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Abstract

The Ehlers-Danlos syndromes (EDS) are a group of heritable, connective tissue disorders 

characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. There is 

phenotypic and genetic variation among the 13 subtypes. The initial genetic findings on EDS were 

related to alterations in fibrillar collagen, but the elucidation of the molecular basis of many of the 

subtypes revealed several genes not involved in collagen biosynthesis or structure. However, the 

genetic basis of the hypermobile type of EDS (hEDS) is still unknown. hEDS is the most common 

type of EDS and involves generalized joint hypermobility, musculoskeletal manifestations, and 

mild skin involvement along with the presence of several comorbid conditions. Variability in the 

spectrum and severity of symptoms and progression of patient phenotype likely depend on age, 

gender, lifestyle, and expression domains of the EDS genes during development and postnatal life. 

In this review, we summarize the current molecular, genetic, epidemiologic, and pathogenetic 

findings related to EDS with a focus on the hypermobile type.

Keywords

Ehlers-Danlos syndrome; hypermobility; musculoskeletal

Correspondence, Russell A. Norris, Department of Regenerative Medicine and Cell Biology, Cardiovascular Developmental Biology 
Center, Children’s Research Institute, Medical University of South Carolina, 173 Ashley Avenue, Room 604F CRI (Lab), Room 608 
CRI (Office), Charleston, SC 29425. norrisra@musc.edu.
AUTHOR CONTRIBUTIONS
Cortney Gensemer: Conceptualization; investigation; writing-original draft; writing-review and editing. Randall Burks: 
Conceptualization; investigation; writing-review and editing. Steven Kautz: Conceptualization; investigation. Daniel Judge: 
Conceptualization; investigation; writing-review and editing. Mark Lavallee: Conceptualization; investigation; writing-review and 
editing. Russell Norris: Conceptualization; investigation; writing-original draft; writing-review and editing.

HHS Public Access
Author manuscript
Dev Dyn. Author manuscript; available in PMC 2021 March 02.

Published in final edited form as:
Dev Dyn. 2021 March ; 250(3): 318–344. doi:10.1002/dvdy.220.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 | HISTORY

Edvard Ehlers and Henri Danlos described variances in cutis laxa in 1908 and 1904, 

respectively. Ehlers-Danlos syndrome (EDS) was first named in 1946 and categorization of 

the EDSs followed in the late 1960’s. The EDS subtypes were then formalized in the Berlin 

nosology, which recognized 11 numbered subtypes of EDS.1 As the underlying molecular 

basis of various subtypes emerged, the Villefranche nosology came out in 1998, consisting 

of six subtypes with descriptive names.2 The Villefranche nosology for hEDS was originally 

defined as joint hypermobility with or without skin manifestations, family history, joint pain, 

dislocations, and systemic manifestations. The Villefranche criteria poorly defined hEDS 

and broadly labeled individuals with generalized joint hypermobility as having hEDS. Thus, 

in 2017, the EDS International Consortium proposed the 2017 International Classification 

for the EDSs to replace the Villefranche nosology, recognizing 13 subtypes of EDS (Table 1) 

with major and minor diagnostic criteria outlined for each subtype.74 The new criteria for 

hypermobile EDS were more strict than previous criteria, in an attempt to better define the 

disease subtypes and reduce future misdiagnoses.

Similar to hEDS, hypermobility spectrum disorders (HSD) are a poorly recognized group of 

connective tissue disorders that involve a spectrum ranging from asymptomatic 

hypermobility or hypermobility affecting only one joint, to generalized joint hypermobility, 

subluxations, and dislocations. Patients with symptomatic joint hypermobility that do not 

meet the criteria for hEDS are often labeled as HSD. Prior to the 2017 criteria, patients may 

have been categorized as having joint hypermobility syndrome (JHS) or benign joint 

hypermobility syndrome (BJHS), both of which overlap phenotypically and may be 

indistinguishable from hEDS.75 Due to the lack of a genetic marker for hEDS or HSD/JHS 

and similarity in clinical and molecular phenotype, the two diagnostic labels are often 

grouped together. Unless further genetic discoveries are able to accurately separate patients 

into different subgroups, it has been recommended that JHS and hEDS should be viewed as 

one.76 Due to reclassifications of EDS subtypes, hEDS may also be referred to as EDS III or 

grouped with HSD or JHS in the literature reflected in this review.

2 | EPIDEMIOLOGY

Generalized joint hypermobility, impacting four or more joints, has been reported to be 

present in anywhere from 12% to 28% of children, adolescents and young adults.77–83 This 

has been shown to be both age and gender specific, where females and children tend to be 

more hypermobile.79–82,84–86 It is important to note that joint hypermobility alone is 

somewhat common in the general population and may be present with no complications, 

especially in children.78,79,82,85 Furthermore, there are forms of acquired hypermobility that 

may be present in ballet dancers, gymnasts, wrestlers, cheerleaders, and other athletes where 

hypermobility is trained and is not indicative of a connective tissue disorder.87

There is an unexpected female predominance in hEDS despite suspected autosomal 

dominant inheritance.88 It is possible that women may be more frequently diagnosed due to 

a higher severity of symptoms than men. This may be explained by muscle mass and 

ligament stiffness being controlled by sex and leading to greater joint stability in men, as it 
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is already known that women are more flexible than men.89 Additionally, women are also 

known to engage the medical system earlier than males.89 Understanding the protective 

factors that lead to reduced penetrance in men may be a key component of treating hEDS.

The exact prevalence of hEDS has proved challenging to determine due to changes in 

categorization of subtypes and lack of a clear diagnostic test for hEDS. EDS as a whole has 

been estimated to impact 1 in 5,000 people worldwide, however, there is limited evidence to 

support this statistic.90 Demmler et al recently reported the combined prevalence of hEDS 

and HSD to be 1 in 500 people in Wales with 70% of the diagnosed being women, 

suggesting that hEDS/HSD prevalence has been grossly underestimated.91 With the 

spectrum of severity, variation in symptom presentation and the lack of an effective clinical 

diagnostic test, it is not uncommon for patients to go years undiagnosed with hEDS. 

Because of this, it can be assumed that the actual prevalence of hEDS is higher than 

reported. This highlights the need for a better understanding of the genetics and biology of 

hEDS to develop accurate diagnostic tools that will allow for accurate detection and 

epidemiological reports.

