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Abstract

We accelerate a pathline-based cardiovascular model building method by training machine 

learning models to directly predict vessel lumen surface points from computed tomography (CT) 

and magnetic resonance (MR) medical image data. Formulating vessel lumen detection as a 

regression task using a polar coordiantes representation allows predictions to be made with 

significantly higher accuracy than existing methods that identify the vessel lumen through binary 

pixel classification. The regression formulation enables machine learning models to be trained 

end-to-end for vessel lumen detection without post-processing steps that reduce accuracy. By 

employing our models in a pathline-based cardiovascular model building pipeline we substantially 

reduce the manual segmentation effort required to build accurate cardiovascular models, and 

reduce the overall time required to perform patient-specific cardiovascular simulations. While our 

method is applied here for cardiovascular model building it is generally applicable to segmentation 

of tree-like and tubular structures from image data.
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1 Introduction

The increasing worldwide prevalence of Cardiovascular disease (CVD) [13] has spurred the 

development of new computational cardiovascular modeling and simulation technologies 

[6]. Image-based patient-specific hemodynamic simulation methods, in particular, are used 

in personalized medicine and surgical planning for a range of disease applications [42,28].

However, the typically manual segmentation effort required to construct accurate 3D digital 

anatomical cardiovascular models for patient-specific hemodynamic simulations is currently 

a labor intensive and time consuming process [42,36]. Lengthy workflows are incompatible 

with realistic clinical settings where limited time is available to produce simulation results. 

Furthermore, to validate the efficacy of simulation tools, studies and trials involving large 

patient cohorts are required to statistically correlate simulation predictions with clinical 

outcomes, making lengthy workflows intractable.

Specialized software tools such as SimVascular1 [43, 44], Cardiovascular Integrated 

Modeling and Simulation (CRIMSON) [18], and Vascular Modeling Toolkit (VMTK) [1] 

have been developed to provide hemodynamic simulation worfklows. With these software 

tools, users can construct 3D cardiovascular models vessel-by-vessel (Fig. 1). A recent 

framework based on isogeometric analysis enables construction of detailed cardiovasular 

models readily usable for simulations, but still relies on thresholding and manual user 

interaction to initialize the process with a cardiovascular segmentation [45]. While users can 

use the listed software packages to construct sufficiently accurate and precise cardiovascular 

models, they typically find the segmentation step to be cumbersome and time-consuming 

(Fig. 1c).

Thus, there is a clear need for rapid and automated cardiovascular segmentation methods. 

Prior studies have been devoted to improving cardiovascular segmentation [25,37,35], but no 

commonly accepted methods exist that generalize to varying image modalities and 

cardiovascular anatomy. Initial approaches fall into the categories of active contours [46,26], 

vessel enhancement methods such as Hessian filtering [8] and Optimally Oriented Flux 

[22,23]. Stochastic random-walk based methods were also developed for tubular structure 

segmentation [10]. Other methods take advantage of the consistent shape and appearance of 

blood vessels, such as intensity models [21], 4D curves [3], cross-sectional approaches 

[39,20], image gradient methods [31], vessel templates [50] and vessel tracking [9]. The 

most recent methods are based on statistical techniques such as Random Sample Consensus 

(RANSAC)[17], and machine learning techniques [2,30]. Modern optimization algorithm 

based cardiovascular segmentation methods have also been developed [33]. However, a 

severe disadvantage of most segmentation algorithms, such as e.g. active contours, is the 

1http://www.simvascular.org/
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large number of input parameters they require. The time required to identify optimal values 

for input parameters is often prohibitive and therefore leads to little segmentation time 

savings. As a result, the need to tune parameters for each new patient case, modality, and 

anatomical region precludes the use of many automated segmentation algorithms for in 

hemodynamic simulation studies.

Recent developments in deep learning and computer vision suggest that convolutional neural 

networks (CNN), a type of neural network tailored to visual input data, present an avenue 

towards the development of more general segmentation algorithms [24,38,16,7,4,29,14]. The 

I2I [29] and DeepLumen networks [32] demonstrated state-of-the-art accuracy on 

cardiovascular edge detection and coronary artery segmentation respectively. In a previous 

study we investigated the use of fully convolutional neural networks (FCNN), trained for 

binary pixel classification, for cardiovascular patient-specific model construction [27]. Our 

FCNN approach improved segmentation accuracy over comparable threshold and level set 

methods. However, FCNNs can only segment structures that are clearly visible in the input 

image, this limitation lead to erroneous vessel lumen segmentation with input images with 

poor resolution or visibility of the target vessel, such as coronary arteries with substantial 

surrounding tissue.

