemic lupus erythematosus,
toxicities were seen associated with both medicines when
used at high doses during chronic administration. However,
the antiviral, anti-inflammatory and anti-thrombotic activities
of HCQ (Quiros Roldan et al. 2020) led to its further explora-
tion for SARS-CoV-2 treatments (Wang and Lim 2016). In
cell-based assays, both CQ and HCQ were shown to increase
endosomal pH, interfere with virus-cell binding and ACE2
receptor glycosylation, thereby inhibiting SARS-CoV-2 in-
fection (Fig. 1b) (Wang et al. 2020c; Yao et al. 2020).
However, in-contrast to cell-based efficacy, the more potent
CQ analog (de Wilde et al. 2014) was found to be ineffective
in SARS-CoV-2-infected Balb/c mice (Barnard et al. 2006).
Mechanistic studies to address the discrepancy were per-
formed to assess therapeutic efficacy of CQ and HCQ.
In vitro Vero (kidney), Vero-TMPRSS2 and Calu-3 (lung)
cells were used to test CQ and HCQ antiviral efficacy
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(Hoffmann et al. 2020a). The cell lines were chosen to activate
the SARS-CoV-2 S and served to mediate intracellular viral
entry. Notably, Vero cells utilize a pH dependent intracellular
cysteine protease cathepsin L (catL) enzyme to activate the
receptor needed for viral entry while Calu-3 cells utilize a
pH independent plasma membrane resident serine protease
(TMPRSS2) enzyme. Since cathepsin L requires an acidic en-
vironment to function and that CQ and HCQ are known to
inhibit endosome-lysosomal system acidification, CQ and
HCQ efficiently blocked SARS-CoV-2 infection of Vero but
failed to block infection of Calu-3 cells. This study underscores
the importance of using appropriate assays and cell lines when
screening antiviral activity of compounds that target host cell-
based functions. However, due to HCQ and CQ’s ability to
inhibit pro-inflammatory cytokines (e.g., IL-1b, TNF-α and
IL-2) which form major components of the cascade of events
leading to ARDS in SARS-CoV-2 patients, HCQ/CQwas con-
sidered as a potential treatment (Colson et al. 2020; Multicenter
collaboration group of Department of Science and Technology
of Guangdong P, Health Commission of Guangdong Province
for chloroquine in the treatment of novel coronavirus p 2020).
Subsequently, however, both drugswere found to be ineffective
for treatment of viral infections, including COVID-19. First,
CQ treatment actually exacerbated chikungunya viral infection,
with worsening of patient outcomes secondary to CQ induced
delayed adaptive immune responses (Gallart et al. 1988). A
single-arm, open-label trial of 600 mg daily HCQ in 20
COVID-19 patients reported that HCQ alone, or in combination
with azithromycin reduced viral load (Gautret et al. 2020a). A
follow-up trial in 80 patients with HCQ and azithromycin com-
binations reported that 93% of patients had a negative RT-PCR
result by eight days of treatment. However, both trials had no
control arms (Gautret et al. 2020b). Rigorous statistical analyses
by others found limited evidence for efficacy (Hulme et al.

2020; Lover 2020). A subsequent double-blind randomized
c l i n i c a l t r i a l f o r HCQ COVID - 1 9 t r e a tm e n t
(ChiCTR2000029559) (Chen et al. 2020b) showed clinical res-
olution a day earlier than controls. Subsequent reports showed
no significant differences for HCQ therapy in median duration
of hospitalization, time to fever resolution, or progression of
disease as measured by chest CT (Chen et al. 2020a). The
largest randomized clinical trial to date enrolled 150 patients
with mild COVID-19 across 16 centers in an open-label trial of
HCQ versus standard of care (ChiCTR2000029868) and found
no significant group differences in conversion to negative
SARS-CoV-2 RT-PCR or decrease in the rate of symptom
resolution (Tang et al. 2020c). Finally, a meta-analysis of all
performed studies found no clinical benefits for HCQ in the
treatment of SARS-CoV-2 (Shamshirian et al. 2020). Instead,
worsening of clinical progression and a death were reported
(Molina et al. 2020). For severe COVID-19, a double-mask,
randomized phase IIb trial (NCT04323527) was performed in
81 patients who were given high compared to low doses of
HCQ (600 mg/day for 10 days or 450 mg/day for 5 days)
(Borba et al. 2020). The high-dose arm was halted due to great-
er adverse events with prolonged QTc intervals, higher lethal-
ity, requirements for mechanical ventilation and no difference
in detectable viral RNA when compared to the low-dose arm.
In another observational study, 1376 patients hospitalized with
COVID-19 received HCQ, but the treatment did not alter the
need for intubation or death rate (Geleris et al. 2020). Taken
together, HCQ alone or in combinationwith azithromycin show
no clinical benefits in measurable outcomes for treatment of
COVID-19. ClinicalTrials.gov showed 254 clinical trials
involving HCQ and COVID-19, which attests to the
continued interests in the investigation of this drug as
potential therapy for COVID-19. However, long-term adminis-
tration of HCQ was found to be associated with increased risk
of cardiovascular mortality (Feng et al. 1988; Lane et al. 2020).
The WHO on July 4th, 2020 recommended discontinuation of
HCQ based on Solidarity Trial’s International Steering
Committee’s recommendation (World Health Organization
(WHO) 2020a). This decision was taken after their review of
all completed trials (Cohen 2020).

Azithromycin and HCQ As outlined above, azithromycin in
combination with HCQ should not be used for the treatment
of COVID-19. In a retrospective study of 1438 COVID-19
patients hospitalized in metropolitan NewYork, the death rate
was much higher for patients receiving HCQ and
azithromycin (25.7%) than that for HCQ alone (19.9%),
azithromycin alone (10.0%) or neither drug (12.7%).
Furthermore, the likelihood of cardiac arrest was 2.1 times
greater in patients receiving HCQ and azithromycin
(Rosenberg et al. 2020). Both azithromycin and HCQ toxic-
ities are related to QTc prolongation, and their combined use
might have potentiated this adverse effect (Borba et al. 2020).

�Fig. 1 Remdesivir, chloroquine and hydroxychloroquine for
treatment of SARS-CoV-2 infection. a, Remdesivir is a
phosphoramide ProTide of an adenosine nucleotide analog GS-441524.
After intracellular uptake, GS-441524 converted into nucleotide triphos-
phate and served to inhibit viral RNA-dependent RNA-polymerase
(RdRp, crystal structure adopted from (Sehnal et al. 2018)) as required
for SARS viral transcription and translation. b, Chloroquine (QC) and
hydroxychloroquine (HQC) are commonly used to treat malaria patients.
The mechanism by which QC block virus infection is by elevating
endosomal pH required for viral cell fusion and by interfering with the
glycosylation of cellular viral receptors. Thus, it is theorized that the drugs
block viral entry and post-entry infection. However, its most active steps
in affecting viral pathobiology are presumed mediated by its anti-
inflammatory and immunomodulatory actions during the cytokine storm
perpetuated by SARS-CoV-2 infections. However, the mechanism of
HQC’s inhibition of SARS-CoV-2 remains not completely understood
and could be at any point in the viral life cycle. Potential targets may
include clathrin coating during endocytosis, endosome acidification, viral
transcription, trafficking, formation, and viral release/budding (1–5)
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Lopinavir/Ritonavir Lopinavir is a protease inhibitor that, in
combination with ritonavir, has been used primarily for the
treatments of HIV infection (Chandwani and Shuter 2008)
and/or hepatitis C (Brayer and Reddy 2015). Combination
treatment reduced risk of severe hypoxia or death in SARS-
CoV-infected patients (Chu et al. 2004) and improved clinical
outcomes in MERS-CoV patients with interferon beta
(IFN-β) (Arabi et al. 2018). Unfortunately, lopinavir/
ritonavir showed limited benefit for SARS-CoV-2 (Choy
et al. 2020b). In a clinical trial including 199 patients with

laboratory confirmed SARS-CoV-2 infection, no benefit was
observed for lopinavir/ritonavir compared to controls (Cao
et al. 2020a).