3 | DIAGNOSTIC CRITERIA

Current diagnostic guidelines indicate major and minor criteria for each EDS subtype. Due 

to the heterogeneity and overlap of phenotype among subtypes, a genetic diagnosis is 

preferred for all subtypes, except hEDS. The presence of criteria 1, 2, and 3 (Table 2) must 

all be met for a clinical diagnosis of hEDS. Criterion 1 includes generalized joint 

hypermobility, to be assessed by the Beighton score with ≥6 out of 9 for children and 

adolescents, 5 out of 9 for adults up to 50 yr of age and 4 out of 9 in adults over 50. 

Limitations such as prior surgery or joint injury should be taken into consideration, as well 

as history of hypermobility; a five-point questionnaire was developed for this purpose (Table 

3).92 A “yes” answer to two or more of the questions would suggest joint hypermobility and 

add one additional point to the Beighton score.74 For criterion 2, patients must meet two or 

more of the following; must have systemic manifestations of a more generalized connective 

tissue disorder, positive family history and/or musculoskeletal complications. Criterion 3 

requires all of the following: absence of unusual skin fragility that would prompt 

consideration for another type of EDS, exclusion of other heritable and acquired connective 

tissue disorders, exclusion of alternate diagnosis that may also include joint hypermobility.74

Although a Marfanoid habitus is known to be associated with Marfan syndrome, it is 

commonly seen in other heritable disorders of connective tissue. Arm span to height ratio, 

upper segment to lower segment ratio, high or narrow palate, dental crowding, ectopia lentis, 

and pes planus are commonly evaluated in hEDS. Arachnodactyly, or spider fingers, is also 

common in Marfanoid habitus and a sign of connective tissue disorders.93 The Steinberg 

sign, also known as the thumb sign, in which the thumb extends past the palm of the hand in 

a closed fist and Walker-Murdoch, or wrist sign, in which the thumb and fifth finger overlap 

around the wrist are typically used to asses arachnodactyly. The Beighton criteria was 

designed to be a nonsubjective measurement of joint hypermobility but is often criticized for 

not including other relevant joints where hypermobility may be present. It is recommended 
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that other joints that are commonly affected in patients with hEDS, such as the hips and 

shoulders, are not excluded during clinical assessment.74

De Wandele et al emphasized that nonmusculoskeletal complaints are extremely common in 

hEDS and greater awareness of the heterogeneity of symptoms is necessary for diagnosis 

and treatment.94 It is essential that physicians recognize signs of hypermobility and ligament 

laxity early on and make necessary recommendations and referrals to prevent chronic joint 

damage and complications of the disease. Patients who do not meet enough criteria for 

hEDS are often diagnosed with HSD or may lose a previous diagnosis after the new 2017 

criteria, despite hEDS/HSD being indistinguishable in regard to severity of symptoms.95,96 

Because of this, the 2017 diagnostic criteria have received much criticism.95

4 | PHENOTYPE

Hypermobile EDS presents heterogeneously and varies in degree of severity. Multiple body 

systems may be impacted, and the presence of several comorbidities is common, including 

widespread chronic pain, autonomic dysfunction, mast cell activation syndrome (MCAS), 

psychological disorders and gastrointestinal dysfunction. The natural history of hEDS 

progression has been described by Castori et al, in a continuum of three overlapping phases.
88 The first includes ligament laxity in children without complaining of pain, despite 

sometimes frequent dislocations and subluxations, occasionally, problems persist and lead to 

complaints of pain. The second phase is termed the pain phase which begins in the 20s, 

where joint hypermobility may decrease but pain worsens. The third phase, stiffness phase, 

is later in life and results in limited joint motion and reduction of vertebral curves with 

chronic pain.88

4.1 | Musculoskeletal manifestations

The main features of hEDS consist of musculoskeletal complications resulting from 

hypermobility and joint instability. Hypermobility of the joints is due to laxity of ligaments, 

joint capsules, and tendons.90 Instability can occur in any joint and can lead to early 

complications such as subluxations, dislocations, sprains, soft tissue lesions and later 

complications such as tendonitis, tendon ruptures, muscle and ligament tears, muscle tension 

and spams, osteoarthritis and chronic joint pain in both children and adults.74,88,97–100 It is 

not uncommon for patients to have multiple joint complications occurring simultaneously or 

for patients to experience a domino effect of existing instability impacting surrounding 

joints.99 Recurrent dislocations are not uncommon, but reduction may occur spontaneously 

and without difficultly.101 Ligament laxity has been indicated in soft tissue lesions such as 

ganglion cysts.102 Other soft tissue lesions may include molluscoid pseudotumors, 

spheroids, and piezogenic papules.74,103

There have been conflicting studies suggesting that hEDS may lead to an increased 

incidence of fractures or lower bone mineral density (BMD). Infants with EDS were found 

to have no increased fracture risk, while ambulatory older children with EDS had an 

increased risk.104 Unlike other connective tissue diseases such as osteogenesis imperfecta 

(OI), there is little evidence to suggest that hEDS alone should be viewed as a brittle bone 

disease or as an explanation for multiple fractures presenting in infants or children.105,106 
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Focusing on adults, it was found that vertebral fractures have been reported at a higher 

incidence in hEDS and classical EDS (cEDS) patients.107 In further studies, when evaluating 

a patient population with hEDS or cEDS, reduced bone mineral density and a higher 

prevalence of general bone fractures have been reported,108,109 but normal BMD and 

increase in vertebral fractures was also reported. 107 EDS has been indicated to have no 

influence on bone fragility or fracture healing as well.101 However, in a Chilean population 

with JHS, 26% of patients had osteoporosis, but interpretation of this data is confounded by 

the absence of a reported control population for comparison.110 Additionally, altered 

proprioception and gait mechanics may lead to an increased susceptibility of falls, 

accounting for the reported fracture incidence. It is also possible that patients with hEDS 

have lower bone mineral density due to deconditioning, rather than a direct mechanism 

influencing bone integrity.

