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Purpose: Known clinical and genetic markers have limitations in predicting disease course and 

outcome in juvenile myelomonocytic leukemia (JMML). DNA methylation (DNAme) patterns in 

JMML have correlated with outcome across multiple studies, suggesting it as a biomarker to 

improve patient stratification. However, standardized approaches to classify JMML based on 

DNAme patterns are lacking. We therefore sought to define an international consensus for DNAme 

subgroups in JMML and develop classification methods for clinical implementation.

Experimental Design: Published DNAme data from 255 JMML patients were used to develop 

and internally validate a classifier model. Accuracy across platforms (EPIC-arrays and MethylSeq) 

was tested using a technical validation cohort (32 patients). The suitability of both methods for 

single-patient classification was demonstrated using an independent cohort (47 patients).

Results: Analysis of pooled, published data established three DNAme subgroups as a de facto 
standard. Unfavorable prognostic parameters (PTPN11 mutation, elevated HbF and older age) 

were significantly enriched in the high methylation (HM) subgroup. A classifier was then 

developed that predicted subgroups with 98% accuracy across different technological platforms. 

Applying the classifier to an independent validation cohort confirmed an association of HM with 

secondary mutations, high relapse incidence and inferior overall survival while the low 

methylation subgroup was associated with a favorable disease course. Multivariable analysis 

established DNAme subgroups as the only significant factor predicting overall survival.

Conclusions: The present study provides an international consensus definition for DNAme 

subgroups in JMML. We developed and validated methods which will facilitate the design of risk-

stratified clinical trials in JMML.

Introduction

Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative/myelodysplastic 

neoplasm (1) with an incidence of 1.3 per million children and a median age at diagnosis of 

2 years (2). Older age, elevated fetal hemoglobin (HbF) levels, and thrombocytopenia at 

diagnosis are established clinical risk factors correlating with poor clinical outcome (3).

More than 90% of JMML patients harbor canonical mutations in PTPN11, KRAS, NRAS, 

CBL or NF1 that constitutively activate RAS signaling. Somatic PTPN11 mutations are 

detected in approximately 35 – 40% of patients, somatic KRAS and somatic NRAS 
mutations are found in about 15% each, while alterations of the CBL or NF1 locus are 

observed in about 15% and 10% of patients, respectively (1,4). Karyotypic abnormalities can 

be observed in 35% of patients, with monosomy 7 as the most frequent event occurring in 

25% of children with JMML (5). Whole exome- or targeted-sequencing studies identified 

recurrent secondary mutations in a number of JMML patients, commonly affecting JAK3, 

SETBP1, and SH2B3 (6–10). While older patients with PTPN11-, NF1- or NRAS-driven 

disease have a high relapse incidence following allogeneic hematopoietic stem cell 

transplantation (HSCT), spontaneous disease regression is observed in some younger 

patients with NRAS and CBL mutations (11,12). Interestingly, infants with Noonan 

syndrome caused by germline PTPN11 mutations can experience a myeloproliferative 

disorder that can be indistinguishable from JMML but generally has a self-limiting course.
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In an attempt to resolve this striking clinical and biological heterogeneity, gene expression 

profiling identified JMML patients with an acute myeloid leukemia (AML)-like expression 

signature that was associated with poor survival (13). However, the precise mechanisms 

regulating disease specific gene expression patterns in JMML are still obscure. A link 

between aberrant RAS signaling and epigenetic remodeling has been suggested in the 

literature (14). Consistent with this, DNA hypermethylation of candidate gene promoters 

was described in JMML, including CDKN2B, RASSF1A, CREBBP, RASA4, the β-globin 

promoter and others (15–21). The DNA methylation status of four candidate genes (BMP4, 

CALCA, CDKN2B, and RARB) was integrated into a prognostic model, with DNA 

methylation emerging as the strongest independent prognostic predictor in a multivariable 

analysis (22). More recently, three independent studies described DNA methylation 

subgroups in JMML based on genome-wide DNA methylation analysis (23–25). Study 

groups from Europe and USA identified three JMML subgroups with distinct clinical 

features whereas a Japanese group suggested a binary classification into hyper- or 

hypomethylated disease. In all three studies, the hypermethylation subgroup was associated 

with PTPN11 mutations and poor overall survival. Together, these studies suggested DNA 

methylation as a biomarker which might help to improve patient stratification in JMML. 

However, standardized approaches to identify DNA methylation JMML subclasses are 

lacking.

In the present study, we sought to define an international consensus for DNA methylation 

subgroups in JMML and to systematically describe the biological and clinical features 

associated with each subgroup. Furthermore, we developed and validated classification 

methods which are suitable for clinical implementation and will allow risk stratification in 

clinical trials.

