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Multimodal phenotypic axes of Parkinson’s disease
Ross D. Markello 1✉, Golia Shafiei 1, Christina Tremblay1, Ronald B. Postuma1, Alain Dagher1 and Bratislav Misic 1✉

Individuals with Parkinson’s disease present with a complex clinical phenotype, encompassing sleep, motor, cognitive, and affective
disturbances. However, characterizations of PD are typically made for the “average” patient, ignoring patient heterogeneity and
obscuring important individual differences. Modern large-scale data sharing efforts provide a unique opportunity to precisely
investigate individual patient characteristics, but there exists no analytic framework for comprehensively integrating data
modalities. Here we apply an unsupervised learning method—similarity network fusion—to objectively integrate MRI
morphometry, dopamine active transporter binding, protein assays, and clinical measurements from n= 186 individuals with de
novo Parkinson’s disease from the Parkinson’s Progression Markers Initiative. We show that multimodal fusion captures inter-
dependencies among data modalities that would otherwise be overlooked by field standard techniques like data concatenation.
We then examine how patient subgroups derived from the fused data map onto clinical phenotypes, and how neuroimaging data
is critical to this delineation. Finally, we identify a compact set of phenotypic axes that span the patient population, demonstrating
that this continuous, low-dimensional projection of individual patients presents a more parsimonious representation of
heterogeneity in the sample compared to discrete biotypes. Altogether, these findings showcase the potential of similarity network
fusion for combining multimodal data in heterogeneous patient populations.
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INTRODUCTION
Individuals with Parkinson’s disease (PD) present with a range of
symptoms, including sleep, motor, cognitive, and affective
disturbances1. This heterogeneity is further complicated by
individual differences in the age of disease onset and the rate
of pathological progression2,3. Most attempts to resolve hetero-
geneity in PD rely on clustering or subtyping of patients based
solely on clinical-behavioral assessments. While these efforts have
shown that it is possible to stratify patients into clinically
meaningful categories with considerable predictive utility4,5; cf.6,
clinical measures do not directly measure the underlying
pathophysiology of PD7. Given the prominence of synucleino-
pathy8,9, dopamine neuron dysfunction10, and distributed grey
matter atrophy in PD11–13, it is increasingly necessary to develop
biologically informed biotypes by integrating multiple sources of
evidence in addition to clinical assessments.
Modern technological advances and data-sharing efforts

increasingly permit deep phenotyping in large samples of
patients, making simultaneous behavioral assessments, physiolo-
gical measurements, genetic assays, and brain imaging available
at unprecedented scales14. A principal challenge is to parsimo-
niously integrate these multi-view data in order to take full
advantage of each source of information15. How to account for
multiple sources of data to characterize heterogeneous patient
samples is a topic of significant interest in computational
medicine16,17, with important applications for oncology18,19,
psychiatry20–22, and neurology7. Indeed, recent advances in
techniques like multiple kernel learning have yielded promising
results for integrating disparate data modalities in the context of
supervised and unsupervised problems23,24. More broadly, there
exist many families of techniques for investigating multi-view
data, including multiple kernel learning, matrix factorization, and
deep learning, that have been increasingly used in recent years to
tackle issues of data integration25. Yet, the most commonly
employed technique—to simply concatenate data modalities—

ignores the structure inherent in individual modalities, potentially
yielding biased estimates19,25.
In the present report, we seek to generate a comprehensive,

multimodal characterization of PD. We apply an unsupervised
learning technique, similarity network fusion (SNF19), to integrate
data from four data modalities in n = 186 individuals with de novo
PD from the Parkinson’s Progression Markers Initiative database14.
Using structural T1-weighted magnetic resonance imaging (MRI),
clinical-behavioral assessments, cerebrospinal fluid assays, and
single-photon emission computed tomography (SPECT) data we
generate patient similarity networks and combine them via an
iterative, non-linear fusion process. We demonstrate that SNF
yields a more balanced representation of multimodal patient data
than standard techniques like data concatenation. We use the
patient network generated by SNF to reveal putative PD biotypes,
and examine how neuroimaging data contributes to cluster
definition and patient discriminability. Finally, we explore how a
continuous low-dimensional representation of the fused patient
network yields individual estimates of PD patient pathology.