Recent studies have demonstrated that neural network segmentation accuracy can be 

improved by directly predicting the boundary points of the structure of interest using a polar 

coordinates formulation, as opposed to binary labeling of pixels in the input image 

[32,48,49]. However, these studies were limited to natural images [49] and the coronary 

arteries [32,48]. In particular [48] used a ray-casting formulation which requires a-priori 

specification of a region of interest which is non-trivial to apply across different anatomical 

regions containing vessels with substantial radius variation.

In this work we significantly improve the accuracy of our previous cardiovascular model 

building method. We develop a convolutional neural network, that directly predicts vessel 

lumen points via a polar coordinates formulation. We then apply our CNN to accelerate a 

path-planning cardiovascular modeling method. Unlike previous studies, our CNN is 

applicable to both CT and MR modalities and generalizes across anatomical regions and 

vessel sizes.

We demonstrate the generality of our method on a dataset of mixed CT and MR medical 

image volumes spanning varying cardiovascular anatomical regions. Our CNN achieves 

accuracy comparable to average segmentation agreement between expert users of 

SimVascular as measured on segmentations produced for a MR cerebrovascular, pulmonary 

and coronary vasculature case and a CT abdominal aortic aneurysm case.

2 Methods

Our proposed CNN segmentation pipeline (Fig. 2), resembles the existing pathline-based 

model construction workflow of SimVascular. (Fig. 1). However, with our proposed pipeline, 

during the segmentation step, the extracted 2D images are preprocessed and input to a CNN 

that has been trained to directly predict the vessel lumen boundary points using a polar 
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coordinates representation (Fig. 2b,c). This improves segmentation accuracy over typical 

approaches such as CNN pixel segmentation networks such as UNet and CENet [34,11], or 

level set algorithms, as examined in our previous work [27], in part because our approach 

avoids the need for additional image processing steps, e.g. marching-squares, to extract the 

lumen points. The final vessel lumen boundary is constructed by reorienting the produced 

lumen boundary points in 3D space and interpolating along the pathline. Merging the 

individual vessels with geometric boolean operations [44] produces the desired 3D patient-

specific model.

We work within the cardiovascular modeling pipeline in the open source SimVascular 

package to demonstrate performance of our CNN. However, we note that the methods we 

present are generally applicable to other approaches which rely on the path-planning for 

model construction.

2.1 Convolutional Neural Network for Lumen Boundary Regression

The main component of our vessel segmentation method is a CNN trained to output 

regressions of vessel lumen boundary points from input 2D vessel images, extracted along 

the provided vessel pathlines (Fig. 2). The network first applies convolution operators to the 

input image to extract useful features. Fully connected layers then transform the extracted 

features into a polar coordinate vessel lumen representation (Fig. 4, 3b). Constructing the 

network in this way allows it to learn the nonlinear relationship between the input images 

pixels and the shape of the vessel lumen.

In mathematical terms, the CNN represents a parameterized function that transforms a 2D 

gray-scale image of a vessel lumen cross-section into a vector of radial distances of the 

vessel lumen boundary points from the centerline (Fig, 4). This is formulated as,

y = ℎθ(x), (1)

where hθ is the CNN function, x ∈ ℝW × H is a gray-scale 2D input image with width W and 

height H and y ∈ [0, 1]Ns is the predicted vector of Ns radial distances of the vessel lumen 

boundary points from the center-line, normalized by the image dimensions. θ ∈ ℝNθ is a 

vector of size Nθ, containing the learnable parameters of the CNN, for which optimal values 

are found by optimizing the network using our training dataset.

The CNN is constructed by sequentially applying neural network layers to the input data 

(Fig. 4). Each layer is itself a parameterized function that acts on the output of the previous 

layer. Typically, each layer applies a mathematical operation, such as a linear transformation 

or cross-correlation, followed by an elementwise nonlinear function, known as an activation 

function. This process is formulated as

z(l) = ℎ(l) a(l − 1); θ(l) (2)

a(l) = g(l) z(l) . (3)
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Here l indicates the layer number, h is the layer function, z and a are the layer outputs, 

before and after the activation function. θ(l) are the learnable parameters for the lth layer.

Our CNN uses a combination of fully-connected layers and convolutional layers. Fully-

connected layers operate on vector inputs and apply a linear transformation defined as

z(l) = Θ(l)a(l − 1) + b(l), (4)

where Θ(l) is a weight matrix of the layer and b(l) is a bias term. The convolutional layers 

apply a cross-correlation to a three dimensional tensor input

zijk
(l) = ∑

o
∑

p
∑

q
Θopqk

(l) ai + o, j + p, q
(l − 1) + b(l), (5)

where Θ(l) is a four dimensional tensor of learnable parameters. When the output of a 

convolutional layer is used as the input for a fully-connected layer, it is unrolled into a one 

dimensional vector to ensure compatibility.