Materials and Methods

Collection of data and patient samples

Illumina Infinium Human Methylation 450k Bead Chip raw data from 292 patients (203 

male; 89 female) with JMML or Noonan syndrome and myeloproliferative disease (NS/

MPD) patients were collected from three recent publications and clinical annotations were 

obtained from the respective study groups (Supplementary File 1, Supplementary Figure 1A) 

(23–25). Healthy references were obtained from GEO (accession number GSE36054). To 

ensure reproducibility on different technology platforms, 32 patients from this cohort were 

re-analyzed using targeted bisulfite sequencing (MethylSeq) and 31 out of these 32 patients 

were re-analyzed by Infinium Human MethylationEPIC Bead Chip (EPIC) arrays 

(“technical validation cohort”, Supplementary File 1). An independent validation cohort of 

47 patients from the participating study centers was collected for classifier validation. 

Written informed consent from parents or legal guardians of all patients was obtained 

according to the Declaration of Helsinki. Patients’ material storage and collection was 

approved by institutional ethics committees.
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Processing of DNA methylation array data

DNA methylation data was analyzed using the “RnBeads” Bioconductor package (26). 

Background correction (“methylumi.noob”)(27) and beta-mixture quantile normalization 

(BMIQ) were applied. Unreliable probes (Greedycut algorithm with detection p-value 

<0.01), cross-reactive probes and probes mapping to sex chromosomes were removed 

(Supplementary Figure 1A). Samples with outlier intensities in 450k/EPIC array control 

probes were removed from the dataset as described in the RnBeads vignette (26)

(Supplementary Methods Figure 1–3). Hierarchical clustering based on SNP distances 

revealed study group-specific clusters that likely reflected ethnic differences (Supplementary 

Figure 1B). In line with this, initial exploratory analysis using principal component analysis 

(PCA) separated EWOG-MDS from USA and Japanese patients in the first principal 

component (PC; Supplementary Figure 1C). We therefore applied 1) SNPfiltering using 

dbSNP version 150 and 2) Combat batch correction using the “sva” R package 

(Supplementary Figure 1D) (28). The final RnBeads dataset was generated from the binary 

exponential of the batch corrected value. Finally, all CpG dinucleotides (CpGs) with variable 

DNA methylation across normal hematopoietic differentiation were excluded to account for 

potential differences in cell type composition of the samples (24). The pre-processing of 

EPIC array data was analogous to 450k data as described above. For the technical validation 

cohort, overlapping probes between 450k and EPIC arrays were determined. Patient-wise 

Pearson correlation was calculated across all probes and plotted as a correlation heatmap 

using the pheatmap R package (29).

Consensus clustering of DNA methylation array data

The 5000 most variable CpGs (mvCpGs), defined as the probes with the highest standard 

deviation between all samples, were identified and used for hierarchical consensus clustering 

using the ConsensusClusterPlus R package (30) with Ward’s linkage (ward.D2), Manhattan 

distance and 500 bootstrap iterations. Within each DNA methylation consensus cluster, 

patients were ordered according to similarity by hierarchical clustering. Results were plotted 

using the pheatmap R package (29).

Copy number variation analysis

Copy number variation was inferred from 450k or EPIC array data using the Conumee 

Bioconductor R package (31). Focal amplifications and deletions were determined by 

“Genomic Identification of Significant Targets in Cancer” (GISTIC2) (32). Data from 

healthy adult blood (EGAS00001002511; 450k array) and cord blood (GSE103189; EPIC 

array) were used as reference.

Extreme gradient boosting model

The “XGBoost” R package was used for a tree-based gradient boosting model (33). The 

patient cohort was split into a training (n = 229) and a testing cohort (n = 55), with random 

splits for each DNA methylation class to keep the class distribution balanced. CpGs which 

overlapped between 450k and EPIC methylation arrays were determined, and CpG sites with 

differentiation-dependent variation were removed. A multiclass classification model was 
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trained for the prediction of DNA methylation subgroups using the 5000 mvCpGs (softprob 

objective and 100 iterations).

Hyper-parameter tuning was performed using a grid-search algorithm with 5-fold cross-

validation (nrounds = 65, eta = 0.05, max_depth = 4, gamma = 1, colsample_bytree = 0.4, 

min_child_weight = 3, subsample = 0.75). The model accuracy was determined by 

predicting DNA methylation classes in the testing cohort. The feature importance for the 

tuned XGBoost model was calculated using the caret-wrapper function to determine the 

relative feature importance of the model CpGs (34). Out of 5000 model CpGs, 124 showed a 

feature importance of greater than zero (Supplementary File 2). A refined JMML DNA 

methylation classifier was trained based on these 124 CpGs and the hyper-parameters from 

the grid-search algorithm. The model accuracy was tested by comparing the DNA 

methylation class predictions of the testing cohort with the meta-analysis DNA methylation 

group assignments. Furthermore, 31/32 patients from the technical validation cohort were 

re-analyzed on EPIC methylation arrays. The model prediction accuracy was then tested 

with this cohort to validate the model accuracy across different technology platforms. The 

robustness of the refined 124-CpG classifier was tested by repeated re-training using only a 

subset of CpG sites. This approach enabled us to determine the model accuracy for DNA 

methylation class prediction of the training and testing cohorts for models based on 5 to 120 

CpGs (each subset randomly selected 100x).

DNA panel sequencing

DNA samples (32 from the technical cohort and 47 from the independent validation cohort) 

were sequenced using a custom amplicon panel (Paragon Genomics, Hayward, CA, USA), 

targeting 26 genes that are recurrently mutated in JMML (Supplementary Methods Table 1). 