RESULTS
Analytic overview
Complete data were obtained for n= 186 patients from the
Parkinson’s Progression Markers Initiative database14. Data sources
included (1) cortical thickness, (2) subcortical volume, (3) clinical-
behavioral assessments, (4) dopamine activate transporter (DAT)
binding scans, and (5) cerebrospinal fluid assays. Although cortical
thickness and subcortical volume are both derived from the same
data modality (i.e., anatomical, T1-weighted MRI scans), they are
estimated using different algorithms so we retain them as
separate sources. For more detailed information on data collection
and estimation of derivatives please see “Methods”.
We combine these multimodal data using SNF, which first

constructs patient similarity networks for each modality and then
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iteratively fuses the networks together (Fig. 1a). Both the
construction of patient similarity networks and the fusion process
of SNF are governed by two free hyperparameters. The first
parameter, K, controls the size of the patient neighborhoods to
consider when generating the similarity networks: smaller values
of K will result in more sparsely connected networks, while larger
values will generate denser networks. The second parameter, μ,
determines the weighting of edges between patients in the

similarity network: small values of μ will keep only the strongest
edges in the patient networks, while larger values will retain a
wider distribution of edge weights. We use the fused networks to
generate categorical representations of patient data via spectral
clustering and continuous representations via diffusion map
embedding (Fig. 1b–d). The remainder of the reported results
examines the utility of these representations in estimating patient
pathology and disease severity.

Fig. 1 Similarity network fusion analysis pipeline. Toy example demonstrating the processing steps employed in the reported analyses;
refer to Methods: Similarity network fusion for more detailed information. Patients are represented as nodes (circles) and the similarity between
their disease phenotype is expressed as connecting edges. a Similarity network fusion generates patient similarity networks independently for
each data type and then iteratively fuses these networks together. The resulting network represents patient information and relationships
balanced across all input data types. b We perform an exhaustive parameter search for 10,000 combinations of SNF’s two hyperparameters
(K and μ). The resulting fused patient networks are subjected to (1) spectral clustering and (2) diffusion map embedding to derive categorical
and continuous representations of patient data, respectively. cWe assess the local similarity of patient cluster assignments in parameter space
using the z-Rand index80. The z-Rand index is calculated for all pairs of cluster solutions neighboring a given parameter combination

[ð 5
2
Þ ¼ 10] and then averaged to generate a single “cluster similarity” metric. Clustering solutions from regions of parameter space with an

average cluster similarity exceeding the 95th percentile are retained and combined via a consensus analysis to generate final patient clusters
(see “Methods: Consensus clustering”)30,31. d Diffusion map embedding yields phenotypic “dimensions” of patient pathology38. Embeddings
from stable regions of parameter space chosen in (c) are aligned via rotations and reflections using a generalized Procrustes analysis and
averaged to generate a final set of disease dimensions.

R.D. Markello et al.

2

npj Parkinson’s Disease (2021)     6 Published in partnership with the Parkinson’s Foundation

1
2
3
4
5
6
7
8
9
0
()
:,;



Similarity network fusion provides a viable alternative to data
concatenation
As the current field standard, data concatenation seems an
intuitively appealing method for examining multimodal patient
data. In a concatenation framework, features from all data
modalities are joined together to create a single patient by
feature matrix which is then converted into a patient similarity
network using an affinity kernel (e.g., cosine similarity, a radial
basis function). This approach is particularly convenient in that it is
almost entirely data-driven, with no free parameters beyond the
choice of affinity kernel. However, data concatenation tends to
suffer from the curse of dimensionality26. That is, modalities with
many features—regardless of their relative importance—tend to
dominate the resulting patient network, obscuring information in
modalities with fewer features (Fig. 2a). This is of particular
concern when integrating metrics derived from MRI images, which
often have tens or hundreds of times more features than lower-
dimensionality data sources.
Similarity network fusion, on the other hand, does not

necessarily suffer from such issues. In an SNF framework, patient
similarity networks are generated separately for each data
modality and then iteratively fused together to create a single,
multimodal patient network (Fig. 2a). Converting to patient
networks prior to fusing across sources reduces the likelihood of
biasing results towards higher-dimensionality data, potentially
yielding more balanced representations of the input data19.
However, SNF is governed by two free hyperparameters, K and μ,
demanding greater computational complexity to avoid arbitrary
selection.
To investigate the extent to which SNF is a plausible alternative

to data concatenation we generated patient networks using both
techniques, varying the dimensionality of cortical thickness data
across five increasingly high-resolution subdivisons of the