4.2 | Cutaneous/dermatological

Skin hyperextensibility is seen in many types of EDS but typically to a lesser degree than is 

observed in hEDS or cEDS.111,112 Soft, velvety skin is a common feature of hEDS, and 

reduced dermal thickness and increased skin fragility has been reported in hEDS and cEDS 

patients.74,112,113 Wound healing defects may be present and may cause atrophic scarring.
74,111 Unexplained striae without significant changes in weight may occur.74,114 Capillary 

fragility causes frequent bruising with delayed resolution and deep vessel fragility can result 

in subcutaneous and intramuscular hematomas.111 Patients also present with peizogenic 

papules (small subcutaneous fat herniations through the dermis) in the heels and wrists.74,111 

Additionally, keratosis pilaris has been reported in the hEDS population and can present in 

other EDS types as well.111 Alterations in sweating, such as hypohidrosis or hyperhidrosis, 

are seen in some patients and may be due to an underlying autonomic dysfunction.111

4.3 | Gynecological manifestations

Gynecological manifestation of hEDS can range from pelvic organ prolapse (POP), to 

pregnancy and menstrual cycle complications. In a small sample of patients with unspecified 

EDS subtypes, patients experienced both urinary incontinence and history of POP.115 POP 

has also been found to be more common in patients with benign joint hypermobility 

syndrome.115,116 In a patient-reported survey, infertility issues have been reported in 44% of 

patients with EDS, hEDS was the most affected type of EDS compared to 10% of general 

population.117 Spontaneous abortions have been reported in 28% of hEDS patients and 57% 

of EDS patients while impacting only 15% of the general population.117,118 Despite some 

evidence of pregnancy complications, including prelabor membrane rupture, preterm labor 

and failure to progress in labor,119 other published data indicates that hEDS/JHS are 

associated with a normal risk of serious adverse pregnancy outcomes.120

An increase in dislocations and symptoms at puberty, during pregnancy, postpartum and 

during the perimenstrual period have both been reported along with an improvement after 

menopause.117,118 In the general population, ligament laxity has been shown to be 

influenced by estrogen, progesterone, relaxin and testosterone and has been best evaluated in 

the context of anterior cruciate ligament (ACL) injury in females. Knee ligament laxity and 

risk of ACL injury occurs more frequently during preovulatory phase and ovulatory phase of 
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the menstrual cycle, when estrogen exceeds progesterone.121–123 Hormonal contraceptives 

have been found to have a possible protective role in ACL tears.122,124,125 The influence of 

hormones on ligament laxity, combined with patient-reported fluctuations in symptoms that 

coincide with hormonal shifts, indicate that more research is needed to establish the role of 

hormones in hEDS.

4.4 | Ocular manifestations

Present in many heritable disorders of connective tissue, ocular involvement may occur in 

hypermobile EDS as well. Ocular involvement is typically milder in hEDS than other 

heritable connective tissue disorders. Thin, blue sclerae, angioid streaks, retinal detachment, 

ketatoglobus, keratoconus, and lens subluxation or dislocation may occur in hEDS but are 

more frequently reported in other connective tissue disorders.110,126,127 Myopia is more 

common in the hEDS population and can be severe.127 Stromal keratocytes are also more 

prevalent in hEDS patients than the general population, along with xerophthalmia (dry eye).
127 It has been suggested that an underlying autonomic nervous system dysfunction could be 

impacting tear production or, alternatively, tear production may be reduced due to alterations 

in the extracellular matrix of the lacrimal gland.110,127 Increased eyelid laxity and prominent 

folds of the upper eyelid skin are also common in patients with hEDS and JHS.128 Patients 

with EDS may also have an increased risk of surgical complications in ophthalmological 

surgeries.129 The presence of ectopia lentis (ocular lens dislocation) should raise suspicion 

for other conditions, such as Marfan syndrome.

4.5 | Oral and mandibular manifestations

Oral and mandibular manifestations, resulting from compromised oral soft tissue and 

orofacial structures, have been identified among hEDS patients.96,130 Dental crowding and 

high or narrow palate are common features of hEDS included in the current diagnostic 

criteria.74 Compromised soft tissue and orofacial structures among hEDS patients may be 

attributed to the altered production and organization of collagen, subsequently affecting oral 

mucosa and periodontium.111,131 The increased fragility of mucosal tissue, capillaries, and 

perivascular connective tissues132 should be anticipated during dental procedures for hEDS 

patients, due to the high incidence of injury from oral appliances.133 Compromised oral soft 

tissue may also present as periodontal recession, which may be exacerbated by accelerated 

tooth mobility among hEDS populations.134,135

Early onset periodontitis is prevalent among a variety of EDS subtypes, inclusive of the 

periodontal form (type VIII).136 Periodontal abnormalities may be considered a nonspecific 

consequence of heritable connective tissue disorders of various subtypes.136 Early onset 

periodontitis among hEDS patients may be attributed to compromised oxygen and nutrient 

diffusion, resulting from abnormal composition of the extracellular matrix, therefore 

increasing susceptibility to bacterial pathogens.131

Alterations to the composition of the extracellular matrix subsequently compromise the 

ability of the extracellular matrix (ECM) to maintain tissue homeostasis and diffuse oxygen, 

nutrients, and other small molecules.137 This may consequentially effect overall tissue 

health, and may play a role in general and regional anesthesia complications.138 Insufficient 
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effects of local anesthetics are not uncommon and can range from no analgesic affect to 

shortened affect, mostly reported at the dentist.139,140 The precise mechanism of partial or 

complete failure of local anesthesia among hEDS patients is not fully understood; however, 

some patients experienced analgesic effects with the use of intradermal lidocaine,139 

although effects lasted for shorter durations than control groups.137

Anatomical abnormalities in orofacial structures have been identified in hEDS populations, 

such as the absence of lingual and inferior labial frenula.141,142 Subluxations and dislocation 

of the temporomandibular joint, along with temporomandibular disorders (TMD) are a 

significant occurrence in hEDS patients,143–146 which may be attributed to vertebral posture 

and cervical functions of the head and neck.147 As craniocervical instability has been noted 

among hEDS populations, muscle spasms bordering the anterior, posterior, and suboccipital 

triangle muscles may result in the overuse and spasm of mastication muscles, sequentially 

resulting in subluxation of the temporomandibular joint.131

4.6 | Cardiovascular and autonomic dysfunction

Cardiovascular dysfunction among hEDS patients is often attributed to autonomic 

dysfunction, typically presenting with a constellation of both cardiac and noncardiac 

symptoms including tachycardia, positional hypotension, gastrointestinal dysmotility, 

disturbed bladder function and sweating regulation.148 Highly debilitating symptoms in 

hEDS patients may be attributed to compromised autonomic function, presenting as postural 

orthostatic tachycardia syndrome (POTS), vasovagal syncope or neurally mediated 

hypotension (NMH), orthostatic hypotension (OH), and orthostatic intolerance.148,149 

Recent estimates on the prevalence of both hEDS and POTS in a small study with 91 

patients revealed 24% of POTS patients had generalized joint hypermobility without fully 

meeting clinical criteria for hEDS, while 31% of POTS patients did meet hEDS criteria.150 

Prior to this, the estimated prevalence of hEDS in POTS patients was between 15% and 

22%,151–153 while hypermobility spectrum disorder in POTS patients was seen at 35%.153

The association between cardiovascular autonomic dysfunction and hEDS is not well 

understood, although several plausible mechanisms have been suggested in accordance with 

clinical experience. Possible mechanisms for cardiovascular autonomic dysfunction among 

hEDS patients include: low blood pressure, increased peripheral venous dilation and blood 

pooling, elevated circulating catecholamines, excess systemic levels of histamine, and 

brainstem or cervical cord impingement attributed to Chiari malformations or craniocervical 

instability.148 Rowe et al also proposed that connective tissue laxity in hEDS increases 

vascular and venous compliance, impacting vasoconstriction and venoconstriction when 

upright.154 More recently, work by Miller et al,150 has supported increased arterial elasticity 

in these patients as a plausible reason for lower blood pressure and cardiovascular 

complications, although more work is still needed in this area.