Ten nanograms of genomic DNA were used for each library and were processed according 

to the manufacturer’s protocol.

Library quality was assessed using the Bioanalyzer High Sensitivity DNA Analysis kit 

(Agilent, Santa Clara, CA, USA) and quantified using the Qubit HS assay (Thermo Fisher 

Scientific, Waltham, MA, USA). Dual-index libraries were sequenced on an Illumina MiSeq 

instrument using the 150 bp PE mode. Mean on-target sequencing depth was 1519x (median 

= 1297x). A minimum mutant allele fraction (MAF) of 0.03 was required for reporting. 

Patient samples where the MAF of the putative driver mutation was <0.25 were removed 

from the analysis to ensure only clonal samples were being analyzed.

Human MethylationEPIC Bead Chip sample processing

Genomic DNA (100–250ng) was subjected to the Genomics and Proteomics Core Facility at 

the German Cancer Research Center to perform genome-wide DNA methylation analysis 

using the Infinium Human MethylationEPIC Bead Chip platform (Illumina, San Diego, CA, 

USA).

Targeted MethylSeq library preparation and sequencing

3000 CpG loci were submitted for custom-capture assay design, of which 2992 CpGs were 

among the top ranked 5000 CpGs discriminating the JMML DNA methylation subgroups 
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identified in the meta-analysis. Genomic DNA (300ng) was bisulfite converted using the 

TrueMethyl oxBS Module according to protocol (Tecan, Switzerland). Converted ssDNA 

was quantified using the Qubit ssDNA assay (Thermo Fisher Scientific, Waltham, MA, 

USA) and 100ng used as input for the custom-made Targeted MethylSeq assay (Tecan, 

Switzerland). Final libraries were quality checked using the Bioanalyzer High Sensitivity 

DNA Analysis kit (Agilent, Santa Clara, CA, USA) and quantified using the Qubit HS assay 

(Thermo Fisher Scientific, Waltham, MA, USA) before pooling for next generation 

sequencing. Single-index library pools were sequenced on the Illumina HiSeq 4000 with 

paired-end 150bp mode.

Hierarchical clustering-based sample classification using MethylSeq data

Sequence reads were trimmed using Cutadapt (35) to remove adapters, and CpG methylation 

status was called using Bismark (36). Only those 2992 CpG sites were considered for 

analysis and required to have a median 50x read coverage, resulting in removal of 150 CpG 

sites. From the remaining 2842 CpG sites, 1386 CpGs showed standard deviations greater 

than 0.25 across the 32 samples, which was the final data set used to analyze the technical 

validation cohort (Supplementary File 3). The beta-values of the 1386 CpG sites of the 32 

patients from the technical validation cohort were hierarchically clustered in both directions 

(samples and probes) utilizing an unsupervised approach using the hclust function and 

Ward’s method. The samples were classified into one of three classes based on minimum 

distance to the centroid. The MethylSeq data from the independent validation cohort data 

were filtered accordingly and hierarchical clustering was performed using the list of 1386 

CpG sites determined based on the analysis of the technical validation cohort. Methylation 

subgroup classification into one of three classes was based on the minimum distance to the 

centroid.

Statistical analysis

Clinical characteristics and mutation status were collected for all patients from the 

participating study groups. Pearson’s chi-square test was used to test categorical variables 

for independence. One-way analysis of variance (ANOVA) was utilized to test for 

differences among continuous variables. Fisher’s exact test was used to test for enrichment 

of canonical JMML driver mutations for each DNA methylation subgroup. The primary 

endpoint overall survival (OS) was defined as the time between diagnosis and death or last 

follow-up. The Kaplan-Meier method was used to estimate survival rates and the two-sided 

log-rank test was employed to evaluate the equality of the survivorship functions in different 

subgroups. For univariable and multivariable analysis, the relationships between overall 

survival and the variables PTPN11 (mutation or not), gender, age (≥1 year or not), mutations 

(>1 mutation or not), HbF (normal vs elevated), platelet count (≥50 or not), XGBoost 

subgroup (LM, IM or HM), and MethylSeq subgroup (LM, IM or HM) were examined. 

First, we tested all variables individually and then included significant variables in a 

multivariable model. P-values ≤ 0.01 were considered statistically significant, except in the 

multivariable analysis, where a cutoff of 0.05 was used.
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Data Sharing Statement

The data used in this study are available for download from the European Genome-phenome 

archive (https://ega-archive.org/) under the accession numbers EGAS00001004682. All 

other relevant data are available from the authors upon request.

Results

Patients’ characteristics of the meta-analysis cohort

DNA methylome data of 292 patients with JMML (n = 263) and Noonan syndrome-

associated myeloproliferative disorder (NS/MPD; n = 29) were combined from three 

previously published studies for an integrative analysis (23–25). Data of 284 patients (143 

EWOG-MDS; 104 Japan; 37 USA) passed our quality control criteria (Supplementary 

Figure 1A). Of these, 255 patients (90%) were diagnosed with JMML and 29 (10%) with 

NS/MPD (Supplementary Table 1). NS/MPD patients were significantly younger than 

JMML patients with a median age at diagnosis of 0.1 years (range: 0.0 – 0.3, p = 8.2 × 

10–7); all were diagnosed before the age of 2 years (Supplementary Table 1).