Desikan–Killiany parcellation (ranging from 68 to 1000 features;
see “Methods: Cortical thickness”)27.
Rather than selecting a single combination of parameters to

combine data modalities in SNF we conducted an exhaustive
parameter search, performing the fusion for 10,000 combinations
of K and μ (100 values for each parameter; Fig. 2b). We subjected
the resulting networks to spectral clustering with a two-, three-,
and four-cluster solution28,29. We then integrated the resulting
30,000 clustering assignments using an adapted consensus
clustering approach, previously described in refs. 30 and31 (see
Fig. 1c or “Methods: Consensus clustering for more details”).
Briefly, we assessed the stability of the clustering solutions in
parameter space, retaining only those solutions above the 95th
percentile of stability, and used the resulting solutions (n = 1262)
to create a co-assignment probability matrix which was thre-
sholded and partitioned to generate a set of “consensus”
assignments30,32.
To assess the relative contribution of the individual data

modalities to the concatenation- and SNF-derived clustering
assignments we also clustered unimodal patient networks, created
separately for each data source (n= 5). We compared the
similarity between uni- and multimodal clustering assignments
using normalized mutual information scores (NMI33), and the
goodness-of-fit of clustering assignments to patient networks
using modularity34. To ensure that the results of the two data
integration techniques were more directly comparable, we only
used the clustering assignments from concatenated data that had
the same number of clusters as those derived via the consensus
SNF approach.
We find that at even the lowest dimensionality (i.e., 68 features)

patient networks generated using concatenation are dominated
by information from cortical thickness data (Fig. 2b). That is, NMI
scores show high overlap between clustering assignments derived
from only cortical thickness data and assignments generated
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Fig. 2 Comparison of data concatenation and SNF for integrating data. a Toy diagram depicting generation of a patient similarity network
from data concatenation in contrast to SNF. The highest dimensionality data—in this case, cortical thickness—tends to be over-represented in
the similarity patterns of the patient network generated with data concatenation, whereas SNF yields a more balanced representation. b An
exhaustive parameter search was performed for 10,000 combinations of SNF’s two hyperparameters (K and μ). We subjected the resulting
fused patient network for each combination to spectral clustering for a two-, three-, and four-cluster solution. Clustering solutions were
combined via a “consensus” clustering approach (see “Methods: Consensus clustering”, Fig. 1c)30,31. c The impact of cortical thickness feature
dimensionality on normalized mutual information (NMI) and modularity for different data modalities in data concatenation compared to SNF.
NMI estimates are computed by comparing the clustering solutions generated from the concatenated/SNF-derived patient network with the
solutions from each single-modality patient network. Modularity estimates are computed by applying the clustering solutions from the
concatenated/SNF-derived patient network to the single-modality patient network. CT = cortical thickness; SV = subcortical volume; DB =
DAT binding; CSF = CSF assays; CLIN = clinical-behavioral assessments.
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using concatenated data (average NMI = 0.77 ± 0.25 [0.40–1.00]).
Indeed, at the highest cortical thickness dimensionality (1000
features) the clustering assignments for the cortical thickness and
concatenated data are identical, suggesting the concatenated
patient networks are discarding information from all other lower-
dimensional data sources. Estimates of modularity are slightly
higher for patient networks derived from only cortical thickness
data than from other datatypes, but remain low for all data
modalities (average modularity = 0.02 ± 0.02 [0.00–0.06]).
On the other hand, SNF appears much more stable to changes

in data dimensionality, with NMI scores and modularity estimates
more evenly distributed across data modalities (NMI = 0.15 ± 0.18
[0.01–0.50]; modularity = 0.05 ± 0.06 [0.00–0.17]). While this does
not necessarily imply that the generated clustering assignments
are meaningful, it does suggest that SNF provides a more
balanced representation of the input data than simple concatena-
tion, opening the door for a more holistic assessment of their
clinical relevance to patient pathology. Moreover, SNF achieves
good discriminability between healthy controls and PD patients
(Supplementary Fig. 1), suggesting relevant clinical utility. We
chose to examine the fused patient networks generated from the
highest (i.e., 1000 node) resolution cortical thickness data for
further analyses.