Antiviral Therapies in Development

Targeting viral proteins as potential antiviral targets. Since the
sequencing of the genome of SARS-CoV-2 was first reported,
research laboratories have moved quickly to characterize crit-
ical proteins in the novel coronavirus as potential antiviral

Fig. 2 Dexamethasone formulations for COVID-19 patient
treatments. Nanoparticles or liposome encased dexamethasone
proposed for treatment of COVID-19 patients with various stage of
SARS-CoV-2 infections such as account, intermediate and recovery

stage. This drug is given through intravenous injection or inhalation to
hyper-activated immune cells, by potentiating its anti-edema activity and
by exploiting its anti-fibrotic effects (Concept of this figure sourced
from(Lammers et al. 2020)
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targets (Lefkowitz et al. 2018; Decaro and Lorusso 2020).
Preliminary structural data, in silico modeling, and plaque re-
duction assays have elucidated five potential anti-coronavirus
targets. Two of these targets (furin-like proteases and cathepsin
B/L) are human proteins, and three targets (3CL-pro, RdRP, S
protein) are viral proteins imperative for the viral life cycle
(Theerawatanasirikul et al. 2020). An in-depth understanding
of each target’s biological role creates a framework through
which informed decisions can be made regarding clinical treat-
ment and experimental design (Masters 2006; Yan et al. 2020).
The viral 3-chymotrypsin-like cysteine protease (3CL-pro)
plays an essential role in the viral life cycle by cleaving poly-
peptides pp1a and pp1ab at 11 sites to yield functional proteins
(Ziebuhr and Siddell 1999; Barretto et al. 2005). The active site
of 3CL-pro consists of a catalytic histidine/cysteine dyad and is
highly conserved among SARS coronaviruses. Along with the
absence of a similar human homolog, SARS-CoV-2 3CL-pro is
an attractive antiviral target (Barretto et al. 2005; Stoermer
2020). The x-ray structure of SARS-CoV-2 3CL-pro, as well
as the structure of the protein in complex with novel cysteine
protease inhibitors, has been reported (Zhang et al. 2020). A
vital component of the viral replication and transcription com-
plex is SARS-CoV-2 RdRP, sometimes referred to as non-
structural protein 12 (nsp12) (te Velthuis et al. 2010; Yin
et al. 2020). With other viral cofactors, such as nsp 7/8, RdRP
catalyzes the synthesis of viral RNA components as well as the
replication of the viral genome. RdRPs are one of the few
conserved proteins across all RNA viruses. Several groups have
reported novel RdRP inhibitors targeting different viral replica-
tion complexes (Huang et al. 2020b; Ju et al. 2020b). Most
RdRP inhibitors are nucleotide analogs designed to prematurely
arrest the synthesis of viral RNA by incorporating inhibitor
molecules into the growing transcription (Ju et al. 2020b).
Recent structural information which shows SARS-CoV-2
RdRP in complex with a nucleotide analog supports the further
development of chain-terminating RdRP inhibitors (Wrapp
et al. 2020; Yin et al. 2020; Zhang et al. 2020). The S protein
is a transmembrane tetramer protein critical for viral cell entry.
As one of four structural proteins, the S protein facilitates both
host cell receptor binding as well as membrane fusion (Wrapp
et al. 2020). Although the receptor-binding domain is variable
among coronaviruses, the membrane fusion domain of S pro-
tein is highly conserved, which presents this region as an attrac-
tive antiviral target (Baig et al. 2020; Srinivasan et al. 2020;
Wrapp et al. 2020). Biomimetic peptides that inhibit viral en-
velope fusion may prove to be effective therapeutics in
COVID-19 treatment (Tang et al. 2020b). Antigens derived
from the S protein, which boost recognition of the virus by
immune cells or the development of monoclonal antibodies that
bind to the coronavirus S protein and block the interaction with
a human cell, are becoming an important field of research
(NCT04334980, NCT04283461, NCT04341389,
NCT04299724, NCT04276896).

Blocking the ACE-2 Receptor SARS-CoV-2 S protein binds
specifically to human ACE-2 receptor, and this interaction
contributes significantly to the viral tropism (Yan et al.
2020). However, recent studies showed that proteolytic cleav-
age of S protein by host proteases may also strongly influence
SARS-CoV-2 tropism (Hoffmann et al. 2020b; Yan et al.
2020; Zhang et al. 2020). ACE-2 is highly expressed in type
2 alveolar cells found in the lungs. However, ACE-2 receptors
are also found in many extrapulmonary tissues, including
heart, kidney, endothelium, intestinal tissues and brain
(Hamming et al. 2004; Baig et al. 2020). The interface be-
tween S protein and ACE-2 is a potential drug target (Yan
et al. 2020). Hesperidin, a compound which has shown prom-
ise during a recent computational study, is predicted to bind
with the binding interface of the S protein/ACE-2 complex
and disrupt this protein-protein interaction (Wu et al. 2020).
Two pathways for ACE-2 receptor-mediated viral cell entry
have been suggested and each presents new antiviral targets
(Yan et al. 2020). Viral S protein requires cleavage by host
proteases in order to initiate fusion. Human type II transmem-
brane serine proteases (TTSPs) and furin-like proteases (FLP)
have been implicated as essential regulators of viral entry via
an, “early” plasma membrane route (Duda et al. 2004; Hantak
et al. 2019; Hoffmann et al. 2020b). Proteolytic cleavage of S
protein induces a conformational change that enables viral
envelope fusion only after binding to ACE-2 receptors.
Thus, any antiviral therapeutics targeting host TTSPs or
FLPs may show greater efficacy in combination with fusion
inhibitors (Hantak et al. 2019; Hoffmann et al. 2020b). The
virus utilizes the second viral entry mechanism, or, “late”
pathway, in the absence of TTSPs (Hantak et al. 2019; Tang
et al. 2020b). After binding to ACE-2 receptors, the viral
particle may be brought into the cell through an endocytic
pathway where acidic conditions activate early endosomal
proteases such as cathepsin B or the late endosomal protease
cathepsin L. In the absence of TTSPs, this endocytic route
may have a significant impact on disease pathogenesis
(Hantak et al. 2019; Tang et al. 2020b). In an in vitro study
comparing cell entry inhibition by TTSP inhibitors, a combi-
nation of endosomal pH modulators and cathepsin B/L inhib-
itors showed the most significant efficacy by targeting both
the early and the late viral entry pathways (Hoffmann et al.
2020b). Thus TMPRSS-2 plays an essential role in viral cell
entry and spread and therefore serves as a potential therapeutic
target. This finding warrants further experimental and clinical
considerations regarding acute COVID-19 treatment
strategies.

Camostat Mesylate TMPRSS-2 is a serine protease that gov-
erns S protein priming in coronaviruses and is essential for
virus-host cell entry. Camostat mesylate, an inhibitor of
TMPRSS-2, is effective against SARS-CoV and prevents its
spread and pathogenesis (Kawase et al. 2012). A similar
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mechanism is expected against MERS-CoV as well (Rabaan
2017). A recent study identified the role of TMPRSS-2 in
SARS-CoV-2 cell entry and camostat mesylate effectively
abrogated viral infection in vitro (Hoffmann et al. 2020b).
Earlier clinical trials on camostat mesylate against dyspepsia
associated with non-alcoholic mild pancreatic disease showed
mild, but no severe side effects (Sai et al. 2010), indicating its
safety. Currently, clinical trials are ongoing to assess camostat
mesylate alone in mild to severe COVID-19 patients
(NCT04353284, NCT04321096). Other clinical trials are reg-
istered to determine efficacy of camostat mesylate in combi-
nation with HCQ (NCT04338906, NCT04355052).