The activation functions, g(l), of each layer are necessary to allow the neural network to learn 

complex nonlinear relationships in the data. The activation function of the output layer of the 

network determines the types of outputs it can produce. Because our output is a vector with 

elements in the range [0, 1] we therefore use the elementwise sigmoid activation function

g(l)(z) = 1
1 + e−z . (6)

For the intermediate layers we use the Leaky Rectified Linear Unit (Leaky-RELU) because 

it performs well when optimizing the network weights using gradient-descent

g(l)(z) = z, z > 0
αz, z ≤ 0. (7)

In theory, any neural network with sufficiently many parameters can learn any function [15]. 

However, in practice, the details of the network architecture can significantly influence its 

performance. While fully-convolutional networks have been extensively studied for medical 

image pixel classification tasks [29,34], no commonly used architectures exist for regression 

tasks. We therefore developed our own baseline networks and refer to them with the label 

ConvNet. Our ConvNet networks consist of a sequence of convolutional layers followed by 

a sequence of fully-connected layers (Fig. 4). The final fully-connected layer produces an 

output with the same size as the number of vessel lumen boundary points to be predicted. 

This allows us to investigate the influence of the network depth and fully-connected layer 

sizes.

We also investigated the GoogleNet architecture [40] due to its demonstrated performance 

on image classification tasks. However it was necessary to modify the GoogleNet 

architecture from its original image classification task to our vessel lumen boundary 
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regression task. This is done by changing the output activation function to a linear function 

and resizing its final fully-connected layer to the same size as the number of vessel lumen 

boundary points to be predicted.

2.2 Vessel Lumen Polar Coordinates Representation

Our neural networks use a polar coordinate output representation to predict a vector of radial 

distances of the vessel lumen boundary points from the centerline at a specified number of 

angular increments (Fig. 3).

We extract local 2D lumen boundaries in the plane perpendicular to the pathline at locations 

where annotators segmented the vessel lumen boundary. The boundary points are 

represented as a matrix p ∈ ℝNp × 2 where pi1 and pi2 are the x and y coordinates of the ith 

lumen boundary point, respectively.

To normalize the extracted vessel lumen boundary we first assume the origin of p is the point 

(0, 0), i.e. the center of the image. We then divide the range [0, 2π] into Ns intervals, 

producing the vector ϕ = ϕ1, …, ϕNs . We compute Ns radii, r(ϕi; p), by computing the 

radius of p from the origin at angles ϕi. The ground-truth vector of normalized distances is

y = 1
W /2

r ϕ1; p
⋮

r ϕNs; p
. (8)

The output of the network, y ∈ [0, 1]Ns, is a vector of size Ns, with values between 0 and 1. 

The components of y represent normalized distances of the vessel lumen boundary points for 

the chosen angles from the center of the image. The normalized distances are converted back 

to local 2D coordinates using

pi1, pi2 = yiW
2 cosϕi,

yiW
2 sinϕi . (9)

Once the network is trained, for a given vessel pathline location, we compute the vessel 

lumen boundary at that point by extracting the local 2D cross-sectional image slice, feeding 

it through the trained network, transforming the network output back to local 2D coordinates 

and then reorienting the local 2D vessel lumen points into 3D space using the pathline 

information (Fig. 2).

We note that the polar coordinate axes are held constant such that the training labels and 

network predictions are consistent across images, e.g. the first element of y and y always 

refers to the 0 radian point on the vessel lumen.

2.3 Neural Network Training Process

During training, the network’s weights are initialized according to the variance-scaling 

approach in [12]. The weights are optimized using a stochastic gradient-descent algorithm to 
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minimize the selected loss function over the 2D image and ground-truth vessel lumen pairs 

from our training dataset. We describe the training data collection process for a single 

labeled image volume, as it is straightforward to extend to multiple images.

Let X denote a gray-scale medical image volume with Nx, Ny, Nz voxels in the height, width 

and depth directions, respectively. Associated with the image X is a set of vessel pathlines. 

Each pathline is represented as a set of Np points, P = v1, …, vNp , with each vi ∈ ℝ3

indicating a 3D coordinate in physical space along the pathlines.