Derived patient biotypes are clinically discriminable across
modalities
Consensus clustering of the multimodal SNF-derived patient
networks yielded three clusters—or “biotypes”—of n = 72, 69,
and 45 individuals (Fig. 3a–c) with strong goodness-of-fit
(modularity = 0.494, p < 0.001 by permutation). There were no
significant inter-group differences for sex (p = 0.32), age (p =
0.30), education (p = 0.77), symptom duration (p = 0.83),
recruitment site (p = 0.20), or MRI scanner strength (p = 0.38)
(see Supplementary Table 1 for summary demographics of each
cluster).
To assess the clinical relevance of these biotypes we performed

a series of univariate one-way ANOVAs for all 1050 input features
(see Supplementary Table 2 for a complete list). We found 31
features that significantly distinguished patient groups from one
another (false discovery rate [FDR] corrected, q < 0.05; the most
discriminating feature from each data modality are shown in
Fig. 3d and a full list is available in Supplementary Table 3).
Though biotypes showed limited differences in clinical-behavioral
assessments using baseline data, longitudinal analyses of sub-
group affiliation revealed differentiation over time in clinical
measurements frequently used for PD prognosis (Fig. 3e; refer to
Supplementary Table 4 for model estimates). Longitudinal
differences were less pronounced when biotypes were defined
with only baseline clinical data or concatenated data (Supple-
mentary Fig. 2; Supplementary Table 5). Note that while increases
in both tremor and postural instability/gait difficulty (PIGD) scores
are indicative of clinical severity, higher PIGD (and lower tremor)
scores are often found to be related to a more rapidly progressing
and severe manifestation of PD35.
Broad examination of the DAT binding, CSF, and clinical

assessment data suggests that the three biotypes may separate
along a single dimension of PD severity, where group one
represents a more severe, group two an intermediate, and group
three a more mild phenotype; however, differences in the
neuroimaging data reveal this delineation is less straightforward.
For instance, individuals in group two—the ostensible “inter-
mediate” clinical biotype—also tend to have greater subcortical
volume than individuals in the “mild” clinical group, especially in
brain regions typically prone to degeneration in early PD such as
the substantia nigra (F(2, 183) = 40.22, p = 8.70 x 10−13; Fig. 3d).
That is, the assignment of cluster labels indicative of disease
severity are incapable of capturing all phenotypic aspects of PD.

To further investigate the discrepancy between the clinical and
neuroimaging data, we calculated patient scores for a putative
neuroimaging biomarker—the “PD-ICA atrophy network”—
recently shown to have relevance to both diagnostic PD disease
severity and longitudinal prognosis36 (Fig. 4c). While the PD-ICA
biomarker was generated from the same dataset examined in the
current study, it was derived via metrics which we excluded from
our SNF analyses (i.e., whole-brain deformation-based morpho-
metry [DBM] estimates). In line with results from the neuroimaging
data included in SNF, we found significant differentiation of
PD-ICA atrophy scores between biotypes (F(2, 183) = 5.70,
p = 0.004), largely driven by lower atrophy in the “intermediate”
compared to the “mild” group (post-hoc Tukey test, p < 0.05).
These observed discrepancies between MRI-derived metrics and
other modalities raise the question: how important is MRI brain
imaging to characterizing PD pathology?

Neuroimaging data is critical to patient biotype characterization
Although one benefit of SNF is the ability to seamlessly integrate
neuroimaging data with clinical assessments, high-resolution MRI
scans can be both costly and inconvenient for PD patients. Most
previous biotyping and patient classification studies in PD have
focused solely on clinical-behavioral assessments4,5, raising the
possibility that an adequate solution can be identified without MRI
scans. Thus, we investigated whether a similar patient character-
ization can be identified using a reduced dataset excluding
MRI data.
Data from clinical-behavioral assessments, cerebrospinal fluid

assays, and subcortical DAT binding scans were used to generate
fused patient networks following the same procedures described
above (see “Similarity network fusion provides a viable alternative
to data concatenation”). Consensus clustering of the networks
yielded three subgroups of n = 83, 59, and 44 individuals, showing
moderate overlap with biotypes defined on the full dataset
(NMI = 0.43).
Despite this similarity, it is possible these “no-MRI” biotypes