Cardiac valve abnormalities, including mitral valve prolapse (MVP), may occur in patients 

with hEDS and is considered in the diagnostic criteria (Table 2).74,88,155 Aortic Root dilation 

(ARD) is also included in hEDS diagnostic criteria and has been reported to occur in some 

individuals with hEDS (Table 2).74,155–157 In a study of 15 patients evaluated with joint 

hypermobility syndrome, 13 were found to have increased aortic compliance that correlated 
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with an increase in age and 10 were identified as having MVP.158 Despite the inclusion of 

MVP and ARD also in hEDS diagnostic criteria, they are not seen as frequently as in 

connective tissue disorders with vascular complications such as vascular Ehlers-Danlos 

syndrome (vEDS), cEDS, Marfan syndrome, and Loeys-Dietz syndrome.159

In retrospective chart review of adults age 15 and older with hEDS, BJHS and cEDS, 6.4% 

and 1.6% were found to have MVP and ARD (Z-score ≥2), respectively.160 Inclusion criteria 

for the study were based on a diagnosis of EDS, cEDS or BJHS and at least one 

echocardiogram. This study had several limitations including a change in diagnostic criteria 

during the study period, variability in clinician interpretation of echocardiograms and the 

timing of echocardiogram evaluation. Cardiac abnormalities like MVP and ARD typically 

develop later in life and echocardiography at an early time point in some of these patients 

may not reflect their current cardiac pathology.

Pediatric patient data suggests that ARD and MVP are less common in hEDS than 

previously reported with MVP occurring in less than 1% of patients and no ARD identified 

in the hEDS cohort.161 In the same study, there were no vascular abnormalities reported in 

vEDS patients. Routine echocardiography may only be necessary in patients with cardiac 

symptoms or family history of aortic disease or MVP.161 Another vascular pathology, 

Raynaud’s phenomenon, is correlated with joint hypermobility and EDS, as well as other 

connective tissue disorders.88,96,101,110,162 Raynaud’s phenomenon is a recurrent vasospasm 

that occurs due to stress or cold temperatures, leading to decreased blood flow to the fingers 

or toes. Raynaud’s phenomenon is also reported in more than half of POTS patients.163 

However, acrocyanosis may also be a plausible explanation for similar symptoms in this 

patient population.88,101,164

4.7 | Immunological manifestations

Non-IGE mediated hypersensitivity, such as histamine intolerance and mast cell activation 

disorders, often referred to as mast cell activation syndrome (MCAS) are comorbid clinical 

manifestations among hEDS patients.165–167 Mast cells that reside in the connective tissue 

produce tryptase, while mast cells in the gut secrete both tryptase and chymase.165 Mast cell 

activation disorders are described as an increased number of mast cells, increased mast cell 

activity, or both. This leads to abnormal degranulation in the presence of inappropriate 

stimuli and can potentially impact all organ systems.167 Histamine, tryptase and chymase are 

the main chemical mediators released by mast cells that may lead to allergy-like symptoms 

in patients. Elevated serum tryptase is often used in the diagnosis of MCAS.165 However, 

symptoms may occur alongside normal plasma histamine and serum tryptase levels; for this 

reason, diagnostic criteria is initially suspected on clinical grounds, in the presence of 

symptoms including flushing, cholinergic urticaria, angioedema, hypotension, diarrhea, and 

rhinitis165 Patients often experience fluctuations in the frequency, duration, and intensity of 

symptoms, with trends of increasing intensity.

Mast cells are known to modulate connective tissue metabolism. Both chymase and tryptase 

positive cells have been identified in the papillary dermis of patients with signs of connective 

tissue dysplasia, mimicking hEDS symptoms.168 Although tryptase positive cells were 

similar in numerical density in the patient and control groups, chymase positive cells had 
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significant increased density in the patient group.168 Increased chymase positive mast cells 

in the skin of those with connective tissue dysplasia may be a compensatory mechanism to 

increased collagen.168 Along with MCAS, asthma is prevalent among hEDS/HSD patients.
169

4.8 | Gastrointestinal

Hypermobile EDS diagnostic criteria is consistently limited to skin fragility or elasticity and 

hypermobile joints.2 Due to the emphasis on specific joint and skin elasticity, diagnostic 

criteria for hEDS frequently neglects gastrointestinal manifestations, despite their high 

prevalence.170 The frequency of gastrointestinal symptoms is higher than previously 

assessed among hEDS patients. While GI symptoms experienced by affected individuals are 

primarily functional and nonlife threatening in nature, their impact upon the patient’s quality 

of life is significant. Clinical assessment of gastrointestinal symptoms associated with hEDS 

should be constructed to address diagnosed and under-treated gastrointestinal complaints 

among hEDS patients.170 Gastrointestinal complaints are common in EDS and generalized 

joint hypermobility.88,171–173 Abdominal pain, bloating, nausea, reflux symptoms, vomiting, 

constipation and diarrhea are commonly experienced GI symptoms.171 In a widespread 

survey inquiring about GI symptoms among hEDS populations, 79.3% of participants 

reported gastroesophageal disease (GERD), 48% reported symptoms congruent with 

irritable bowel syndrome, and 36% reported motility issues, specifically functional 

constipation.170 Dysmotility and delayed gastric emptying (gastroparesis) was highly 

reported, which may be attributed to the high prevalence of dysautonomia among hEDS 

patients.171,174

Gastrointestinal physiological studies by Mayo Clinic surveyed 36 EDS patients of various 

subtypes, a majority of whom presented with type III (hypermobile type): 28% of patients 

who underwent colonic transit studies had abnormal results, with either slow or fast transit.
172 There is currently no standardized clinical assessment nor care guidelines for the 

management of hEDS-related gastrointestinal symptoms.174 Anatomical abnormalities 

among hEDS patients may be attributed to structural changes in collagen located in the 

smooth muscle of gastrointestinal pathology, presenting as diverticulosis, rectoceles, and 

prolapse. Celiac disease is also reported to be more prevalent in hEDS.175 Recurrent 

abdominal pain, chronic gastritis and constipation/diarrhea was reported by hEDS patients.
176

4.9 | Neurological manifestations

Neurological manifestations can be serious in hEDS and may require surgical intervention. 