At specific locations along the pathline, expert annotators have segmented the vessel lumen 

boundary. Each lumen boundary is also represented as a set of 3D physical coordinates. The 

3D lumen boundary is projected onto the local 2D plane, perpendicular to the pathline at that 

location. We define pjP  to be the jth ground-truth lumen boundary point set associated with 

the pathline P.

The vessel lumen boundaries represent the ground-truth output data for our training process. 

The input data are 2D cross-sectional images of the vessel at the pathline locations where a 

lumen boundary was segmented. The input images, xi, are extracted by interpolating the 

pixel values of X in the plane perpendicular to the pathline at each lumen location (Fig 2b).

Extracting lumen boundary points and cross-sectional image slices for each lumen location 

for each pathline then produces our training dataset of input image and ground-truth lumen 

pairs. We apply the angular distance transform to each ground-truth lumen boundary piP  to 

transform it to a ground-truth vector yi that can be used to train the neural network. As such, 

our dataset becomes a set of pairs

D = x1, y1 , …, xNd, yNd . (10)

To finalize the neural network training procedure, we define a loss function and use a 

stochastic gradient-descent algorithm to find values for the network weights that 

approximately minimize the loss function over the training data. For the loss function we use 

the square error

l(y, y) = ∑
i

yi − yi
2, (11)

where yi and yi represent the ith ground-truth normalized lumen and neural network 

prediction respectively. While other loss functions could be used, such as the absolute error, 

the square error was found to be sufficient for our purposes and thus investigation of 

additional loss functions is left as an area of future research. The expected loss for a given 

set of training examples is then

L(X, Y ; θ) = 1
Nb

∑
i = 1

Nb
l yi, ℎθ xi , (12)
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where X and Y are sets containing a select of input images and corresponding normalized 

ground-truth vessel lumen boundary vectors. We then optimize the weights of our CNN 

using the stochastic gradient-descent ADAM algorithm due to its accelerated convergence 

properties [19].

We note that the described training data format was used as it is the standard format used in 

SimVascular. Our proposed network treats input images independently, thus it is not a hard 

requirement to train on cross-section slices from whole vessels or models. However, the 

training dataset should contain cross-section images and vessel lumen examples that are 

representative of those that will be encountered during typical cardiovascular model 

construction.

2.4 Dataset

Our dataset consists of 50 CT and 54 MR contrast-enhanced 3D medical image volumes, all 

publicly available from the Vascular Model Repository (VMR)2 [47]. For each of the image 

volumes, the VMR also contains vessel pathlines, segmentations, 3D patient-specific models 

and hemodynamic simulation results (shown in Fig. 1 for a single case). Each model 

typically has multiple vessel pathlines, each of which are segmented at numerous locations 

along the path. All segmentations contained in the VMR were created in SimVascular by 

users with expert anatomical knowledge. The image volumes in the VMR have anisotropic 

voxel spacing, therefore we resampled all volumes to an isotropic voxel spacing of 0.029cm. 

This voxel spacing was chosen as it ensures the largest vessel diameter to be around 100 

pixels. This in turn allows a relatively small window size to be used for the neural network 

which reduces computation and memory requirements. We split the data into training, 

validation and testing sets, of 76, 4 and 14 volumes, respectively.

Local 2D vessel cross-section images and corresponding lumen points were extracted (as 

described in Section 2.3). We used a window size of 160 × 160 pixels to allow the full range 

of vessel sizes to be represented with sufficient resolution. This resulted in 16004, 239 and 

6317 cross-section images and vessel lumen boundary point labels for the training, 

validation and testing sets respectively.

2.5 Preprocessing and Data Agumentation

For our particular use-case, the CNN operates on the 2D cross-sectional images extracted 

along the vessel pathlines. Given a gray-scale image x ∈ ℝH × W , we first compute a 

normalized image x by normalizing x to have zero mean and unit variance pixel values, so 

that

x = x − μx
σx

, (13)

where μx and σx are the mean and standard deviation of the pixel values of x and are given 

by

2http://www.vascularmodel.com
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μx = 1
HW ∑

i = 1

H
∑
j = 1

W
xij, (14)

and

σx = 1
HW ∑

i = 1

H
∑
j = 1

W
xij − μx

2
1/2

. (15)

During training we further augment the dataset, on the fly, by randomly rotating images 

between 0 – 2π radians and applying random translation perturbations to each training 

image and vessel lumen boundary pair. The maximum translation distance is determined 

individually for each vessel lumen as a fraction of the idealized lumen radius. The 

translation distance was chosen this way to emulate human vessel pathline placement error, 

where for larger vessels there is more room to place a pathline point, leading to larger 

absolute variation as compared to smaller vessels.