Recombinant human ACE-2. As SARS-CoV-2’s S protein
has a strong binding affinity to human ACE-2 receptors, it can
serve as an entry port for the coronavirus (Hoffmann et al.
2020b; Wang et al. 2020d). Therefore, the delivery of an ex-
cessive soluble form of an ACE-2 may competitively bind
with SARS-CoV-2 and not only neutralize the virus, but also
rescue cellular ACE-2 which regulates the renin-angiotensin
system to protect the lungs from injury. One small study has
found recombinant human ACE-2 to be safe with no adverse
hemodynamic effects in healthy subjects (Khan et al. 2017).
Although, antiviral agents can improve pathology, research is
ongoing in search of better candidates to prevent disease
spread.

Targeting Immune Responses against SARS-CoV-2

Harnessing immunity to suppress or eliminate COVID-19 is
an adjunctive, but potentially potent therapeutic approach
(Golonka et al. 2020). For example, SARS-CoV-2 ORF3b is
a potent interferon (IFN) antagonist. Thus, the ability to sup-
press induction of type I IFN has been explored beyond what
is stimulated by SARS-CoV alone (Konno et al. 2020).
However, IFN commonly has a paradoxical effect on viral
growth; hence, whether to stimulate or suppress immune re-
sponses is a notable question (Jamilloux et al. 2020). Indeed,
5–15% of COVID-19 patients who respond to SARS-COV-2
infection with robust innate immune responses showed exces-
sive production of cytokines beyond IFNs. This, “cytokine
storm” can lead to hyperactivation of the defense mechanisms
with vascular permeability, multiorgan failure and death. The
cytokine profiles of serum from some patients with moderate
to severe COVID-19 are similar to what was reported for the
macrophage activation syndrome (MAS) (Pedersen and Ho
2020). Pro-inflammatory cytokine produced by a variety of
cell types, including lymphocytes, monocytes, and fibroblasts
(Choy et al. 2020a; Liu et al. 2020). Specifically elevated
levels of interleukin-1, 6 (IL-1 and IL-6), C-reactive protein,
D-dimer and ferritin are readily detected in patients with
COVID-19 disease (Huang et al. 2020a; Wang et al. 2020b).
Several immune-based therapies directed at modifying
COVID-19 under investigation include those that target the

virus (convalescent plasma) or modulate the immune response
(IL-1 or IL-6 blockers) and can be seen below.

IL-6 Pathway Inhibitors SARS-CoV infection induces IL-6
expression from bronchial epithelial cells (Yoshikawa et al.
2009). Elevations in IL-6 levels mediate the severe systemic
inflammatory responses in patients with SARS-CoV-2 infec-
tion. COVID-19-associated systemic inflammation and hyp-
oxic respiratory failure is associated with the, “cytokine
storm”, including marked increases in the levels of IL-6.
Tocilizumab is an IL-6 receptor inhibitor used for rheumatic
diseases and cytokine release syndrome. Case reports have
described good outcomes with tocilizumab in patients with
COVID-19 (Luo et al. 2020; Michot et al. 2020), but system-
atic evaluation of the clinical impact of tocilizumab on
COVID-19 has not yet been published. Treatment guidelines
from China’s National Health Commission include the IL-6
inhibitor tocilizumab for patients with severe COVID-19
and elevated IL-6 levels. Tocilizumab, as well as
sarilumab and siltuximab, which also target the IL-6
pathway, are being evaluated in clinical trials (Choy
et al. 2020a; Khan et al. 2020).

Interleukin-1 Inhibitors SARS-CoV-2 infection triggers an ex-
acerbated host immune response and the role of proinflamma-
tory cytokine storm is now well established. Targeting or sup-
pressing proinflammatory cytokine IL-1 could be effective in
COVID-19 patients to control ARDS and avoid mechanical
ventilation (National Institute of Health (NIH) 2020a;
Jamilloux et al. 2020; Pedersen and Ho 2020). IL-1 inhibitor
anakinra is currently being tested for the treatment of COVID-
19. Anakinra is a recombinant human IL-1 receptor antago-
nist. It is approved for the treatment of rheumatoid arthritis,
and used off-label for different inflammatory conditions and
severe chimeric antigen receptor T cell (CAR-T)-mediated
cytokine release syndrome (CRS) and MAS (National
Institute of Health (NIH) 2020b). A case series of anakinra
use in moderate to severe COVID-19 pneumonia was pub-
lished recently (Aouba et al. 2020). In this study, anakinra
was found to be safe and reduced the risk of hemophagocytic
lymphohistiocytosis in patients along with improved oxygen
flow. Overall, anakinra showed improved clinical out-
comes. In another case report from Italy, a critical
COVID-19 patient was successfully treated with
anakinra, with reduced inflammatory markers and im-
proving respiratory functions (Filocamo et al. 2020).
Fifteen ongoing clinical trials on anakinra in COVID-
19 patients are registered on ClnicalTrials.gov.

Interferons (IFNs)As the COVID-19 pandemic ensues, oppos-
ing findings characterizing the roles of interferon-based path-
ogenesis and therapies continue to emerge. What remains
clear, however, is that anatomical location, duration of

J Neuroimmune Pharmacol (2021) 16:12–37 19

http://clnicaltrials.gov


infection, and timing of treatment significantly skew how
SARS-CoV-2 infection progresses in the presence of inter-
ferons. Accordingly, numerous clinical trials explore the util-
ity of early treatment with type I or type III interferons in
improving outcomes for COVID-19 patients. Interferons
serve as prototypical signaling proteins of the innate immune
system whose paracrine release aims to protect neighboring
cells from microbial invasion or metastasis. Individual inter-
ferons are divided into three types based on their abilities to
bind common receptors. Type I interferons (IFN-α, IFN-β,
IFN-ε, IFN-ω) and type III interferons (IFN-λ1–4) demon-
strate antiviral activities, whereas type II interferon (IFN-γ)
promotes systemic Th1 and cytotoxic T lymphocyte re-
sponses. Release of IFNs by virally infected cells signals
neighboring cells to destroy RNA and reduce protein transla-
tion, induce apoptosis, and upregulate major histocompatibil-
ity complex molecules as well as various cytokines that cu-
mulatively trigger immunocyte-based clearance. These vari-
ous processes are mediated by interferon-stimulated genes
(ISG) that trigger downstream signaling cascades. Much of
the confusion over whether interferons directly contribute to
COVID-19 disease stems from patient data. Sera from SARS-
CoV-2-infected patients and lung tissue explants challenged
ex vivo revealed low levels of types I and III interferon pro-
teins (Blanco-Melo et al. 2020; Chu et al. 2020). Similarly,
transcriptional profiling of nasopharyngeal swab and
bronchioalveolar lavage samples from these patients did not
detect upregulation of interferon types I and III mRNA
(Lieberman et al. 2020; Zhou et al. 2020c). Nonetheless, these
latter studies also implicate interferon-stimulated gene path-
ways (notably OAS1–3 and IFIT1–3) as contributing to the
cytokine storm. Two rationale may explain induction of ISG
in the absence of elevated type I and III interferon levels:
Firstly, SARS-CoV-2 may trigger type II interferon protein
production. Higher circulating IFN-γ, was readily measured
in symptomatic adults and acute multisystem inflammatory
syndrome in children with COVID-19 (Carter et al. 2020;
Montalvo Villalba et al. 2020). Secondly, ACE2 is an inter-
feron response network gene as identified in nasal epithelia of
highly-expressing interferon subjects (Sajuthi et al. 2020) and
its upregulation may potentiate even greater SARS-CoV-2
infection set points. These clinical findings suggest that al-
though elevated type I and III interferons are not directly ob-
served in COVID-19 patients, interferon stimulated genes are
nonetheless triggered.