Chiari malformation Type I may occur in hEDS patients and can be associated with 

recurrent cerebrospinal fluid leak.177,178 Spinal instability is also prevalent and may present 

in various ways. Atlantoaxial instability (AAI) and craniocervical instability (CCI) are spinal 

manifestations directly due to ligament laxity.179 Additionally, spinal instability in the form 

of spondylolisthesis was reported in 10% of patients.100 Cervical and thoracic instability and 

discopathy in EDS can lead to a loss of the normal cervical lordosis and myelopathy.179 

Scoliosis, neck and back pain are also expected in hEDS.100 Tethered cord syndrome (TCS) 
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may also be present in EDS due to abnormalities in filum terminale, although the exact 

prevalence of TCS in the EDS population is unknown.179

It has been suggested that neuropathic pain in EDS is associated with axonal polyneuropathy 

and compression neuropathy.180 Nerural conditions such as small fiber neuropathy181 and 

peripheral nerve entrapments may develop.182 Brachial plexopathies and sciatic 

neuropathies have been reported in EDS and may require surgical decompression.99,183–185 

It is possible that dislocations and subluxations due to ligament laxity may stretch or apply 

pressure to peripheral nerves resulting in neuropathy or plexopathy.186 Headache and 

migraine were shown to be commonplace hEDS patients.187–189 Headache may be a result 

of ligament laxity and AAI and CCI, or a separate entity. Potential associations between 

Idiopathic intracranial hypertension and EDS may also be related and can contribute to 

headaches.179

4.10 | Sleep, fatigue, pain, and psychological impact

Chronic fatigue and chronic pain are prevalent in hEDS.173,189–193 Poor sleep quality, pain, 

orthostatic intolerance, physical deconditioning and muscle weakness may be possible 

causes for chronic fatigue.154,194,195 Joint pain is often associated with subluxations, 

degenerative joint disease and hypermobility but can be both acute and chronic.189,196–198 

About one third of children with hEDS reported chronic back pain, arthralgias and myalgias, 

which increased to two thirds of patients by age 20 and almost all patients over age 40, 

indicating that pain progresses over time.176,189 A significant number of patients with 

fibromyalgia have joint hypermobility.199,200 The relationship between joint hypermobility 

and fibromyalgia may be relevant in widespread pain. An increased sensitivity to pain, 

generalized hyperalgesia, has also been reported in hEDS and HSD.201 When investigating 

pain in hEDS patients, Leone et al recently revealed that hEDS patients may have a deficit in 

endogenous pain inhibitory control.202

Sleep problems such as insomnia and poor sleep quality are common in children and adults 

with hEDS.203–205 In 26% to 42% of children and 32% of adults, obstructive sleep apnea 

has been reported.203,206,207 Psychological manifestations of hEDS have been focused 

mainly on anxiety and depression, which have both been described in hEDS/JHS patient 

population.208–210 It is unknown whether these are a result of living with a chronic disorder 

and pain, or if there is another explanation for the relationship. Chronic pain, mood 

disorders, anxiety, disordered sleep, and comorbid conditions can have significant impacts 

on social life, and overall quality of life. Poor quality of life has been reported by children 

and adults with hEDS/JHS.190,205,211,212 A proposed association between joint 

hypermobility and neurodevelopment disorders including autism spectrum disorders (ASD), 

has been suggested.213,214 Immune mediated and endocrine mediated symptoms were also 

reported to occur at a higher rate in patients with ASD and hEDS than ASD alone.215

4.11 | Development and proprioception

Often, EDS is first noticeable during childhood. Although all babies are hypermobile, there 

may be some signs of EDS during infancy. Children may delay in walking and have 

coordination issues and clumsiness.216,217 Clumsiness was reported by almost half of hEDS 
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patients regardless of age.176 Because many patients have muscular hypotonicity due to 

ligament laxity, babies might be diagnosed as “floppy infant,” where EDS as a differential 

diagnosis should be considered.101 Hypotonia is often accompanied by poor postural control 

and impaired proprioception. Poor postural control has been described in EDS and joint 

hypermobility due to excess joint movement as stretched or lax ligaments are unable to align 

the body properly.218–220 This can lead to abnormal stress on the joints, pain and long-term 

musculoskeletal complications.221

Proprioception is necessary for maintaining joint stability. Proprioceptive impairment is very 

prevalent in hEDS/JHS and has been shown to be correlated with patients’ Beighton score in 

some cases, but not in others.222–226 Abnormal, nonphysiological gait pattern has also been 

observed in hEDS/JHS due to biomechanical consequences of hypermobility and is 

associated with an increased frequency of falls.220,227

5 | GENETICS

The genetic basis for most of the EDS subtypes are well characterized and were initially 

discovered to be involved in production and processing of the collagen extracellular matrix 

(ECM). More recently, the discovery of the genetic etiology of several subtypes has revealed 

that not all types are directly involved in collagen biosynthesis (Table 1). However, for the 

majority of EDS genes, their involvement in the synthesis, folding, transport and post-

translational modification of ECM components, namely collagen, tenascin, proteoglycans 

and dermatan sulfate overwhelmingly points to ECM alterations as a generalized theme in 

EDS pathogenesis. Hypermobile EDS, on the other hand, has challenged researchers and 

very little is known about the underlying biology. An autosomal dominant pattern of 

inheritance has been observed, however, at this time there have been no definitive gene 

candidates identified.

The genetic etiology of hEDS is largely unknown. A few reports have been published 

identifying gene variants involved in hEDS, but the majority of hEDS cases are of unknown 

genetic origin. A mutation in COL3A1 in a single family with autosomal dominant hEDS 

phenotype was identified that led to reduced collagen secretion and over modification of 

collagen.40 The family’s affected individuals had a glycine 637 to serine substitution in 

COL3A1, similar to what has been observed in vEDS; however, patients lacked vascular 

phenotype. There have been no other reports of this COL3A1 variant in hEDS. As compared 

to those with a clinical diagnosis of vEDS, those with a pathogenic variant in COL3A1 were 

less likely to have hypermobility.