For JMML patients (pts), the tissue source for the DNA methylome analysis was either bone 

marrow (BM; 69%, n = 175 pts) or peripheral blood (PB; 31%, n = 80 pts; Supplementary 

Table 2). Median age at JMML diagnosis was 1.4 years (40% ≥ 2 years). 69% of patients 

were male and 31% were female. HbF levels at diagnosis were available for 210 (82%) 

patients and elevated for age in 145/210 (69%) patients (37). Median leukocyte and platelet 

counts at diagnosis were 29.9 x 109 /L [range: 2.9 – 563.0] and 65.5 × 109 /L [range: 5.0 – 

730.0], respectively. Canonical JMML driver mutations were detected in 90% of JMML 

patients (38% PTPN11; 16% NRAS; 14% KRAS; 14% CBL; 9% NF1; 8% quintuple-

negative; 1% NA). Monosomy 7 was detected in 14% and was the only parameter tested that 

showed differential distribution between the study groups (p = 2.4 × 10–3): monosomy 7 was 

present in 22% of EWOG-MDS patients, but was only found in 9% and 3% of the Japanese 

and USA patients, respectively (Supplementary Table 2).

Consensus clustering confirms three DNA methylation subgroups in JMML

Unsupervised hierarchical consensus clustering using the 5000 most variable CpG sites 

identified three distinct DNA methylation subgroups, which were designated as low DNA 

methylation (LM), intermediate DNA methylation (IM) and high DNA methylation (HM) 

according to mean beta-values (Figure 1; Supplementary Figure 2A–J). When comparing 

our consensus approach to the assignments in the original study groups’ publications, we 

identified the same methylation subgroup assignment for 96% of EWOG-MDS (120/125), 

95% of US (35/37) and 91% of Japanese (85/93) JMML patients (Figure 2A–C)(23–25). A 

global concordance of 96% was calculated when combining IM and HM subgroup as 

hypermethylated JMML, which allowed a comparison with the two methylation subgroups 

identified in the Japanese study (Supplementary Table 3)(25). All NS/MPD patients 

clustered in the LM subgroup and formed a sub-cluster that almost exclusively consisted of 

NS/MPD patients. Of note, the DNA methylomes of NS/MPD and LM patients were almost 

indistinguishable from those of healthy controls (Supplementary Figure 3). There was no 

significant association between sample source (bone marrow or peripheral blood) and DNA 
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methylation subgroups (p = 0.9012, Chi-squared test; Supplementary Table 3 & 

Supplementary Figure 4).

Consensus DNA methylation subgroups correlate with disease biology

The association of consensus DNA methylation subgroups with the canonical JMML 

subgroups and clinical hematologic parameters was investigated for all JMML patients 

(Supplementary Table 3). Patients with somatic PTPN11 mutations were predominantly 

assigned to the HM subgroup (61%) and comprised more than 70% of HM patients (p = 3.2 

× 10–13; Figure 2D, Supplementary Table 3). All HM patients had elevated HbF (100%) and 

were older at the time of diagnosis (median age: HM, 3.0 years; IM, 1.4 years; LM, 0.7 

years; p < 2 × 10–16, AOV-test; Supplementary Table 3). The IM subgroup was mainly 

characterized by the presence of PTPN11 or KRAS mutations (42% and 27% of all IM 

patients). Of all monosomy 7 cases, 75% (27/36 pts) were found to cluster with the IM 

subgroup, whereas the remaining 25% of monosomy 7 cases clustered with the HM 

subgroup (p = 1.5 × 10–7, Chi-squared test). In contrast, almost all patients with CBL 
mutations (35/36 pts, 97%; p = 4.3 × 10–15 Chi-squared test) and the vast majority of 

patients with NRAS mutations (30/40 pts, 75%; p = 1.2 × 10–7, Chi-squared test) clustered 

in the LM subgroup (Figure 1 & 2D, Supplementary Table 3). The quintuple-negative 

JMML patients comprised a small proportion of all JMML patients (21/255 pts., 8%) and 

almost exclusively clustered with the LM (52%) or with the IM subgroup (38%; Figure 2D 

& Supplementary Table 3).