Laboratory studies elucidate how SARS-CoV-2 may in-
duce and elude host interferon responses.Model systems char-
acterizing SARS-CoV-2 infection in the lung reveal a causal
nature to type I interferon production. RNA-Seq profiling of
ciliated bronchial epithelial cells found upregulation of inter-
ferons (types I and III) and IL-6 after SARS-CoV-2 exposure,
which potentiated the infection to spread to neighboring basal
and club cells (Ravindra et al. 2020). Human ACE2-

expressing transgenic mice recapitulated increased interferons
in lung infiltrates following SARS-CoV-2 infection (Winkler
et al. 2020), whereas knockout of the type I interferon receptor
(ifnar−/−) attenuated this response (Israelow et al. 2020).
Gastrointestinal symptoms observed in approximately 18%
of COVID-19 patients has prompted investigations into
SARS-CoV-2 pathogenesis in the colon. Type I (and to a
lesser degree, type III) interferon receptor knockout prevented
the establishment of SARS-CoV-2 infection in colon carcino-
ma T84 cells (Stanifer et al. 2020). After lung dendritic cells
were exposed to viral RNA, secreted IFN-λ induced mucosal
barrier damage leading to lethal bacterial superinfection
(Broggi et al. 2020). The discrepancy between low interferons
observed in patients and pathogenic levels encountered in
these models can, at least partially, be explained by exploring
how SARS-CoV-2 has adapted to blunt interferon responses
in human hosts. Interference has been described at three
levels: prior to ISG-signaling, before nuclear localization, or
post-translationally. SARS-CoV-2 Orf9b interacts with adap-
tor protein TOM70, which prevents cytoplasmic pattern rec-
ognition receptors RIG-I or MDA5 from signaling for inter-
feron responses (Jiang et al. 2020). Alternatively, the C-
terminus of Orf6 antagonizes STAT1 nuclear translocation,
again precluding the production of interferon (Lei et al.
2020). Finally, the virus’ papain-like protease (PLpro), which
generates a functional replicase complex, attenuates type I
interferon responses by cleaving two complexed ISG proteins
(Shin et al. 2020). In summary, these datasets enable investi-
gation of particular immunologic responses following SARS-
CoV-2 exposure, yet their utility in recapitulating the full
depth of COVID-19 pathogenesis in humans requires addi-
tional investigation. Medical treatment using interferon for
COVID-19 largely relies on early intervention for therapeutic
success. In vitro pretreatment with type I interferons (IFN-α
(Felgenhauer et al. 2020) or IFN-β (Lei et al. 2020; Shuai
et al. 2020) reduced SARS-CoV-2 infection in Calu-3 lung
cancer cells by approximately 33%–75%. IFN-β further lim-
ited Caco-2 colorectal adenocarcinoma cells to <1% of control
infection levels (Shuai et al. 2020). Coronavirus replication
can be suppressed by IFN-β synthesized from the cell.
However, coronaviruses have evolved mechanisms to escape
interferon mediated growth inhibition by specifically
preventing the induction of IFN-β (Spiegel et al. 2005). In
such condition, treatment with exogenous IFN-β can be use-
ful to attenuate virus replication. IFN-β demonstrated protec-
tion of Vero 6 cells from infection with highly pathogenic
coronavirus strains including SARS-CoV, MERS-CoV and
SARS-CoV-2 (Mantlo et al. 2020; Synairgen 2020). Viral
control using type I interferons has also been observed clini-
cally. Currently, a phase-II clinical trial on the inhaled formu-
lation of IFN-β, SNG001, in COVID-19 patients is ongoing
(NCT04385095). An uncontrolled exploratory study in
Wuhan, China revealed that treatment with nebulized
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IFN-α2b along with the antiviral, arbidol, significantly re-
duced the duration of detectable virus in the upper respiratory
tract and reduced the duration of blood inflammatory markers
(Yin et al. 2020). Two randomized drug trials utilizing
IFN-β1a as part of lopinavir-ritonavir-based regimens dem-
onstrated clinical benefit. In one study, Iranian inpatients re-
ceiving combination therapy observed a reduced 28-day mor-
tality and increased 14-day discharge rate (Dastan et al. 2020).
A larger multicenter phase 2 clinical trial in Hong Kong,
wherein COVID-19 patients were hospitalized on average
5 days after symptom onset, reported shortened time until
SARS-CoV-2 negative nasopharyngeal swabs were collected
(Hung et al. 2020). Type III interferon may also prove bene-
ficial in abrogating coronavirus infection. Pretreatment of pri-
mary human airway epithelia with PEG-IFN-λ1 or human
intestinal epithelial cells with IFN-λ reduced viral replication
by 5 logs and 2 logs, respectively (Dinnon et al. 2020; Stanifer
et al. 2020). Prophylactic administration of PEG-IFN-λ1 to
mice challenged with a murine form of SARS-CoV-2 also
exhibited 90% reduction in recovered virus in the lungs
(Stanifer et al. 2020). Whether such benefits will extend to
humans remains to be seen. PROTECT (NCT04344600) is a
phase 2b prospective, randomized, single-blind, placebo-
controlled clinical trial currently recruiting patients to assess
whether single subcutaneous injection of PEG-IFN-λ1 pre-
vents SARS-CoV-2 infection among individuals with known
household exposure to COVID-19. Overall, early intervention
with interferons may aid in the arsenal of therapies necessary
to prevent SARS-CoV-2 infection, both within an individual
and from spreading to others.

Tableted Heat-Inactivated Plasma This is another alternative
option which may lead to faster recovery in patients with
COVID-19. One clinical trial aims to administer once daily
pills of therapeutic vaccine made fromCOVID-19 donor heat-
inactivated plasma to the healthy volunteers for 15 days. The
primary objective of this study is to evaluate safety and char-
acterize the immune responses in the recipients. By presenting
both heat-inactivated virus and human antibodies, this
trial hopes to elicit protective immune responses
(NCT04380532).

Anticoagulants Recent reports emphasize the risk of coag-
ulopathy in severely ill COVID-19 patients, especially in
those with comorbid conditions such as cancer, congestive
heart failure, hypertension and obesity (Barnes et al. 2020;
Kollias et al. 2020). For instance, among 183 hospitalized
patients, disseminated intravascular coagulation (DIC) was
much more common (71.4%) in patients who died from
COVID-19 than the survivors (0.6%) (Tang et al. 2020a).
The coagulopathy may be related to the cytokine storms,
and elevated D-dimer levels that were reported in patients
with cerebrovascular events, both thrombotic and

hemorrhagic, as well as concurrent peripheral thrombotic
events, such as deep vein thrombosis or pulmonary emboli
(Tang et al. 2020a). Recently, the Anticoagulation Forum,
a North American organization of anticoagulation pro-
viders, evaluated the increased risk of venous thromboem-
bolism (VTE) in COVID-19 patients, and provided guide-
lines regarding the use of anticoagulation therapies for
their management (Barnes et al. 2020). In severely ill
COVID-19 patients, daily D-dimer monitoring is recom-
mended to surveil VTE severity and provide prognosis
and adjustment for dosing of anticoagulants (Barnes et al.
2020). For COVID-19 patients presenting a risk for VTE,
thromboprophylaxis or a full course of therapeutic
anticoagulation is recommended (Barnes et al. 2020;
Kollias et al. 2020).