3 Experiments

For our experimentation we compare the predicted lumen boundaries of our trained 

networks, and three reference fully-convolutional pixel classification networks, against the 

ground-truth lumen boundaries in our dataset. For the comparison we use several common 

segmentation accuracy metrics.

We also measure the average accuracy between expert SimVascular users on an MR 

cerebrovascular, pulmonary, coronary vasculature and CT aortic aneurysm case to indicate 

human accuracy and segmentation uncertainty. We then compare the segmentations 

generated by GoogleNet-c30, the best performing network, on the same cases.

Finally we calculate the amount of manual segmentation effort that would be saved by using 

the network to compute lumen segmentations in practice.

3.1 Performance Metrics

We compared the produced segmentations using several commonly applied metrics [41].

The first metric is the DICE metric which measures the similarity between two sets. Letting 

A and B denote the sets of points contained on the boundary and in the interior of each 

segmentation, the DICE is given by:

DICE(A, B) = 2 A ∩ B
A + B . (16)

The second metric is the Hausdorff Distance (HD) which has a lower bound of 0 (perfect 

match) with no upper bound. Letting A and B be the sets of points contained on the 
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boundaries of the two segmentations, the HD measures the maximum minimum distance 

between all points in the sets and is given by:

dH(A, B) = max sup
a ∈ A

inf
b ∈ B

d(a, b), sup
b ∈ B

inf
a ∈ B

d(a, b) , (17)

where d(a, b) is a distance function, for which we use the euclidean norm d(a, b) = ||a − b||2.

The final metrics is the Average Symmetric Surface Distance (ASSD) which computes the 

average minimal distance between the surface points of two sets A and B. Let A and B be 

sets of the surface points in A and B, respectively. The ASSD is then:

ASSD(A, B) = 1
A + B ∑

a ∈ A
min
b ∈ B

d(a, b) + ∑
b ∈ B

min
a ∈ A

d(b, a) , (18)

where d is again the Euclidean norm.

3.2 Network Architectures and Hyperparameters

We trained all networks using the ADAM [19] stochastic gradient algorithm, for 300,000 

training image batches with a batch size of 4. For the baseline networks the learning rate 

started at 1·10−3. For the GoogleNet networks a starting learning rate of 5·10−5 was required 

to obtain convergence. For all networks the learning rate was decreased by a factor of 3 after 

the first 2000 batches, then by a factor of 10 after 5,000, 10,000 and 15,000 batches, 

respectively. We further investigated the use of 15, 30 and 45 angular increments for the 

vessel lumen boundary. Input images were cropped to dimensions of 160 × 160 and used a 

fixed resolution of 0.029cm/pixel allowing both large and small vessel to fit inside the input 

window size. During training, images and ground-truth lumen were randomly rotated 

between 0 – 2π radians and randomly translated a distance of up to 65% of the ground-truth 

vessel radius.

The ConvNet networks and GoogleNet networks we considered, and the labels we use to 

refer to them, are described in Tables 1 and 2 respectively. All networks used the leaky-

RELU activation with a coefficient value of 0.2. The ConvNet networks used 3 × 3 

convolution filters with 32 channels throughout. No regularization was used other than the 

dropout layers that are included in the GoogleNet architecture.

The performance of the ConvNet and GoogleNet networks was compared to the 

architectures used in our previous work [27]: the commonly used UNet [34], DeepLab-

ASPP [5] and CENet [11] image segmentation networks. These networks were retrained for 

2D vessel segmentation, using our training data. During testing, the marching-squares 

algorithm was used to extract the vessel lumen boundary from the segmentations produced 

by the image segmentation networks.

3.3 Segmentation Uncertainty Measurements

To measure the uncertainty in our ground-truth segmentation data, we selected four image 

data sets from the VMR, designated as
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• Cerebro: MR image of the cerebrovascular region of a patient with a left 

anterior cerebral aneurysm.

• AAA: A CT scan of abdominal region of a patient with an abdominal aortic 

aneurysm.

• KDR: MR image of coronary arteries and Aorta of a patient with Kawasaki 

Disease.

• Pulmonary: MR image of the pulmonary vasculature.

Models for each case are shown in Fig. 21. For each image, several vessel pathlines, created 

by anatomical experts, were selected from the VMR, where pathlines were selected to 

provide sufficiently large samples of both small and large vessels. For each case, three expert 

SimVascular users where tasked with creating 2D vessel segmentations at points along the 

vessel pathlines. For AAA and Pulmonary, segmented pathline locations from the VMR 

were used. For Cerebro and KDR, segmentations were created every 5 path points. In total 

this resulted in 290 segmentations per expert, enabling 870 pairwise DICE measurements.