Genotype-specific enrichment analyses identified further associations between JMML driver 

mutations, clinical characteristics and DNA methylation subgroups. For example, patients 

who had a PTPN11 mutation and additional clinical high-risk factors (i.e. elevated HbF, 

thrombocytopenia, higher age) were more likely assigned to the HM subgroup, whereas 

patients with CBL mutations were most commonly assigned to the LM subgroup, 

independent of the presence or absence of additional clinical risk factors (Supplementary 

Figure 5A). In this retrospective analysis, all NF1 patients who presented with 

thrombocytopenia were assigned to the HM subgroup and none of the NF1 patients older 

than 2 years at the time of JMML diagnosis clustered with the LM subgroup (Supplementary 

Figure 5A). Monosomy 7 co-occurred with PTPN11 (16/36; 44%), KRAS (14/36; 39%) or 

NF1 (2/36; 6%) mutations but not with NRAS or CBL mutations. Patients with co-

occurrence of monosomy 7 and a KRAS mutation were always assigned to the IM subgroup, 

while in the presence of PTPN11 or NF1 mutations patients with monosomy 7 were 

assigned either to the IM or HM subgroups. Of note, monosomy 7 was absent in the LM 

subgroup (Supplementary Table 3). In the group of KRAS-mutant patients, a skewed 

distribution of molecular features became evident across patients from different study 

groups: while 9/14 (64%) Japanese patients with KRAS mutations were assigned to the LM 

subgroup (p = 8.0 × 10–2, Fisher’s exact test), 13/19 (68%) EWOG-MDS patients with 

KRAS mutations were categorized into the IM subgroup (p = 5.5 × 10–3, Fisher’s exact test). 

This difference was paralleled by a more frequent co-occurrence of KRAS mutations with 

monosomy 7 in EWOG-MDS compared to Japanese patients (EWOG-MDS n = 12; Japan n 

= 2; p = 6.0 x 10–3, Fisher’s exact test; Supplementary Figure 5B).
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Consensus DNA methylation subgroups predict clinical outcome and identify patients at 
high risk

We next analyzed the impact of the consensus DNA methylation subgroups on clinical 

outcome. Due to differences in treatment regimens and follow-up periods, clinical outcome 

was analyzed separately for each study group. Kaplan-Meier curves for overall-survival 

demonstrated that HM JMML had inferior 5 year overall survival in all study groups 

(EWOG-MDS: 62% [95% CI: 45 – 79]; Japan: 46% [95% CI: 29 – 62]; USA: 42% [95% 

CI: 22 – 79]), especially when compared to the LM subgroup (5-yr OS EWOG-MDS: 87% 

[95% CI: 76 – 98]; Japan: 74% [95% CI: 59 – 85]; USA: 100%; Supplementary Figure 

6A,B&C). Long-term survival without hematopoietic stem cell transplantation (5-yr TFS) 

was only observed in patients assigned to the LM subgroup (EWOG-MDS: 24% [95% CI: 

10 – 38]; Japan: 39% [95% CI: 24 – 53]; USA: 54% [95% CI: 33 – 89]; Supplementary 

Figure 6D,E&F).

Development and validation of a machine learning model for prospective JMML DNA 
methylation subgroup classification in the single-patient setting

To prospectively classify single JMML patients into consensus DNA methylation subgroups 

as defined by this meta-analysis, we developed and validated a machine learning model. The 

combined JMML patient cohort was split into a training (n = 229) and a testing cohort (n = 

55). A multiclass classification gradient boosting tree model (XGBoost) was developed 

based on the 5000 mvCpGs (Figure 3A, Supplementary Figure 1). To determine the model 

with the highest prediction accuracy, hyperparameter tuning was performed using a 5-fold 

cross-validation approach with subsequent feature selection based on variable importance. 

The refined JMML DNA methylation classifier was trained based on 124 CpG sites and 

validated by classifying the testing cohort (Figure 3B; Supplementary File 2). The model 

predicted consensus DNA methylation subgroups in the testing cohort with an accuracy of 

98% [95%CI: 90.3%−99.9%]; that is, only one out of 55 patients was classified differently 

than by consensus clustering (Figure 3B).

To test the power of the model for sparse datasets and the stability of the underlying JMML 

DNA methylation signature, a “leave-one-out” scenario was simulated (Figure 3C). 

Repeated model training and accuracy assessments using increasing numbers of CpG sites 

(between 4 and 119 out of the 124 model CpG sites) based on the training and testing 

cohorts was used for this simulation. We found that training the model with as few as 24/124 

CpG sites still resulted in a prediction accuracy of about 85%. We confirmed the model 

performance across different technological platforms by re-analyzing 1/292 patients from 

the combined cohort (referred to as “technical validation cohort”) on the EPIC array 

platform (one sample did not meet quality control cutoffs). The genome wide DNA 

methylation measurements were highly correlated between the 450k and the EPIC array 

platforms (Supplementary Figure 7A). Accordingly, the classifier model predicted the 

consensus DNA methylation classes from EPIC array data with an accuracy of 97% in the 

technical validation cohort (Supplementary Figure 7B).
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Targeted MethylSeq recapitulates consensus DNA methylation subgroup assignments

We also developed a targeted DNA methylation assay based on bisulfite sequencing 

(targeted MethylSeq) that could be incorporated into routine clinical workflows used for 

mutation testing. This assay encompassed 3000 CpG sites, 2992 of which overlapped with 

the 5000 most-variable CpGs used for consensus clustering in the present study 

(Supplementary File 3). The 32 patients of the technical validation cohort (for MethylSeq 

one additional patient was available) were analyzed using this assay (Supplementary File 4). 