Transformative Immunity Bacillus Calmette–Guérin (BCG)
is a live attenuated vaccine that was developed against
tuberculosis at the Institute Pasteur in Paris during early
1921 (Luca and Mihaescu 2013). BCG has been the most
used vaccine in the world, with around 130 million chil-
dren vaccinated every year to reduce infant mortality and
the incidence of tuberculosis. Later, BCG vaccination
was reported to decrease susceptibility to unrelated infec-
tious agents such as respiratory tract infections
(Butkeviciute et al. 2018; Moorlag et al. 2019). BCG
also has been shown to provide non-specific protection
against other respiratory tract infections which might
lower the rate of absenteeism in health care workers
(NCT04328441). Experimental studies have shown that
BCG reduced viral titers of influenza A virus in mice, an
effect dependent on macrophages (Spencer et al. 1977).
BCG vaccination also protected mice from herpes sim-
plex virus type 2 (HSV2) infection (Starr et al. 1976).
BCG vaccination resulted in enhanced production of pro-
inflammatory cytokines, such as IL-1β, TNF-α and IL-6,
when monocytes from vaccinated healthy individuals
were stimulated ex vivo with unrelated pathogens.
These effects are mediated by transcriptional, epigenetic
and metabolic reprogramming of the myeloid cells for
improved anti-microbial responses (Netea et al. 2016).
The long-term innate immune memory seen with BCG
vaccination has been termed, “trained immunity”. Upon
challenge with unrelated pathogens, these trained innate
immune cells promote host defense. Thus, BCG vaccina-
tion provides significant protection against multiple viral
infections. Lower infection rates and reduced mortality
from COVID-19 were observed in countries that practice
BCG vaccination, although a causal relationship has not
been established (Miyasaka 2020). Based on these previ-
ous observations, BCG vaccination is hypothesized to be
a potent preventive measure against SARS-CoV-2 infec-
tion, and it may well be a bridge until a specific COVID-
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19 vaccine is developed (O'Neill and Netea 2020).
Indeed, trials assessing the efficacy of BCG vaccination
to prevent COVID-19 are currently being carried out in
the Netherlands, Australia, Greece, and the United States,
with more being planned in many other countries. Unlike
influenza, SARS-CoV-2 seems to disproportionately af-
fect older populations as compared to children. One hy-
pothesis for this disparate manifestation of COVID-19 is
that cross protective antibodies generated in response to
the measles vaccine may be protecting the children.
In vivo experiments showed recombinant measles vac-
cine fully protected animals from intranasal challenge
with SARS-CoV. A clinical trial aims to test this hypoth-
esis by immunizing health care workers with the measles

v a c c i n e a nd t r a c k i n g t h e r a t e s o f i n f e c t i o n
(NCT04357028).

Vaccines (an Overview)

The limited antiviral medications and their variant thera-
peutic efficacies are pressing for the development of a
vaccine to provide global immunity against SARS-CoV-
2 virus (Lurie et al. 2020). Vaccine development is an
extended process that typically involves five to ten years
of rigorous pre-clinical trials, followed by clinical trials.
However, COVID-19 is changing that paradigm. This is
based on the critical needs for effective vaccines; there-
fore, the medical, scientific, and administrative stalwarts

Fig. 3 Current vaccine strategies for SARS-CoV-2. Clockwise from
top left: (a), delivery of mRNA encoding viral protein through lipid
nanoparticle; (b), direct delivery(electroporation) of plasmid DNA

encoding viral protein; (c), human and chimpanzee adenovirus-based
delivery of DNA encoding viral protein; (d), injection of inactivated viral
vector; (e), injection of genetically modified immune cells
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have moved with alacrity to reschedule the vaccine devel-
opment regime and simultaneously develop multiple vac-
cine candidates with accelerated clinical trials. For the
first time in the vaccine development history, and only
63 days after the publication of the sequence of COVID-
19 on January 12th, 2020 (European Centre for Disease
Prevention and Control (ECDC) 2020), two vaccines,
mRNA1273 (NCT04 2 83 4 6 1 ) a n d Ad5 - nCoV
(NCT04313127) entered phase-I human clinical trial.
Currently, the 213 vaccines (Callaway 2020; Milken
Institute 2020) developed by academic research teams
and pharmaceutical companies against SARS-CoV-2
worldwide have offered divergent technologies for vac-
cine development, several of which have never been used
in a licensed vaccine. These various platforms, along with
the human clinical trial forerunners, are described based
on the approach and composition of the vaccine (Fig. 3).

Protein-Based Vaccines Most vaccines now in development
are protein-based. Researchers use viral proteins either as frag-
ments or as protein shells. Protein subunit vaccines use the S
protein as a whole or its receptor-binding domain as an anti-
gen to elicit antibody responses.

Viral-Vector-Based Vaccines Another protein-based vaccine
includes virus-like particles (VLPs). These particles are virus
shells devoid of viral genomic RNA that mimic the coronavi-
rus structure but are not infectious. The next most common
vaccines are viral vectors or VLPs. These use genetically
engineered non-pathogenic viruses (for example, measles or
adenovirus) that produce coronavirus proteins and can be one
of two types: The first can replicate within cells and the second
cannot. For those that can replicate in the cells, key genes
known to be pathogenic are disabled. One of the forerunner
candidates, Ad5nCoV, developed by CanSino Biogenics,
Beijing Institute of Biotechnology, and Canadas National
Research Council, has already begun phase-II clinical trials
as of April 12th, 2020 (NCT04341389). Built upon
CanSinoBIO’s adenovirus-based viral vector vaccine technol-
ogy platform, Ad5nCoV is a genetically engineered vaccine
candidate with the replication-defective Adenovirus of the hu-
man serotype 5 (AdHu5) as the vector for expressing SARS-
CoV-2 S protein. A notable limitation of the use of such hu-
man adenovirus-based vectors is that a significant portion of
the population is immune to the virus as a result of previous
natural infections. Thus, host immunity could lead to the per-
sistent production of neutralizing antibodies and blunt the
vaccine’s effectiveness (Chirmule et al. 1999). Adoption of
simian adenoviral vectors, to which the human population is
less exposed, has circumvented this problem (Tatsis et al.
2006).. ChAdOx1, another non-replicating viral vector candi-
date developed by the University of Oxford, uses a vector
platform derived from chimpanzee adenovirus Y25 to express

SARS-CoV-2 S protein and started human Phase-I/II clinical
trials as of April 23rd, 2020 (NCT04324606).

Nucleic Acid-Based For these vaccines, S protein-expressing
DNA or RNA plasmids are injected into the cell which repli-
cate and strengthen the natural physiological immune re-
sponse via targeted T cell and antibody responses. Although
the RNA and DNA-based vaccines are safe and easy to devel-
op, they are unproven in clinical trials, as no licensed vaccine
has used this platform to date (Rauch et al. 2018). BNT-162
developed by BioNTech, Fosun Pharma, and Pfizer, is an
RNA-based vaccine candidate that entered phase-I clinical
trials on April 29th,2020 (NCT04368728). This is a unique
approach in that four mRNA vaccine candidates (a1, b1, b2,
c2) are screened simultaneously. Two candidates have nucle-
oside modified mRNA (modRNA), one has uridine contain-
ing mRNA (uRNA) and one has self-amplifying mRNA
(saRNA). Two encode the large S sequence while the other
two encode the smaller optimized receptor-binding domain
(RBD) from S (Carlson 2020). The mRNA is then encapsu-
lated in a lipid nanoparticle formulation. The novel design of
the clinical trial allows for the simultaneous evaluation of
safety, immunogenicity, and the optimal dose level. This ap-
proach drastically cuts the pre-clinical phase to less than four
months and, as a result, rapidly accelerates development
(Biusinesswire 2020). The other lead vaccine candidate,
mRNA-1273, developed by Moderna and the US National
Institute of Allergy and Infectious Diseases, is a novel lipid
nanoparticle (LNP)-encapsulated mRNA-based vaccine that
encodes for a full-length, prefusion stabilized S protein of
SARS-CoV-2 (NCT04283461). INO-4800, an interesting
vaccine developed by Inovio Pharmaceuticals, CEPI, Korea
National Institute of Health and International Vaccine
Institute, is a DNA-based vaccine candidate that entered
phase-I clinical trials on April 3rd, 2020 (NCT04336410).
This platform uses the innovative technology of cellectra®,
Inovio’s proprietary platform, which uses a novel hand-held
device that utilizes a brief electrical pulse to reversibly open
small pores in the cells and allow plasmid vaccine candidate to
elicit a robust immune response intracellularly (International
Vaccine Institute 2020).