Exact sample sizes for each case and a number of vessel radii are reported in Table 6. We 

then compared the pairwise DICE accuracy between each of the three experts as well as the 

segmentations generated by GoogleNet-C30 at similar locations for all cases. That is to say, 

expert 1 was compared to expert 2, expert 2 to expert 3 and expert 3 to expert 1, in addition 

to comparing GoogleNet-c30 to each individual expert.

The DICE statistics are then binned by segmentation radius in number of pixels in the 

minimum native resolution of each image across coronal, sagittal and axial directions.

4 Results

4.1 Overall Network Performance

In addition to reporting results on the full test set, we also divided the test set into large 

vessels (radius > 0.4cm) and small vessels (radius < 0.4cm) and reported results on these 

subsets. We analyzed DICE accuracy on both 2D segmentations (Figs. 5–7) and over whole 

3D vessel models (Figs. 8–10). For the 3D vessel models we further investigated HD and 

ASSD metrics (Figs. 11,12). The choice of cutoff radius was based on our human 

segmentation uncertainty findings, in which uncertainty was relatively larger for vessels with 

a radius smaller than 0.4cm (Figs. 15, 16). While the user ASSD is smaller for smaller 

vessels than for larger vessels, when computed as a fraction of the vessel radius it is still 

proportionally larger for smaller vessels. All p-values are computed using one-, or two-sided 

t-tests, where appropriate, for paired samples. When comparing results between experiments 

the means are balanced with similar weights for small and large vessels.

All GoogleNet networks performed significantly better than all ConvNet networks across all 

metrics (p < 0.05), highlighting the improvements gained from the increased depth and 

inception layers. For both 2D and 3D metrics, mean DICE amongst the GoogleNet networks 

was not significantly different for large vessels, but for small vessels GoogleNet-c30 

obtained the highest mean DICE (p < 0.05). Comparing among the ConvNet networks, 
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ConvNet-3 and ConvNet-4 outperformed ConvNet-1 and ConvNet-2 across all metrics, 

highlighting the need for multiple fully-connected layers to learn the nonlinear 

transformation from image features to vessel lumen boundary points.

Across the entire test-set, for both 2D and 3D metrics, all GoogleNet regression networks 

produced significantly higher average DICE scores than the UNet, DeepLab-ASPP and 

CENet image segmentation networks (p < 0.01) (Fig. 5). For large vessels the average dice 

scores of the GoogleNet networks was significantly better than the FCNN networks (Fig. 6). 

However, the majority of the difference can be attributed to the higher average DICE scores 

produced by the vessel regression networks on small vessels (p < 0.01) (Fig. 7). Similar 

results are reflected in the HD and ASSD scores (Fig. 11, 12).

We further compared the performance improvement our methods by adapting the UNet 

architecture to directly predict vessel lumen through polar coordinate regression, labeled as 

UNet-c30. UNet-c30 had lower average DICE scores compared to all GoogleNet networks 

for both large and small vessel test sets (p < 0.05). However average DICE scores were 

larger when compared to the pixel segmentation networks (p < 0.05). This highlights that 

lumen prediction through polar coordinate regression leads to improved accuracy over 

segmentation through pixel classification even with the same network architecture.

4.2 Segmentation Uncertainty Measurements

For the largest vessels (20pix < r ≤ 60pix) the mean DICE score of GoogleNet was 

significantly higher than human experts for AAA, but not signficiantly different for KDR, 

indicating performance comparable to human experts.

For the second largest vessel bin (10pix < r ≤ 20xp) for KDR mean DICE scores between 

human experts and GoogleNet were not significantly different. Human expert Pulmonary 

mean DICE scores were signficantly higher than GoogleNet.

For the second smallest vessel size bin (5pix < r ≤ 10pix) mean DICE scores for GoogleNet 

and human experts was not significantly different for Cerebro and AAA. For KDR and 

Pulmonary human experts achieved significantly higher mean DICE scores. Examining the 

lowest DICE scoring segmentations produced by GoogleNet for KDR (Fig. 20) and 

Pulmonary (Fig. 18) shows that typically large DICE errors are due to poor resolution, 

unclear vessels, or surrounding tissue.

For the smallest vessel size bin, mean DICE was not signficantly different for Pulmonary, 

but for Cerebro human expert mean DICE was significantly higher.