In a multigenerational Belgian family with hEDS phenotype, genome wide linkage analysis 

identified a chromosomal locus, 8p22–8p21.1 A heterozygous missense variant in the 

LZTS1 gene was confirmed in all affected individuals and none of the unaffected. Screening 

of hEDS patients revealed 3 additional LZTS1 variants.52 LZTS1 encodes leucine zipper 

tumor suppressor 1, and pathogenic variants in this gene are associated with several types of 

cancer. Other potentially more plausible candidate genes in this chromosomal locus were 

tested, but excluded when analyzed more closely. To date, data supporting the role of LZTS1 
in hEDS is very limited and lacks conclusive evidence for its involvement in connective 
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tissue biology. Additional research is needed to determine the pathogenicity of these variants 

and care should be taken to extrapolate causation between this gene and disease phenotype.

More recently, Lyons et al revealed that copy number alterations in TPSAB1, encoding 

alpha-tryptase was found to be associated with increased basal serum tryptase levels in 35 

families with symptoms related to autonomic dysfunction, gastrointestinal disorders, allergic 

and cutaneous symptoms, and connective tissue abnormalities.228 A gene dose effect 

relating to copy number and basal serum tryptase levels was also reported. However, not all 

affected individuals met diagnostic criteria for dysautonomia, MCAS or hEDS and elevated 

basal serum tryptase is considered relatively common in the general population.

Tenascin X is an extracellular matrix protein that is important for collagen organization. It is 

encoded by the TNXB gene. TNXB is part of the complex RCCX module, composed of 

RP1, RP2, C4A, C4B, CYP21A2 and pseudogene CYP21AP, TNXB and pseudogene 

TNXA. The RCCX module contains pseudogenes, tandem copy number variation and 

promotes gene rearrangements and deletions. Tenascin X deficiency has been indicated in a 

recessive form of EDS in which patients meet major and minor diagnostic criteria of 

classical EDS.229 The Tenascin X deficient patients were found to have truncating mutations 

or deletions in TNXB.229,230 This has since been reclassified as classic-like EDS, a rare, 

autosomal recessive type of EDS.231 Some other point mutations in TNXB have also been 

suggested to cause hEDS or classic-like EDS (clEDS).231–233 TNXB haploinsufficiency has 

been identified in patients with an autosomal dominant form of hEDS who did not have the 

easy bruising and skin hyperextensibility as seen in TNX deficient EDS.234 Patients with 

TNX haploinsufficiency and point mutations have distinct abnormalities in elastic fibers and 

normal collagen appearance.233 It is likely that this only represents a small group of patients 

with hEDS.234 Interestingly, in a small study, there was evidence to indicate that some 

hEDS/JHS patients may have reduced serum TNX concentration compared to healthy 

controls, without any discernible mutations in TNXB.235 Congenital adrenal hyperplasia 

(CAH) is an autosomal recessive disorder causing 21-hydroxylase deficiency. Some patients 

with CAH will have a mutation or deletion in CYP21A2 that also affects TNXB, leading to 

contiguous deletion syndrome (CAH-X).236 TNXA/TNXB chimeras have been identified in 

which TNXB exons are replaced with TNXA.236–238 These patients have phenotypic 

characteristics of both hEDS and CAH. The tenascin x protein has been proposed to be 

essential for collagen I deposition by dermal fibroblasts and important for maintaining the 

distance between collagen fibrils by forming bridges through direct interactions with 

collagen fibrils.239–242

6 | MOLECULAR BIOLOGY

6.1 | Collagen fiber analysis

Collagens are among the most abundant proteins in the body and a major component of skin, 

bone, tendons and ligaments. Collagens are an integral part of the ECM and provides 

structure and support throughout the body. Fibrillar collagens are transcribed as three alpha 

chains which are then modified and assembled into a triple helical conformation known as 

procollagen. After further modification by enzymes like lysyl hydroxylase and procollagen 

peptidase, the collagen fiber is then incorporated into a cross-linked fibril that is part of the 
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ECM. Collagen fibril analysis has been performed on patient dermal biopsies to investigate 

possible changes in collagen structure and appearance but has provided limited information 

in regard to hEDS.

Dermal biopsies have shown a wide variety of findings and many of the studies were 

performed prior to recent reclassification of EDS subtypes. In one study, biopsies were 

examined for collagen structure among people who clinically appeared to have EDS I, II or 

III and were then grouped based on collagen appearance and patient phenotype. It is 

important to note that this was prior to the discovery of variants related to classical and 

classic-like EDS so patients were characterized based on clinical phenotype alone. Some 

patients presented with “flower-like” collagen cross sections and “rope-like” longitudinal 

sections. In other patients who were more mildly affected with joint hypermobility and 

lacked hypertrophic scars, the dermis appeared normal.243

Flower-like collagen fibrils and collagen fibril abnormalities, including reduced collagen 

fibril thickness and disarray of fibrils, were found in some patients with hEDS and patients 

with low Beighton scores.244–248 There was evidence that abnormal collagen appearance did 

not always correlate with the degree of hypermobility.246,248 Yet, many patients do exhibit 

decreased collagen I to collagen III ratios.248 Conflicting evidence on elastic fiber changes 

has been reported, indicating both changed and unchanged elastic fibers.246,247,249 Angwin 

et al, recently published transmission electron microscopy findings that revealed no specific 

collagen abnormalities associated with any subtype of EDS, except collagen flowers in most 

patients with cEDS.250 Eighty-six of ninety patients diagnosed with hEDS had what were 

considered normal biopsy appearance by transmission electron microscopy (TEM), despite 

some variations in collagen and elastin, possibly due to age variation of the patients 

evaluated.250 To date, collagen structure analysis is mostly outdated and provides limited 

information on the pathophysiology of hEDS. Additionally, most of the studies investigating 

extracellular matrix structure have focused only on collagen and elastin structure, 

specifically by TEM. There is a strong need for further investigation of ECM components 

and analysis of fibroblasts of hEDS patients.

6.2 | The ECM and integrins

Integrins are vital components of ECM adhesion. They link the ECM proteins to the 

cytoskeleton and serve as mechanotransducers for various cellular process, including 

development, cell proliferation, cell movement and tissue homeostasis. Various types of 

EDS have shown changes in αvβ3, α5β1, and α2β1 integrin expression in dermal 

fibroblasts isolated from patients.231,251–254 The αvβ3 integrin is widely expressed in 

endothelial cells, which interacts with several proteins including vitronectin, laminin, 

fibronectin, fibrillin as well as collagen. Recruitment of αvβ3 integrin is also an indicator of 

fibroblast activation. The α5β1 integrin and α2β1 integrin are involved in ECM organization 

of fibronectin and fibrillar collagens, respectively.