Virus One form of virus-based vaccine uses viruses that have
been chemically attenuated by formaldehyde or heat. This is a
well-established process employed in many now current vac-
cines. They are easy to prepare, develop, and considered safe.
Sinovac biotech developed a vaccine candidate that went on
phase-I/II clinical trial on April 16th, 2020 (NCT04352608) in
Xuzhou, China, and another phase-I/II clinical trial on
May 20th, 2020 (estimated) (NCT04383574) in Renqiu,
China. This vaccine uses inactivated clinical strains of
SARS-CoV-2 fused with alum to induce an immune response.
Another form, live attenuated vaccines, are viruses that have
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weakened replication or viral protein production due to muta-
tions generated when grown in animal or human cell
lines. These attenuated vaccines provide a robust im-
mune response, but have a potential reversion to viru-
lence (Roper and Rehm 2009).

Other Innovative Platforms Non-viral nanoparticle-mediated
delivery of gene-encoded antibody vaccines, replicating bac-
terial vectors expressing multiple SARS-CoV-2 antigens and
heat shock protein fused to avidin self-assembling vaccines
are some other innovative vaccine platforms in the pre-
clinical pipeline. Another important platform uses lentiviral
vectors to genetically modify components of immune cells,
such as antigen-presenting cells and dendritic cells, to alter
SARS-CoV-2 immune mediated responses. LV-SMENP DC
is a novel lentiviral-based dendritic cell and T cell vaccine
candidate developed by Shenzhen Geno-Immune Medical
Institute which went into phase-I/II clinical trial on
March 24th, 2020 (estimated) (NCT04276896). This vaccine
modifies dendritic cells using lentiviral vectors expressing
SARS-CoV-2 minigene SMENP and induces expression of
SARS-CoV-2 antigens and immune-modulatory genes. The
vaccine uses cytotoxic T lymphocytes, which get activated
by the SARS-CoV-2 specific antigens presented on the lenti-
virus modified-dendritic cells. Antigen-specific cytotoxic T
cells will be injected intravenously while the lentivirus-
SMENP-dendritic cell (LV-SMENP DC) vaccine will be sub-
cutaneous (NCT04276896).

Neutralizing and Functional Antibodies The US FDA is
accepting investigational new drug applications to use conva-
lescent plasma for patients with severe or life-threatening
COVID-19 (US Food and Drug Administration (US FDA)
2020a). The pathways to achieve these applications include
clinical trials, expanded access programs, and individual
emergency use. The use of convalescent plasma has been
described, “just in case series” (US Food and Drug
Administration (US FDA) 2020a; Duan et al. 2020). In a ran-
domized clinical trial enrolling 103 patients, transfusion of
convalescent plasma did not improve clinical condition in
severe or life threatening COVID-19 patients compared to
the standard treatment. This trial was terminated early, before
reaching the target enrollment of 200 patients, which might
have contributed to the negative results (Li et al. 2020a). One
case series described the administration of plasma from do-
nors who had recovered entirely fromCOVID-19 to 5 patients
with severe COVID-19 who were on mechanical ventilation
and presented with persistently severe viral symptoms despite
investigational antiviral treatment (Shen et al. 2020). The re-
cipients showed decreased nasopharyngeal viral load, de-
creased disease severity score, and improved oxygenation by
12 days after the transfusion. In another study at the Houston
Methodist hospital, 25 patients with severe and/or life

threatening COVID-19 disease were transfused with the con-
valescent plasma obtained from confirmed SARS-CoV-2-
infected and fully recovered donors. Seven days after transfu-
sion, 36% of the patients clinically improved and 28% of the
patients were discharged after complete recovery. 14 days af-
ter transfusion, clinically improved patients increased to 76%
and 44% of patients were discharged. No adverse events were
observed following plasma transfusion (Salazar et al. 2020).
This study has been extended and 74 critically ill COVID-19
patients were treated, 50 of whom were discharged from the
hospital after recovery (News Wise 2020). The convalescent
plasma therapy outcomes in COVID-19 patients were very
similar to the compassionate-use of remdesivir. Earlier this
year, the US government initiated an Extended Access
Program for convalescent plasma, with funding from the
HHS’ Biomedical Advance Research and Development
Authority (BARDA) in collaboration with Mayo Clinic and
have transfused more than 70,000 COVID-19 patients with
convalescent plasma. After significant reduction in mortality
in COVID-19 patients and no observed side effects, U.S. FDA
recently issued an EUA for convalescent plasma as a promis-
ing treatment of COVID-19 (US Food and Drug
Administration (US FDA) 2020b). However, these findings
do not establish a causal effect; therefore, further studies are
required to determine the efficacy of convalescent plasma.
Finding appropriate donors and establishing testing that vali-
dates the neutralizing activity of the plasma poses logistical
challenges (Duan et al. 2020; Shen et al. 2020). A randomized
controlled clinical trial at Houston Methodist hospital is en-
rolling COVID-19 patients to determine the therapeutic effi-
cacy of convalescent plasma and to determine the optimal
timing of transfusion after the onset of symptoms, frequency
of transfusion and required antibody concentration for precise
treatment (News Wise 2020).

The therapeutic outcomes of convalescent plasma are at-
tributed to the antibodies that neutralize the SARS-CoV-2
(Fig. 4). Several researchers have identified the human anti-
bodies that block the receptor binding domain (RBD) of the S
protein to abrogate virus interaction with the host cell receptor,
a key step of virus host entry. Wang et al. developed SARS-
CoV-2 neutralizing antibody from SARS-CoV hybridoma, in
which four of the candidates showed reactivity with the
SARS-CoV-2 S protein. The lead candidate 47D11 showed
potent neutralizing activity against both SARS-CoV and
SARS-CoV-2 (Wang et al. 2020a). Others isolated potent
RBD binding antibodies from COVID-19 patients and evalu-
ated their SARS-CoV-2 neutralizing efficacy. From 149
COVID-19 convalescent patients, only 1% of the patients
had high antibody titers with SARS-CoV-2 neutralizing capa-
bility. Further, researchers isolated antibody secreting B cells
from the high to moderate titer COVID-19 patients and iden-
tified potent antibodies against SARS-CoV-2 RBD in both
patient groups. Surprisingly, sequential similarity was
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identified in the epitope binding sites of the neutralizing anti-
bodies from different patients, suggesting that RBD specific
antibody with potent antiviral activity had developed in the
COVID-19 patients (Robbiani et al. 2020). In another study,
scientists isolated a total of 389 RBD specific SARS-CoV-2
neutralizing monoclonal antibodies from the B cells of two
COVID-19 convalescent patients. Two of these antibodies,
COV2–2196 and COV2–2130, demonstrated potent SARS-
CoV-2 neutralization by blocking non-overlapping sites of
RBD on viral S protein. In mouse models of SARS-CoV-2
infection, COV2–2196 and COV2–2130 treatment alone or in
combination protected mice from weight loss and reduced
viral load and inflammation in the lungs. COV2–2196 and
COV2–2130 also protected rhesus macaques from SARS-
CoV-2 infection as monotherapy (Zost et al. 2020).
Investigators isolated and characterized 206 RBD specific
monoclonal antibodies from the B cells of eight SARS-
CoV-2-infected individuals. The most potent neutralizing an-
tibodies (P2C-1F11, P2B-2F6 and P2C-1A3) showed highest
competitive inhibition of ACE2 binding with the RBD from