Mean inter-expert DICE agreement was the same for the Cerebro and KDR models (p < 

0.05) (Fig 23). For the AAA and pulmonary models there were statistically significant 

differences. For the pulmonary model this can be attributed to the lower resolution and 

image quality leading to increased expert DICE variance (Tab 4, Figs 23,19). For the AAA 

model differences in expert agreement were due to varying interpretations of thrombus 

formation in aneurysm regions in addition to regions of poor image quality. Similar trends 

are reflected in the median DICE scores (Tab. 5).
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Examining the smallest vessels for Cerebro (Fig. 18) demonstrates that the pathline is often 

outside the vessel, leading GoogleNet to produce inaccurate segmentations.

Examining the selection of best case DICE score segmentations (Fig. 17) it is clear that 

network segmentation accuracy is best when the vessel has clear borders and sufficient 

resolution. Our findings agree with user experience, and are in line with decreasing 

resolution relative to vessel size when proceeding distally in the vascular tree.

3D cardiovascular models produced using the GoogleNet-c30 network were qualitatively 

similar to those produced by the human experts (Fig. 21). In particular, Important model 

features such as aneurysm shape in the KDR and AAA models were well captured. Example 

performance in difficult segmentation locations, containing e.g. thrombus, calcification and 

branching vessels is also shown (Fig. 22).

4.3 Runtime Performance, Memory Usage and Segmentation Time Savings

Computing 100 segmentations, without use of a GPU, with GoogleNet-c30 took on average 

3.62 seconds on a laptop with a 2.4Ghz i7 CPU. The average time to compute a single 

segmentation is therefore on the order of 0.036 seconds. The total RAM used to load the 

network was 57.7 megabytes.

Subjects from our segmentation uncertainty experiment reported that manual segmentation 

took on average, an order of 5–10 seconds for a single segmentation. Therefore our proposed 

CNN segmentation method is significantly faster than manual segmentation when compared 

on single segmentations, even when using conventional CPUs and commodity hardware.

Under the assumption that a human expert would accept a generated segmentation, provided 

it scored above average DICE as measured compared to human expert DICE accuracy, we 

can obtain an estimate for the percentage in segmentation time savings provided by use of 

vessel lumen regression (Tab 7). Time savings range from 15% to as high as 80% depending 

on vessel size and anatomical region. For AAA and KDR in the ranges (10 < r ≤ 20) and (20 

< r ≤ 60) time savings were 65 – 70%. However for Pulmonary the percentage time savings 

was 26.09%, which corresponds with the poorer resolution observed for many of the vessels 

for this case. For the two smallest vessel bins, AAA GoogleNet DICE was above average 

compared to human experts 80% of the time, corresponding to the clearer vessels and good 

resolution for this case. For KDR, in the range 5 < r ≤ 10, the percentage of GoogleNet 

segmentations above human agreement was 30.56%, but for larger bins the time savings 

approximately doubled. This is in correspondence with the fact that, while not unreasonable, 

the segmentations produced by GoogleNet in the presence of surrounding tissue and poor 

vessel resolution deviate substantially from those of human experts (Fig. 20).

5 Open-Source Release

We have made the CNN-based segmentation pipeline in this work freely and publicly 

available via the open-source SimVascular project. The code is implemented in Python with 

the Tensorflow library and C++ to expose the user-interface. The code does not require 

specialized hardware such as GPUs, making it accessible to users with commodity hardware. 
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Pre-trained binaries for the best performing network (GoogleNet-C30) are distributed, 

allowing the pipeline to be used by the modeling community without the need to train 

networks.

6 Conclusions

Our results show that CNNs using a vessel lumen regression formulation and a neural 

network architecture with sufficient learning capacity can achieve similar accuracy to human 

experts manually segmenting vessel lumens for a variety of anatomical regions and multiple 

imaging modalities. However, obtaining high DICE segmentations from the network, as 

measured compared to human experts, is conditional on sufficient image resolution, vessel 

visibility and vessel center accuracy. In particular for small vessels, vessel center accuracy 

can be problematic and suggests that vessel lumen regression could be improved through 

additional vessel localization steps.

For large vessels segmentation time savings of roughly 65 – 70% were observed as 65 – 

70% of the segmentations produced by our CNN pipeline were of similar or higher accuracy 

to the average agreement between expert SimVascular users. For small vessels the time 

savings range from 15 – 40% for cases with poor image resolution and vessel pathline noise, 

but was 80% for cases with better imaging conditions. For realistic models with hundreds of 

vessels to be segmented, on non-specialized hardware, our pipeline results in time savings of 

multiple hours of segmentation effort. Our CNN segmentation pipeline thus significantly 

reduces the turnaround time to perform cardiovascular patient-specific simulations, paving 

the way for their use in clinically realistic settings and making simulation studies on large 

patient cohorts more accessible.