In a small study of four hEDS and six HSD patients, dermal biopsies from both were 

reported to have a “myofibroblast-like” phenotype, exhibiting organized α-smooth muscle 

actin, increased cadherin-11 expression, αvβ3 integrin expression and enhanced cell 

migration. Additionally, the fibroblasts showed a decreased in CCN1/CYR61 and increased 
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CCN2/CTGF in both hEDS and HSD compared to controls, along with an increase in 

MMP-9 that could help explain ECM abnormalities. ILK was found to be localized mainly 

in focal adhesions in hEDS and HSD cells and coimmunoprecipitated with αvβ3 integrin, 

suggesting they may form a complex that promotes α-smooth muscle actin assembly in 

hEDS/HSD. Snail1/Slug was found to be increased in expression in hEDS/HSD and 

localized in the cytoplasm and nucleus. Coimmunoprecipitation with αvβ3 integrin and ILK 

indicated Snail1/Slug enables the fibroblast to myofibroblast transition in hEDS/HSD cells 

through an αvβ3 integrin—ILK mediated interaction.255

6.3 | Gene expression analysis

Transcriptome-wide expression analyses from five female patients’ fibroblasts with 

hEDS/JHS has identified numerous differentially expressed genes in pathways involved in 

composition and homeostasis of connective tissue (e.g., FNDC1, GPC4, MMP16, SPON2, 

SULF1, TGM2), inflammation (e.g., CFD, COLEC12, IGSF10, IL11, IL6, NFKBIA), cell 

adhesion (e.g., CLDN11, DSP, FLG, ITGA4, ITGA2, CDH10, CDH2, PCDH9, PCDHB16, 

PCDHB8), signal transduction (e.g., AQP9, CHRM2, CLIC2, KCNQ5, OPCML, PRLR, 

SLCO2A1, NPR3), and redox homeostasis (e.g., ADH1B, ADH1C, AKR1C3, GSTM5).252 

This study was limited in its small sample size but can guide future research to understand 

the pathogenicity of hEDS.

Gene expression was also investigated in women with generalized joint hypermobility. The 

authors found that serum levels of zinc, strontium and lithium were altered in generalized 

joint hypermobility (GJH) patients, along with several differentially expressed genes. GJH 

patients had lower COL1A1 and COL1A2. Contrary to other studies, GJH patients had 

higher TNXB than controls. Additionally, B3GALT6, encoding for galactosyltransferase II 

was elevated, while B4GALT7, also involved in galactosyltransferase was reduced compared 

to health controls. Recessive mutations in both B3GALT6 and B4GALT7 have been 

implicated in Spondylodysplastic EDS. Dermatan sulfate epimersase-1 (DSE) was found to 

be reduced in GJH patients and is important for biosynthesis of iduronic acid blocks which 

is indicated in Musculocontractural EDS. Mutations in FKBP14 are causative for 

kyphoscoliotic EDS and expression of FKBP14 was reduced in GJH patients. SLC39A13 
which encodes a Zn exporter ZIP13, which plays a role in connective tissue development, 

was increased in GJH patients. Spondylodysplastic EDS is also associated with mutations in 
SLC39A13.65 Further research on gene expression and serum levels may help to identify 

biomarkers for hEDS.

An overall view of EDS gene expression is presented in Figure 1 and detailed gene 

mutational analyses for each EDS subtype are presented in Table 1. While many of the 

collagen genes are abundantly expressed, some of the EDS genes display more specific 

spatial distribution. For example, Fkbp14 and Plod1, which cause kyphoscoliotic EDS are 

most abundantly expressed in the developing spinal column. Additionally, C1S, as part of 

the complement system, is expressed primarily in the developing craniofacial structures and 

may help explain some of the phenotypes related to oral-mandibular conditions in patients 

with periodontal EDS (pEDS). Interestingly, collagen 5α2 and to a lesser extent collagen 

3α1, which cause classical and vascular EDS, respectively display unique neurological 
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patterns not observed with the other genes, and may play a role in pain accentuation, pain 

management and/or migraines in this subset of patients.

6.4 | Model systems

Mouse models have provided insight into the underlying molecular biology of some EDS 

subtypes revealing abnormal ECM synthesis, deposition, and/or organization.256,257 For 

example, a conditional knockout of Col5a1 in tendon and ligaments resulted in joint laxity, 

abnormal gate and early onset osteoarthritis associated with abnormal collagen structure and 

organization.258 Additionally, knocking out a known gene for mcEDS in mice, CHST14, 

provided functional evidence for the glycosaminoglycan, dermatan sulfate, in connective 

tissues.259 More recently, knock in mice with heterozygous mutations in Col3a1 mimicking 

patient genetics, revealed abnormal signaling through the PLC/IP3/PKC/ERK pathway and 

that inhibition of these targets may prevent death due to aortic rupture.260 Despite TNXB not 

encoding for collagen or any enzyme involved in collagen modification, it was revealed to 

play a role in collagen deposition though studies involving inactivation of Tenascin-X in a 

murine model of EDS.240 Tenascin-X knockout mice also exhibit mild muscular features 

and evidence of increased ECM turnover.261 Using an in vitro model, there was evidence of 

wound healing defects involving up-regulated TGF-β1 and increased MMP activity in 

mouse embryonic fibroblasts lacking Tenascin-X.262 Although, some models for studying a 

few EDS subtypes exists, there are currently no established model system for studying 

hEDS. It is intriguing that nearly all of the genes that have thus far been identified for the 

various subtypes of EDS are related to the extracellular matrix. These genes are primarily 

related to collagen isoforms themselves or collagen synthesis (ZNF469, PRDM5), 

intracellular folding or transport of collagens (PLOD1, FKBP14), post-translational 

modifications of glycosaminoglycans such as proteoglycans or dermatan sulfate (B4GALT7, 

B3GALT6, CHST14) or the synthesis of dermatan sulfate (DSE), or other noncollagen, 

ECM genes (TNXB, ADAMTS1). The correlation of gene-phenotype relationship to 

particular subtypes of EDS indicates that each of these genes likely have unique cell-specific 

expression domains and/or levels that are required for normal development and homeostasis 

within affected tissues in each of the EDS subtypes as discussed above and shown in Figure 

1.

The lack of hEDS models is likely based on a lack of genetic knowledge around the causes 

of hEDS in the human population, further underscoring the necessity for large-scale genetic 

analyses in this EDS patient group. Only through a combination of this genetic knowledge 

with animal models will the field be able to advance understanding for the etiology and 

pathogenesis of the disease.