the SARS-CoV-2. Surprisingly, these anti-SARS-CoV-2 an-
tibodies did not cross-react with the RBD from the SARS-
CoV or MERS-CoV. Hence, competitive inhibition might be
a better predictor of antiviral efficacy than virus-neutralizing
capacity of the antibody (Ju et al. 2020a). Brouwer et al. iso-
lated 19 monoclonal antibodies from the three convalescent
COVID-19 patients that targeted diverse antigenic sites, in-
cluding RBD and non-RBD epitopes from the SARS-CoV-
2. A subset of antibodies showed potent nanaomolar neutral-
izing activity against authentic SARS-CoV-2 (Brouwer et al.
2020). SARS-CoV-2 neutralizing antibodies were also identi-
fied by high-throughput single cell sequencing of antigen-
enriched B cells from convalescent COVID-19 patients. A
subset of potent antibodies showed nanomolar neutralizing
activity against both pseudo and authentic SARS-CoV-2.
Clinical studies with the most potent neutralizing antibody,
BD-368-2, are underway (Cao et al. 2020b). In another study,
more than 1000 human monoclonal antibodies were isolated
from the convalescent COVID-19 patients using a high-
throughput pipeline. Out of them, a small fraction of

Fig. 4 Convalescent plasma therapy. The use of convalescent plasma
to treat COVID-19 requires donor testing of a person who has recovered
from disease and has substantial titers of SARS-CoV-2 neutralizing anti-
bodies. The plasma of recovered COVID-19 patients contains SARS-
CoV-2 antibodies. These are present in plasma, which are collected then
used as therapies. Convalescent plasma is safe, specific and effective.
This schematic describes how convalescent plasma therapy is adminis-
tered. It is as follows: (1) Donor apheresis. Blood is collected from the
patient and antibody containing plasma is harvested by apheresis. (2)

Plasma infusion. Convalescent plasma is collected from plasma of the
donor then administered to the COVID-19 patient intravenously to deliv-
er virus-specific antibodies. The plasma is collected through blood banks
and given to blood-type-compatible patients with active SARS-CoV-2
infection. All donors are screened for HIV-1 and for hepatitis viruses
and parvovirus B19. There are no other blood components uncovered
that could yield secondary complications. The anti-SARS-CoV-2 titer
must be at or greater than 1:320. Donors should have no systemic illness
for at least 14 days after recovery

J Neuroimmune Pharmacol (2021) 16:12–37 25



antibodies showed strong neutralizing activity against SARS-
CoV-2. The most potent monoclonal antibody, CC12.1,
protected Syrian Hamster against weight loss and viral repli-
cation of the SARS-CoV-2 in the lung (Rogers et al. 2020).
Together, these studies provide a structural guide for design-
ing vaccines and antibodies as a potential therapy of SARS-
CoV-2 infection. Human recombinant antibodies were also
identified from the healthy individuals using antibody phage
display tool. From the 309 unique human recombinant anti-
bodies, several antibodies were able to bind SARS-CoV-2
RBD and displayed potent inhibition of S protein binding to
the ACE2 receptor expressing cells. Antibodies also neutral-
ized the SARS-CoV-2 infection in VeroE6 cells. Another
study suggested a quick development of SARS-CoV-2 neu-
tralizing human recombinant antibodies from healthy donors
independent of SARS-CoV-2 recovered patients (Bertoglio
et al. 2020). Development of recombinant human antibodies
specific for SARS-CoV-2 is essential for the prophylactic or
curative treatment of COVID-19. Academic and industrial
researchers are exploring almost every available platform for
efficient antibody production against SARS-CoV-2 (Renn
et al. 2020). Currently, eight SARS-CoV-2 neutralizing anti-
bodies are under clinical investigation that include LY-
CoV555 (NCT04537910, NCT04411628), JS016
(NCT04441918) , REGN-COV2 (NCT04425629,
NCT0 4 4 2 6 6 9 5 , a n d NCT0 4 4 5 2 3 1 8 ) , TY 0 2 7
(NCT04429529), BRII-196 (NCT04479631), BRII-198
(NCT04479644), CT-P59 (NCT04525079), and SCTA01
(NCT04483375). Practically, antibody development is a cost-
ly and extensive. Developing successful antibody against
SARS-COV-2 quickly requires a new pandemic paradigm,
with a fast start and many steps executed in parallel before
confirming a successful outcome of another step, which re-
sults in elevated financial risk. Further, large scale monoclonal
antibodies production and distribution to clinics is challeng-
ing. The main factor affecting development of antibodies in-
clude SARS-CoV-2 mutation (Starr et al. 2020). Since the
onset of COVID-19, several mutations have been identified
in the S protein and other ACE2 binding sites of the SARS-
CoV-2 that affect RBD expression and infectivity. D614G
mutation in the S1 protein of SARS-CoV-2 increases the virus
infectivity (Korber et al. 2020). Mutations within the antibody
binding sites have also been detected (Korber et al. 2020;
Pinto et al. 2020). Although the frequency of such mutations
is low, they might affect the efficacy of the neutralizing anti-
bodies (Renn et al. 2020; Starr et al. 2020). The use of anti-
body in combination with non-overlapping epitopes is a
promising approach to overcome these limitations.
AstraZeneca is developing an antibody combination therapy
AZD7442, which is a mixture of two potent antibodies
AZD8895 and AZD1061 and is currently in a phase 1 clinical
trial (NCT04507256). Similarly, Regeneron Pharmaceutics
which developed a mixture of three monoclonal antibodies

against Ebola virus, is now developing REGN-COV2, a mix-
ture of REGN10933 and REGN10987 antibodies in collabo-
ration with the National Institute of Allergy and Infectious
Disease (NIAID). Currently, REGN-COV2 is under phase 3
clinical trial (NCT04452318).