While our neural network based lumen regression pipeline significantly accelerates 2D 

cardiovascular segmentation, the vessel centerline detection step still needs to be performed 

manually. The automation of vessel centerline detection is an area for future work. 

Automated centerline detection could be combined with our lumen regression pipeline to 

further accelerate the entire cardiovascular model building workflow.
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Fig. 1: 
The cardiovascular model construction workflow used in SimVascular [43]. Starting from 

(a) Image data, (b) users manually generate pathlines, (c) use these pathlines to segment 2D 

cross section contours, (d) loft segmented contours into a 3D model, (e) generate a 3D 

geometric mesh for use in cardiovascular simulations.
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Fig. 2: 
Our convolutional lumen regression network cardiovascular model building pipeline. (a) 
Image data and vessel pathline supplied by the user. (b) Path information is used to extract 

image pixel intensities in the plane perpendicular to the vessel path. (c) 2D images extracted 

along vessel pathlines are input to the CNN. (d) and (e) Our CNN processes the 2D vessel 

cross-section input images and directly outputs a vector of the lumen boundary points. (f) 
The 2D vessel lumen boundary points are transformed back to 3D space. (g) Cross-sectional 

vessel boundaries are interpolated in 3D space along the pathline to form the final vessel 

model.
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Fig. 3: 
Illustration of the polar coordinates representation of a 2D cross-sectional vessel lumen 

boundary ground-truth label.
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Fig. 4: 
Conceptual illustration of our vessel regression neural network architecture. Convolutional 

layers are used to extract image features from 2D images. The image features are 

transformed into vessel lumen boundary points by fully-connected layers.
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Fig. 5: 
Average DICE, full test set.
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Fig. 6: 
Average DICE for test set, large vessels (r > 0.4cm)
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Fig. 7: 
Average DICE for test set, small vessels (r ≤ 0.4cm)
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Fig. 8: 
Average 3D DICE, full test set.
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Fig. 9: 
Average 3D DICE for test set, large vessels (r > 0.4cm)
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Fig. 10: 
Average 3D DICE for test set, small vessels (r ≤ 0.4cm)
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Fig. 11: 
Average 3D HD, full test set
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Fig. 12: 
Average 3D ASSD, full test set
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Fig. 13: 
Comparison of UNet lumen regression network to GoogleNet-c30 and segmentation 

networks. Average DICE for test set, large vessels (r > 0.4cm)
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Fig. 14: 
Comparison of UNet lumen regression network to GoogleNet-c30 and segmentation 

networks. Average DICE for test set, small vessels (r ≤ 0.4cm)
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Fig. 15: 
Scatterplot of pairwise DICE scores for segmentations produced during user uncertainty 

experiment.
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Fig. 16: 
Scatterplot of pairwise ASSD scores for segmentations produced during user uncertainty 

experiment.
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Fig. 17: 
Selection of best case DICE segmentations for all images (obs indicates human expert).
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Fig. 18: 
Selection of worst case DICE error segmentations for Cerebro (obs indicates human expert).
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Fig. 19: 
Selection of worst case DICE error segmentations for pulmonary (obs indicates human 

expert).
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Fig. 20: 
Selection of worst case DICE error segmentations for KDR (obs indicates human expert).
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Fig. 21: 
Comparison between 3D Cardiovascular models produced by neural network segmentations 

and SimVascular experts. First column is GoogleNet-c30, subsequent columns are the 

experts.
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Fig. 22: 
Example GoogleNet-c30 predicted lumen for hard cases containing aneurysm thrombus, 

calcification and branching vessels. Images were taken from image volumes in the user-test 

set.
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Fig. 23: 
Inter-expert mean DICE agreement for each image in the user test-set. Image volumes 

organized as follows, 1–3: Cerebro, 4–6: AAA, 7–9: KDR, 10–12: Pulmonary.
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Table 1:

Baseline network naming conventions.

Name Conv. layers FC layers FC layer sizes

ConvNet-1 10 2 250, 15

ConvNet-2 20 2 250, 15

ConvNet-3 10 3 1000, 250, 15

ConvNet-4 20 3 1000, 250, 15
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Table 2:

GoogleNet naming conventions.

Name Architecture Output dimension

GoogleNet GoogleNet 15

GoogleNet-c30 GoogleNet 30

GoogleNet-c45 GoogleNet 45
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Table 3:

Native minimum image resolution for each image in User Uncertainty Test.

Image Resolution (cm/pixel)

Cerebro 0.0488

AAA 0.0547

KDR 0.0248

Pulmonary 0.0498
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