After quality control filtering, 1386 CpGs with a standard deviation of greater than 0.25 

between the samples were used for hierarchical clustering. Again, this resulted in three 

distinct DNA methylation subgroups that corresponded to the consensus assignments for all 

32 samples analyzed (Supplementary Figure 7C). Furthermore, 104 CpG sites of the 3000 

probes overlapped with the 124 CpG sites from the JMML methylation classifier, and their 

DNA methylation patterns were similar to the EPIC array data and the 450k array combined 

cohort analysis (Figure 3D).

Validation of the JMML DNA methylation classifier in an independent patient cohort

An independent patient cohort consisting of 47 patients (9 EWOG-MDS, 18 Japan and 20 

USA) without prior DNA methylation analysis was collected in order to validate the DNA 

methylation classification methods. All patients from this independent validation cohort 

were tested for known JMML mutations using targeted deep-sequencing. The DNA 

methylation analysis was performed using both the EPIC array and the targeted MethylSeq 

platforms. In this cohort, 46 patients were diagnosed with JMML and 1 patient was 

diagnosed with NS/MPD. The median age at diagnosis was 1.7 years [range: 0.0 – 6.4]. HbF 

was elevated for age in 77.8% of patients. Median leukocyte and platelet counts were 30.2 x 

109 /L [range: 5.0 – 166.4] and 67 × 109 /L [range: 11.0– 490.0], respectively 

(Supplementary Table 4). The median overall survival was 6.7 years. Canonical JMML 

driver mutations were detected in 96% of JMML patients (44% PTPN11, 15% KRAS, 24% 

NRAS, 4% CBL, and 9% NF1). Accordingly, 4% of patients were annotated as “quintuple-

negative”. DNA methylation subgroups were determined by the 124 CpG XGBoost 

classifier in a single-patient setting (Figure 4A, Supplementary Table 4) and by minimum 

distance to the centroid based on the 1386 CpGs sites that were previously used to cluster 

the technical validation cohort (Figure 4B; Supplementary File 2&3). Based on the 124 CpG 

XGBoost classifier, 21 patients were classified as HM, 10 as IM, and 16 as LM JMML 

(Figure 4A). PTPN11 mutations, higher age, and elevated HbF levels were significantly 

enriched in HM JMML patients (Supplementary Table 4). When classifying the independent 

patient cohort based on the MethylSeq data, 20 patients were classified as HM, 8 as IM and 

19 as LM. Importantly, the concordance of HM prediction was 95% (Figure 4B, 

Supplementary Figure 8A). Of note, variant-allele frequency measurements of canonical 

JMML driver mutations suggested that DNA methylation subgroups are not confounded by 

differences in tumor cell purity (Supplementary Figure 8B&C). Previous studies have 

suggested an enrichment of secondary mutations predominately in HM JMML (23,24). In 

the validation cohort 71% of HM patients and 50% of IM patients but none of the LM 

patients showed recurrent secondary mutations (Figure 4C). Interestingly, in JMML patients 

with PTPN11 mutations, most secondary mutations were detected in JAK3 and NF1 (79%; 

11/14 patients with secondary mutation) whereas the most common secondary mutation in 
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NRAS-mutant JMML patients was SETBP1 (100%; 3/3 patients with secondary mutation). 

In summary, we found a strong enrichment of secondary genetic hits in the HM subgroup.

The clinical relevance of the 124 CpG XGBoost DNA methylation classifier was highlighted 

by significant differences in prognosis (log-rank test: p-value = 0.003). Overall survival (OS) 

at 2.5 years was significantly lower for HM JMML patients as compared to IM and LM 

JMML patients (2.5-year OS HM: 36% [95% CI: 19 – 69], IM: 79% [95% CI: 56 – 100], 

LM: 88% [95% CI: 73 – 100]; Figure 4D). Similarly, DNA methylation subgroups identified 

by the targeted MethylSeq assay were also associated with significant differences in 

prognosis (log-rank test: p-value = 0.003; 2.5-year OS HM: 45% [95% CI: 26 – 78], IM: 

63% [95% CI: 37 – 100], LM: 84% [95% CI: 69 – 100]; Figure 4E).

Methylation status is independently predictive of outcome.

In univariable analyses (Table 1), the characteristics that reached significance at the 0.05 

level for OS, were age at diagnosis of >12 months (HR = 2.75, 95% CI = 1.08–7.01, p = 

0.03), platelets of ≤50 (HR = 0.35, CI = 0.14–0.89, p = 0.026), and DNA methylation group 

(p = 0.0026 for XGBoost and 0.0015 for MethylSeq). When a multi-variable model was 

applied using age, platelets and DNA methylation group, the DNA methylation grouping 

retained statistical significance for OS (p = 0.046 for XGBoost and 0.039 for MethylSeq; 

Table 1) whereas neither age (p = 0.51 for XGBoost and 0.82 for MethylSeq) nor platelets (p 

= 0.13 for XGBoost and 0.16 for MethylSeq) were significant.