would result in a different characterization of PD disease severity
than the previously described biotypes. To assess this, we applied
the same univariate one-way ANOVA framework to examine
which of the original 1050 features were discriminable between
the subgroups generated without MRI data. This revealed only five
features (from two modalities) that significantly distinguished
these patient subgroups (FDR-corrected, q < 0.05): DAT binding in
bilateral caudate and putamen and clinical scores on the the
Unified PD rating scale, part II (UPDRS-II37). Comparing these
features with the complementary set derived from all the data
(Supplementary Table 3) highlights the reduced discriminability of
these “no-MRI” subgroups.
Given that the reduced dataset contains relatively few (i.e., 34)

features, it is possible that SNF may be “over-engineering” a
solution that could be better achieved with alternative clustering
techniques. To address this possibility, we reproduce a previously
published clustering solution of PD patients that does not include
features derived from MRI data and compare the results of this
technique to SNF (see “Supplementary Results: Comparing
clustering techniques”). We find that, as above, this clustering
solution fails to yield subgroups with meaningful differences for
any neuroimaging metrics.
Taken together, these results support the notion that excluding

MRI data from PD clustering yields patient subgroups that fail to
capture significant differences in PD pathophysiology. Never-
theless, the value of neuroimaging data in defining patient
subgroups does not explain the inconsistencies previously
observed between neuroimaging metrics and clinical data in the
patient biotypes. In the early stages of PD, pathophysiology may
not perfectly align with clinical symptomatology; that is, hard
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partitioning into a small number of discrete biotypes may be an
over-simplification of the disease.

Patient biotypes separate along continuous dimensions of severity
To examine the possibility that PD pathology is multidimensional,
we generated a continuous low-dimensional representation of
our fused patient networks with diffusion embedding38,39 (see
Supplementary Fig. 3 for a comparison with PCA on concatenated
data). Diffusion embedding attempts to find dimensions, often
referred to as gradients or components, of a network that encode
the dominant differences in patient similarity—akin to principal
components analysis (PCA) or multidimensional scaling (MDS). The
resulting components are unitless and represent the primary
axes of inter-subject similarity. Critically, diffusion embedding is
sensitive to complex, non-linear relationships and is relatively
robust to noise perturbations compared to other dimensionality
reduction methods38,39.
Patient networks for all SNF hyperparameter combinations used

in the consensus clustering (n= 1262 networks) were decom-
posed with diffusion embedding and realigned using a general-
ized orthogonal Procrustes analysis. The resulting aligned

embeddings were then averaged to generate a single, embedded
space (Fig. 1d). Examining the extent to which patient clusters
differentiated in embedded space revealed limited overlap in
cluster affiliation among the first two dimensions (Fig. 4a, b).
The first two dimensions of the embedded space correlated most

strongly with patient variability in DAT binding of the left caudate
(dimension one: r = 0.81; Fig. 4c, left panel) and volume of the
subthalamic nucleus (dimension two: r = 0.63; Fig. 4c, right panel).
Examining further dimensions revealed significant relationships with
features from all data modalities (Fig. 4f, g). We also investigated the
extent to which patient PD-ICA atrophy scores related to variation
along estimated diffusion dimensions11, finding significant associa-
tions between atrophy scores and dimensions two and four (r =
0.33 and −0.26, FDR-corrected, q < 0.05; Fig. 4d, e).
To examine whether this dimensional framework provided out-

of-sample predictive utility we re-ran the SNF grid search excluding
two variables frequently used in clinical settings to assess disease
severity: the tremor dominant score and the postural instability/gait
difficulty score (PIGD40). We regenerated the embedded dimensions
following the procedure depicted in Fig. 1d and used five-fold
cross-validation to assess the extent to which embeddings
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predicted patient scores on the held-out clinical variables. A simple
linear regression was performed using the first five embedding
dimensions as predictors of each clinical score; betas were
estimated from 80% of the data and applied to predict scores for
the remaining 20%. Out-of-sample scores were predicted moder-
ately well (average Pearson correlation between real and predicted
scores: rtremor = 0.20 [SD = 0.22] ; rpigd = 0.22 [SD = 0.22]).