Vaccines for the Elderly Population The human body’s im-
mune system becomes weaker with age, especially in individ-
uals with comorbid conditions such as hypertension, diabetes,
kidney, liver, cancer, coronary artery and chronic obstructive
lung diseases (Alpert et al. 2019; Pan et al. 2020; Wang et al.
2020b). COVID-19 is commonly viewed as a, “disease of the
older people”, owing to the exponential risk of age-related
mortality (Le Couteur et al. 2020; Promislow 2020). Of the
total number of COVID-19 deaths worldwide, almost 50 %
are above 65 years of age (Centers for Disease Control and
Prevention (CDC) 2020c). This is reflected in the high death
rates in Spain (Bonanad et al. 2020) and Italy (Boccardi et al.
2020); both have larger recorded aged populations associated
with immunosenescence and comorbid conditions (Wang
et al. 2020b; Zhou et al. 2020b). Prominent comorbidities
including hypertension, followed by diabetes, coronary heart
disease, chronic obstructive lung disease, carcinoma, and
chronic kidney disease all attributed to increased mortality in
COVID-19 patients (Wang et al. 2020b; Zhou et al. 2020a).
The elderly are socially vulnerable to infectious diseases when
housed in institutions and can acquire the disease from close
contact exposure with their caregivers (Bonanad et al. 2020).
During the COVID-19 pandemic, we cannot divert our focus
on the vaccine development without considering the elderly
population, who typically have one or more underlying dis-
ease conditions. The older adults are more susceptible to
SARS-CoV-2 infection and develop more severe COVID-
19. Moreover, with older age, the co-progressions in cellular
senescence, immunosenescence and inflammation can lead to
deterioration of the immune function, starting with thymal
involution (Fagnoni et al. 2000; Fulop et al. 2017).
Immunosenescence results from the progressive deterioration
of the innate and adaptive immune system which not only
diminishes the ability to fight off infections, but also blunts
the competence to surmount a vaccine induced antibody or
cell-mediated immune response, thus attenuating immunity
(Chen et al. 2009). The aging cells may also produce
misfolded self-antigens, mitochondrial fragments, extracellu-
lar vesicles and senescent cells. These aging processes in turn
evoke a pro-inflammatory immune response against self-
antigens (Franceschi et al. 2000; Fulop et al. 2017;
Franceschi et al. 2018). Additionally, certain immune cells
were found to secrete senescence-related components like cy-
tokines, chemokines and extracellular matrix remodeling pro-
teases (Callender et al. 2018). This high inflammatory status
aids in promoting the cytokine storm, comprised of IL-6 and
o the r media tor s tha t a t t r ibu te to the inc reased
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pathophysiological response to SARS-CoV-2 in elderly indi-
viduals (Mueller et al. 2020; Salimi and Hamlyn 2020;
Sargiacomo et al. 2020). Furthermore, upregulation of
SARS-CoV-2 specific host receptors by senescent cells were
also observed (Sargiacomo et al. 2020). Cellular senescence
due to telomere shortening in virus-specific memory immune
cells reduce CD4+ and CD8+ T cells and regulatory T cell
count (Mueller et al. 2020). The reduced T cells then lead to a
shift in T cell subset distribution and loss of CD27 and CD28
co-stimulatory molecule expression, which is considered an
underlying mechanism for severe adult COVID-19 pneumo-
nia cases, by increasing susceptibility to infections (Li et al.
2019; Scarpa et al. 2020). This reduction or absence of
thymopoiesis also exacerbates the cytokine storms (Scarpa
et al. 2020). Hence, older individuals have a diminished abil-
ity to combat infections along with an impaired ability to
develop antibody or cell-mediated immune responses to path-
ogens, cancer cells and vaccines (Chen et al. 2009). Progress
of vaccine development targeting the elderly individuals is
slow. This is partly due to the lack of understanding of
SARS-CoV-2 mechanisms in immune systems under comor-
bidity conditions (Pelicioni and Lord 2020). All of these fac-
tors are affecting the development of vaccines or the exces-
sively strong immune responses against the SARS-CoV-2 in
the elderly (Chen et al. 2009). To develop effective and im-
proved vaccination strategy for older population, adjuvants,
higher antigen dose, alternative routes of administration and

immunostimulatory agents can be adopted (Weinberger
2018). System biology approach are needed to identify pro-
teins or pathways associated with diminished immune re-
sponses which can be stimulated by senolytes and other immu-
nomodulatory drugs. Senolytes can lead to selective apoptosis
of the senescent cells to compensate for age-related deficien-
cies, and thereby improve immunoprotection in aged people
(Kirkland and Tchkonia 2017). SARS-CoV-2 vaccines have
been made by conjugating adjuvants with the coronavirus S
protein to broaden and induce immune response (Fig. 5).
Unique screening systems identified potent adjuvant vaccine
targets (American Scientific, 2020). Currently, the Boston
Children’s Hospital is developing a novel approach to conju-
gate an adjuvant with the coronavirus S protein for vaccine
development, particularly targeting the elderly population
(Centers for Disease Control and Prevention (CDC) 2020c).
Additionally, the U.S. FDA is facilitating the evaluation of
hyperimmune globulin for elderly patients with COVID-19
(US FDA, 2020c). (Fig. 6).

General Disease Management

COVID-19 can be managed at home, for patients with mild
infection (e.g., fever, cough, and myalgias without dyspnea),
or for individuals with asymptomatic infection who are ade-
quately isolated within the outpatient setting. Management of
such patients should focus on the prevention of transmission

Fig. 5 Vaccines for the elderly. Blood samples are collected from elderly are used to test the immunogenicity of small molecule adjuvant conjugated
spike protein as vaccine candidates. The lead adjuvants are tested for their ability to induce humoral and cellular immune responses against SARS-CoV-2
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to others and monitoring for clinical deterioration, which
should prompt hospitalization (Cheng et al. 2020; World
Health Organization (WHO) 2020e). Management of patients
who warrant hospitalization consists of ensuring appropriate
infection control and supportive care, including oxygenation
and potentially ventilation support for ARDS (World Health
Organization (WHO) 2020e). Whether at home or in the hos-
pital, standard precautions include hand and respiratory hy-
giene, utilization of appropriate PPE consistent with a risk
assessment, injection safety practices, safe waste manage-
ment, proper cleaning of linens, environmental cleaning, and
sterilization of patient-care equipment (World Health
Organization (WHO) 2020c). Individuals should make sure
that the subsequent respiratory hygiene measures are used
including proper coverage of nasal and oral emissions with a
tissue or an elbow when coughing or sneezing, proper appli-
cation of a face mask to patients with suspected COVID-19
while they are in waiting/public areas or in cohort rooms, and
performance of hand hygiene after contact with respiratory
secretions (Centers for Disease Control and Prevention
(CDC) 2020d). Each person should apply WHO’s My 5
Moments for Hand Hygiene approach before touching a pa-
tient, before any clean or aseptic procedure is performed, after
exposure to a liquid bodily secretion, after touching a patient,
and after touching a patient’s surroundings (Sax et al. 2007).
Hand hygiene includes either cleansing hands with an alcohol-
based hand rub or with soap and water. Alcohol-based hand
rubs are preferred if the hands are not visibly soiled, but the
washing of hands with soap and water is recommended once
they are visibly soiled (Sax et al. 2007). It is vital to make sure
that environmental cleaning and disinfection procedures are
followed. Thoroughly cleaning environmental surfaces with
water and detergent and applying commonly used hospital-
level disinfectants (such as sodium hypochlorite) are effective
and sufficient procedures (World Health Organization (WHO)
2020d).Medical devices and equipment, laundry, food service
utensils, and medical waste should be managed following safe
routine procedures (World Health Organization (WHO)
2020c) Face mask use by the general public has received
growing acceptance as a means of reducing the spread of
SARS-CoV-2. This measure should be performed in

conjunction with good hand hygiene. But global public health
messaging on the need for face masks worn by the general
public has been inconsistent since the start of the pandemic.
The reasons are attributed to cultural standards and magnifi-
cation of comments by mainstream media outlets. Prior expe-
rience with SARS-CoV from 2003 in East Asia, and general
social acceptance of wearing facemasks outside of pandemic
circumstances helped to make face mask adoption by the gen-
eral public quickly commonplace throughout the region’s
dense urban populations. Such acceptance and adoption of
face masks came less readily in the West, notably in the
United States where the US Surgeon General initially advised
against using facemasks for the general public but later en-
couraged facemask usage when the WHO and CDC revised
their positions on the use of face coverings in public. These
measures taken together with PPE for health care workers and
caregivers, good cleanliness and hygiene standards, social dis-
tancing, and use of face covering by the general public can
forestall the further evolutions of the COVID-19 pandemic.

Conclusions

The SARS-CoV-2 pandemic has significantly affected
the health, well being and socioeconomic status of the
world’s population. The beacon of light is the emer-
gence of effective therapeutics and more recently vac-
cine strategies. Both serve to suppress or eliminate dis-
ease signs and symptoms. Remdesivir, dexamethasone,
potent virus-specific antibodies, and immune modulators
are effective in curtailing disease morbidities. The de-
ployment of effective vaccines are likely in early 2021.
Together with public health measures for contact trac-
ing, social distancing, protective masks, and hand wash-
ing the pandemic control is soon to be realized. The
review has offered the underpinings of a therpauetic
road map that will in the time ahead see SARS-CoV-2
elimination.
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