DISCUSSION

The diagnosis of JMML has so far been based on clinical and genetic criteria. The unifying 

feature is pathologic activation of the RAS signaling pathway but the clinical course of 

JMML is highly heterogeneous. Patients with identical mutations may either experience 

spontaneous remission of the disease or relapse after allogeneic hematopoietic stem cell 

transplantation, indicating that genotype does not always dictate phenotype in this disease 

(38,39). Outcomes can be partly predicted using a combination of clinical and genetic 

parameters (3,6). However, well-established cut-offs for those parameters or even prognostic 

scores are missing. In addition, parameters such as fetal hemoglobin and thrombocytopenia 

may not be informative in cases where supportive treatment has been initiated before referral 

to a specialist center. Hence, robust, objective and reproducible molecular assays are needed 

to advance the diagnosis, risk-stratification and treatment of JMML. The potential of DNA 

methylation to sub-classify tumors such as glioma, acute myeloid leukemia, acute 

lymphoblastic leukemia, chronic lymphocytic leukemia (40,41) and Waldenström 

macroglobulinemia (42) has been demonstrated in several publications (43–46). In recent 

years, a number of publications have highlighted the correlation of DNA methylation with 

disease biology and prognosis in JMML (18,19,22–25).

Combining published data from three JMML study groups, we analyzed the genetic and 

DNA methylation landscape in the largest JMML patient cohort studied to date.

The present meta-analysis sheds some light on controversial topics that have been discussed 

in the JMML research community. It confirmed the presence of at least three JMML DNA 
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methylation subgroups with an obvious underrepresentation of Japanese patients in the IM 

subgroup. This might explain why a previous Japanese study identified two, instead of three, 

JMML DNA methylation subgroups (25). Similarly, we found that most KRAS-mutant 

EWOG-MDS patients clustered in the IM subgroup, while most KRAS-mutant Japanese 

patients clustered in the LM subgroup. Biological differences between the regional patient 

groups were further supported by the observation that monosomy 7 is rare in patients from 

Japan as compared to EWOG-MDS (monosomy 7 Japan: 9%; monosomy 7 EWOG-MDS: 

22%). This difference cannot be explained by technical differences as the copy number 

variation status was uniformly inferred from the 450k or EPIC array data for all patients. In 

conclusion, we observed differences in the genetic and epigenetic landscape of KRAS 
patients between Europe (USA) and Japan which might, at least in part, explain previously 

discussed differences in the clinical course of these patients (12,47).

Our re-analysis established three DNA methylation subgroups as a de facto standard, which 

will allow the uniform classification of JMML into biologically and clinically meaningful 

risk groups. Furthermore, we developed and validated tools that allow for systematic and 

reproducible classification of JMML in the clinical setting and demonstrated that DNA 

methylation classification in JMML is stable across orthogonal technology platforms. 

Analysis of an independent patient cohort validated these classification tools. Using 

multivariable analysis, we confirmed the prognostic relevance of DNA methylation 

subgroups and provide further evidence suggesting that DNA methylation subgroup is the 

strongest independent prognostic factor in JMML.

The present meta-analysis provides a molecular rationale to define high-risk patients for 

whom allogeneic hematopoietic stem cell transplantation is not curative and who are 

therefore candidates for clinical trials testing innovative treatment options. On the other 

hand, there likely exists a subset of patients, characterized by an LM phenotype, for whom a 

watch-and-wait strategy plus supportive care might be the appropriate intervention.

In summary, the present meta-analysis of 255 JMML patients provides a consensus 

definition for DNA methylation subgroups in JMML. We have developed a DNA 

methylation classifier and validated its performance in an independent patient cohort. This 

classifier allows the prospective identification of DNA methylation subgroups for newly 

diagnosed patients based on the consensus definition described here. This work will support 

patient stratification and development of risk-adapted treatment strategies in the context of 

clinical trials and will improve the comparison of results obtained with different treatment 

strategies across study groups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of translational relevance

Known clinical and genetic markers have limitations in predicting disease course and 

treatment outcome in juvenile myelomonocytic leukemia (JMML). Aberrant DNA 

methylation patterns correlate with clinical outcome in JMML across multiple studies, 

suggesting it as a biomarker to improve patient stratification. However, standardized 

approaches to identify DNA methylation subclasses are lacking. In the present study, we 

defined an international consensus for DNA methylation subgroups in JMML, and 

developed and validated classification methods that are suitable in the single-patient 

setting. Our DNA methylation classifier is ready for clinical implementation and will 

enable the design of risk-stratified clinical trials in JMML.
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Figure 1 |. DNA methylation patterns identify three biologically distinct JMML subgroups.
The heatmap displays three DNA methylation subgroups among patients with JMML 

(n=255; NS/MPD pts excluded). The patients (columns) were clustered by unsupervised 

consensus clustering (k=3) using the 5000 most variable CpGs. Known clinical and 

biological features are annotated for each patient. The heatmap shows beta-values of 395 

representative CpG sites (rows).