DISCUSSION
The present report demonstrates how diverse modalities can be
integrated to comprehensively characterize a range of patient
characteristics. Using information about behavior, DAT binding,

cerebrospinal fluid, cortical thickness, and subcortical tissue
volume, we find evidence for distinct biological dimensions or
phenotypic axes that span the patient sample. These biologically-
informed dimensions provide a more nuanced interpretation of
pathology than is permitted from discrete subgroups or biotypes,
and hold potential for greater precision in diagnosis.
The present study demonstrates that even in a well-controlled

sample of de novo PD patients, there exists considerable hetero-
geneity. This finding contributes to a rich literature on the diversity
of PD symptoms5,7,41–45. Despite the fact that the putative biotypes
are based on the first patient visit, there are several important
features where the biotypes are not initially different from each
other but progressively diverge over time (e.g., tremor scores).
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Does the observed heterogeneity imply the existence of
fundamentally different diseases, or simply different rates of
progression? Recent evidence from animal models suggests that
PD originates from misfolding and trans-synaptic spreading of the
endogenous protein α-synuclein9, with convergent results from
human neuroimaging13,46–48. The large-scale atrophy patterns and
associated neurological deficits are thought to be mediated by
the spread of these pathogenic protein aggregates49, penetrating
the cerebral hemispheres via the brain stem and subcortex50. The
heterogeneity of clinical symptoms may simply suggest that
patients may differ in the rate and extent of neurodegeneration,
leading to diverse symptoms. In other words, individual variation
in neurological manifestations of the disease may depend on
the spreading pattern and the affected networks51, as well as
factors not directly related to PD pathophysiology (e.g., age, sex,
comorbidities).
Hard partitioning methods yield non-overlapping clusters by

definition, but is this the best way to characterize heterogeneity in
PD? The patient biotypes we initially identified could largely be
differentiated from each other on the basis of disease severity,
leading us to pursue a dimensional approach. We find that much
of the phenotypic variability in the patient sample could be
parsimoniously captured by a smaller number of latent dimen-
sions or phenotypic axes that relate to distributed patterns of grey
matter atrophy, DAT binding, etc. This finding is reminiscent of
previous reports, where even hard clustering solutions often
sorted patients into broad disease severity categories5,41–44.
Indeed, recent studies have taken an explicitly dimensional
approach, attempting to find low-dimensional projections of
clinical-behavioral and neuroimaging data45,52–54. In clinical
practice, methods like SNF situate individual patients in a
biologically-comprehensive feature space that can then guide
more objective clinical decisions about diagnosis and prognosis.
Our study is the first step in better understanding which measures
are necessary and informative of PD severity, but more work
needs to be done to continue to investigate how this will translate
to clinical practice.
The notion that PD can be characterized by a smaller number of

latent dimensions opens the question of where PD is situated
relative to other diseases55. Given the natural functional depen-
dencies among the molecular components of a cell, distinct
pathological perturbations (e.g. mutations) may affect overlapping
gene modules, cell types, tissues, and organs, ultimately
manifesting in similar phenotypes. For instance, do the present
latent dimensions trace out a transdiagnostic continuum along
which we can place other neurodegenerative diseases (e.g.
Alzheimer’s disease, tauopathies). How PD fits into a global
“disease-ome” remains an exciting question for future research.
More broadly, the present work builds on recent efforts to draw

insight from multiple modalities. Modern technological advances
and data sharing initiatives permit access to large patient samples
with increasing detail and depth14. How best to integrate
information from these multi-view datasets remains a fundamental
question in computational medicine15,19,25. Though there is an
active discussion regarding what stage of analysis is most
appropriate for data integration25, our results demonstrate that
important insights about PD patient heterogeneity can be drawn
only by simultaneously considering multiple data modalities.
Covariance among clinical, morphometric, and physiological mea-
surements synergistically reveals dominant axes of variance that are
not apparent in the individual data modalities. Moreover, we show
that simple concatenation induces overfitting to the modality with
the greatest dimensionality and autocorrelation, motivating further
research on integrating diverse sources of information.
A corollary of the present work is that it is also possible to

identify modalities that do not make a significant contribution
towards differentiating patients and could potentially be excluded
from future data collection efforts. This is an important concern

because many modern biological assays—such as brain imaging
—are expensive and difficult to administer for some types of
clinical populations. As a result, samples may be biased and data
may be incomplete for many individuals, limiting the application
and utility of the subsequent statistical models. The present
analysis can thus help to streamline future data collection efforts.
By helping to reduce the feature set, the present analytic
approach can also help increase the potential for overlap and
interoperability among existing datasets.
Although we took steps to ensure that the reported results are