7 | MANAGEMENT

Early diagnosis of hEDS allows for disease monitoring and management. Although there are 

no therapies approved to treat hEDS, symptoms of hEDS and comorbidities can be managed 

through physical therapy, exercise, lifestyle modification, medication and when needed, 

surgical intervention. Physical therapy is a crucial part of hEDS management. Treatment is 

aimed at treating problems due to joint laxity and instability, often seen with muscle 
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weakness from underuse of key muscles and proprioception.263 Therapy is used both 

preventatively to prevent subluxations and as a treatment for acute injury.264 It is not 

uncommon for patients to seek treatment for multiple issues at once, for extended periods of 

time. The use of stretching exercises should be limited due to risk of subluxation and 

dislocation. Physical therapy should include manual therapy for overactive muscles and an 

emphasis on core and trunk stabilization.265 Posture reeducation and joint awareness using 

biofeedback are important to improve proprioception and poor posture due to ligament 

laxity.265 Adaptive lifelong activity and fitness is recommended at every stage of life for 

patients EDS. Daily exercise consistent with mild strength training, proprioception, dynamic 

joint stability, flexibility, and cardiovascular exercise is beneficial in most cases. Aquatic 

therapy has been noted to be very helpful in treating the more severely affected patients. 

There are various pharmacologic therapies that may ease the suffering of certain aspects of 

the EDS patient. Other anecdotal treatments such as meditation, massage, kinseotaping, 

CBD oil, mindfulness, acupuncture, dry needling, and so forth, need more evidence-based 

research to ascertain their effectiveness. Early recognition and appropriate treatment of 

issues with nutrition, sleep function, mobility, chronic pain, and psychologic conditions is 

important for successful holistic treatment of EDS patients. Additionally, bracing of unstable 

joints including finger splints, knee and ankle stabilizing braces and cervical collars is 

sometimes recommended.99,265,266 Instability, weakness and pain may result in the need for 

part time or full-time mobility aids. Frequent chiropractic care and spinal manipulation are 

generally not recommended for patients with joint hypermobility, ligament laxity, connective 

tissue disease, or spinal instability.267–270 Surgical intervention for orthopedic issues 

involving hEDS should always be carefully considered and failure rate of surgical repair and 

postoperative complications are higher in EDS patients.99,271 The risks and benefits of 

surgery should always be taken into careful consideration. Slow wound healing may require 

careful surgical closure with extra precautions.272 Medications for pain, inflammation, and 

management of comorbid conditions including MCAS and POTS are frequently prescribed.
3,98,99,148

8 | CONCLUDING REMARKS AND PERSPECTIVES

Modification of the ECM likely play a major role in impairing the mechanical stability of 

the affected tissues in EDS patients. These ECM alterations likely feedback to the cells, 

resulting in altered mechanosensing and cell phenotype, probably through an integrin-

dependent mechanism. As a consequence, propagation of altered mechanical, cellular and 

physiological result in a chronic, feed-forward disease responses with profound effects on 

tissue damage and instability. Stabilizing the ECM environment may set in motion positive 

mechanical cues that can revert cell and physiological phenotypes with long-term benefits 

for patients. This highlights the necessity for careful physiotherapy while taking into 

consideration already compromised connective tissues. While this concept may apply 

broadly for EDS, its application to hEDS is not yet known. The clinical spectrum of hEDS 

has been described for decades, with significant advancements made in recent years in 

regard to diagnostic guidelines, knowledge of comorbidities, treatment options, and 

awareness among healthcare practitioners. However, most of the available data on the 

underlying biology of hEDS is broad in scope and lacks clear information regarding genetic 
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pathways that contribute to disease etiology and pathogenesis. Establishing this information 

will not only provide molecular pathways for hEDS but also other diseases that affect 

musculoskeletal, ocular, neurological, and cardiovascular tissues. To date, basic sciences 

discoveries on EDS diseases are woefully lacking. Collective research networks should 

continue identifying genetic factors that contribute to disease. But, we as a scientific 

community most move these genetic discoveries into appropriate, genetically accurate 

animal models to understand the molecular, biochemical, mechanical, and physiological 

mechanisms that contribute to disease origin and its progression. Without this fundamental 

knowledge, diagnostic tools and more effective or curative therapeutics for hypermobile 

EDS and EDS disease subtypes will remain enigmatic.

EDS patients may endure years without proper diagnoses and/or treatments. Increased 

awareness in the medical community is needed to ensure proper care for this group of 

affected individuals. This medical deficiency may originate during training as medical 

students are taught “when you hear hoofbeats, look for horses not zebras.” This means to 

look for the more common diagnosis and not the rare one. As such, the zebra has become the 

symbol for EDS. Just like zebras in the wild, no two EDS zebras have the same stripes. All 

patients’ symptoms and experiences are different, but the community comes together as a 

group of zebras, called a dazzle. A mission of this review is to inform the scientific and lay 

community of the necessity for increased awareness and involvement in connective tissue 

disease societies like the EDS society. This, in turn, will lead to a brightening, or dazzling of 

research and provide new hope to patients with these life altering diseases.273
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FIGURE 1. 
Section in situ hybridization of EDS genes. Messenger RNA expression of EDS genes on 

sagittal mouse sections at E14.5. Purple staining reveals expression of mRNAs showing 

widespread expression of EDS genes in regions of connective tissue development. Numbers 

correspond to specific anatomical locations (red: neural tissues, teal: craniofacial tissues, 

yellow: thoracic/abdomen tissues). 1, Roof of midbrain; 2, mesencephalic vesicle; 3, ventral 

part of midbrain; 4, pons; 5, choroid plexus within central part of lumen of fourth ventricle; 

6, dorsal part of medulla oblangata; 7, upper lip; 8, Meckel’s cartilage; 9, dorsal surface of 
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tongue; 10, cartilage primordium of nasal bone; 11, right ventricle of the heart; 12, aortic 

valve and ascending aorta; 13, mitral valve; 14, cartilage primordium of the palatal shelf; 15, 

lower thoracic dorsal root ganglion; 16, apical part of caudal lobe of right lung; 17, right 

dome of diaphragm; 18, diencephalon; 19, median circumvallate papilla/cartilage 

primordium of basisphenoid bone; 20, evidence of ossification within cartilage primordium 

of basioccipital bone (cilvus); 21, lumen of urogenital sinus (future bladder); 22, liver; 23, 

costal cartilage of ribs
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TABLE 3

The five-point questionnaire91

1. Can you now (or could you ever) place your hands flat on thefloor without bending your knees?

2. Can you now (or could you ever) bend your thumb to touchyour forearm?

3. As a child, did you amuse your friends by contorting yourbody into strange shapes or could you do the splits?

4. As a child or teenager did your shoulder or kneecapdislocated on more than one occasion?

5. Do you consider yourself double-jointed?
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