(LM, low methylation; IM, intermediate methylation; HM, high methylation; HbF, fetal 

hemoglobin)
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Figure 2 |. Enrichment of JMML driver mutations in DNA methylation subgroups.
(A-C) Confusion table comparing the published methylation subgroups to the meta-analysis 

consensus clustering. EWOG-MDS patients (A) and US patients (B) were classified in three 

methylation subgroups in the original publication whereas the Japanese study (C) separated 

patients in two methylation subgroups. (D) Absolute and relative numbers of patients with a 

specific JMML driver mutation and their distribution across the DNA methylation subgroups 

are depicted. Odd ratios, confidence intervals and p-values were calculated using Fisher’s 

exact test.
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Figure 3 |. Development of a DNA methylation classifier for JMML.
(A) The meta-analysis cohort was randomly split into a training (n = 229) and a testing 

cohort (n=55). A machine learning classifier was built based on the 5000 mvCpGs, which 

were covered by 450k and EPIC methylation arrays and trained on the training cohort. The 

fractional contribution of each CpG to the overall model performance was calculated and the 

CpGs with the highest gain were selected (n=124). This refined JMML methylation 

classifier was trained and the model performance evaluated on the testing cohort. 

Additionally, 31 patients were re-analyzed on EPIC arrays to test the model accuracy across 
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different technical assays (“technical validation cohort”). (B) Confusion table for prediction 

of the testing cohort using the refined JMML methylation classifier (Acc, accuracy; NIR, no-

information rate). (C) The JMML methylation classifier was re-trained with subsets of the 

124 model CpGs, by repeatedly leaving out between 5 and 120 CpG sites. The model 

accuracy of these sparse models for predicting the training or testing cohort was determined. 

(D) Heatmap showing the DNA methylation beta-values for the 124 model CpG sites (rows) 

on 450k and EPIC methylation arrays for patients of the technical validation cohort (n=31; 

columns). Additionally, 104/124 CpGs assessed by the MethylSeq assay are shown. The 

predictions by the methylation classifier model are compared to the consensus clustering.
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Figure 4 |. Validation of the DNA methylation classifier in an independent patient cohort.
(A) Heatmap showing the DNA methylation beta-values of the 124 model CpG sites for an 

independent validation cohort (n = 47). Methylation subgroups were assigned by classifier 

predictions. (B) Determination of the DNA methylation subgroups using targeted amplicon-

bisulfite sequencing (MethylSeq). Patients were clustered using hierarchical clustering with 

Ward’s method. (C) Circos plot displaying the association between known driver mutations 

and secondary mutations in the three DNA methylation subgroups as determined by the 124 

CpG machine learning classifier. (D+E) Kaplan-Meier curves showing the overall survival 
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of JMML patients stratified by DNA methylation subgroups. DNA methylation subgroups 

were assigned based on the JMML methylation classifier (D) or MethylSeq clustering (E). 
Probabilities and confidence intervals are indicated for each DNA methylation subgroup. 

The number of individuals at risk (N) and the number of events (E) is depicted at the bottom. 

Statistical significance was calculated using log-rank test.
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Table 1 |
Univariable and multivariable analysis for overall survival in the biological validation 
cohort.

An univariable analysis including age at diagnosis, platelet count at diagnosis, XGBoost Cluster, MethylSeq 

Cluster, somatic PTPN11 mutations, sex, number of somatic mutations and HbF status was conducted for 

predictors of overall survival (OS). P-values lower than 0.05 were considered as statistically significant. A 

multivariable analysis including the significant features was calculated thereafter including either the XGBoost 

or MethylSeq methylation cluster assignments. (N = Number of pts; HR = Hazard ratio; CI = Confidence 

interval).

Univariable Analysis OS from date of diagnosis

N HR 95% CI p

Age at diagnosis (months)

≤12 months 27 1

>12 months 20 2.75 1.08–7.01 0.03

Platelet count at diagnosis ×109

≤50 17 1

>50 30 0.35 0.14–0.89 0.026

XGBoost Cluster

Low 16 1

Intermediate 10 2.96 0.48–18.22 0.0026

High 21 8.07 1.81–36.01

MethylSeq Cluster

Low 19 1

Intermediate 8 6.76 1.20–38.01 0.0015

High 20 8.93 1.99–40.0

Somatic PTPN11 mutation

No 26 1

Yes 21 1.79 0.72–44.45 0.21

Sex

Male 34 1

Female 13 0.84 0.28–2.57 0.76

Somatic Mutations at Diagnosis

<=1 29 1

>1 18 2.33 0.93–5.79 0.068

HbF at diagnosis

Not elevated for age 10 1

Elevated for age 35 1.36 0.39–4.73 0.61
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Univariable Analysis OS from date of diagnosis

N HR 95% CI p

Multivariable Analysis (XGBoost)

Age at diagnosis (months)

≤12 months 27 1

>12 months 20 0.61 0.15–2.47 0.51

Platelet count at diagnosis ×109

≤50 17 1

>50 30 0.49 0.19–1.25 0.13

XGBoost Cluster

Low 16 1

Intermediate 10 3.09 0.49–19.65 0.046

High 21 10.82 1.56–74.84

Multivariable Analysis (MethylSeq)

Age at diagnosis (months)

≤12 months 27 1

>12 months 20 0.85 0.20–3.53 0.82

Platelet count at diagnosis ×109

≤50 17 1

>50 30 0.52 0.20–1.31 0.16

MethylSeq Cluster

Low 19 1

Intermediate 8 6.17 1.06–35.94 0.039

High 20 8.92 1.25–63.48
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