robust to multiple methodological choices, there are several
important limitations to consider. First, the present results are only
demonstrated in a single patient sample; despite consistency with
several other recent studies45, formal replication in new long-
itudinal cohorts is necessary.
Second, the present statistical model leaves out two widely-

available and potentially important data modalities: genetic
variation and daily movement. Genetic variation is a recognized
contributor to the clinical manifestations of PD56, and previous
work has shown that genetic risk can be used to meaningfully
stratify patients45. Likewise, objective measurements of daily
movement with wearable sensors and smart devices are increas-
ingly prevalent and add a fundamentally different source of
information about individual patients57. Whether and to what
extent the present phenotypic axes reflect the underlying genetic
determinants or movement characteristics of PD is an exciting
question for future research.
Finally, there has been recent work highlighting the potential of

diffusion-weighted imaging (DWI) as an alternative measure to
structural, T1w images for predicting PD prognosis58; however, the
limited availability of DWI in longitudinal cohorts like those used in
the current study restricts its more widespread use.
In summary, we report a flexible method to objectively

integrate a diverse array of morphometric, molecular, and clinical
information to characterize heterogeneity in PD. We find evidence
for three biotypes, but show that the sample can alternatively be
characterized in terms of continuous phenotypic dimensions.
These phenotypic dimensions bring into focus complementary
information from multiple modalities and lay the foundation for a
more comprehensive understanding of PD.

METHODS
Ethical compliance
Data used in this study were obtained from the Parkinson’s Progression
Markers Initiative (PPMI) database (https://www.ppmi-info.org), accessed in
March of 2018. Informed consent was obtained from all individuals prior to
enrollment in the PPMI study by the participating sites. Formal approval for
data re-use was issued by the Research Ethics Board at McGill University,
Montreal, QC.

Neuroimaging data processing
Raw neuroimages were directly converted from DICOM to BIDS format59

using heudiconv (https://github.com/nipy/heudiconv). Structural images
for each subject were then independently processed with the Advanced
Normalization Tools’ (ANTs) longitudinal cortical thickness pipeline60.
Briefly, T1-weighted structural images were corrected for signal intensity

non-uniformity with N4 bias correction61. Corrected images were then
combined with other available neuroimages (T2-weighted, proton-density,
and FLAIR images) across all timepoints to create a temporally unbiased,
subject-specific template62. A standard template was non-linearly registered to
the subject template and used to remove non-brain tissue; to maintain
consistency with previous work on the PPMI dataset11,13 we used the Montreal
Neurological Institute (MNI) ICBM-152 2009c template for this purpose (https://
www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin200963–65). The remaining
subject template brain tissue was segmented into six classes (cerebrospinal
fluid, cortical gray matter, white matter, subcortical gray matter, brain stem,
and cerebellum) using ANTs joint label fusion66 with a group of fifteen
expertly annotated and labeled atlases from the OASIS dataset67. Finally, the
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segmented subject template was used to performing the same registra-
tion, brain extraction, and segmentation procedures on the T1w images
from each timepoint.
Three metrics were derived from the pre-processed neuroimaging data:

subcortical volume, cortical thickness, and whole-brain deformation-based
morphometry values.
Subcortical volume measures the absolute volume, in cubic millimeters,

for pre-defined regions of interest. Here, we used the regions of interest
from the high-resolution subcortical atlas generated by Pauli et al.68.
Analyses reported in the main text used the deterministic version of the
atlas; however, using the probabilistic version returned comparable results.
Where applicable the probabilistic atlas was thresholded at 40%; thresh-
olding was performed after registration to subjects’ T1w MRIs.
Cortical thickness measures the distance, in millimeters, between the

pial surface and the gray-white matter boundary of the brain. The ANTs
diffeomorphic registration-based cortical thickness estimation (DiReCT)
algorithm was used to measure cortical thickness in the volumetric space
of each T1w image69. The diffeomorphic constraint of this procedure
ensures that the white matter topology cannot change during thickness
estimations, permitting accurate recovery of cortical depth even in sulcal
grooves. Previous work has found that this procedure compares favorably
to surface-based approaches70.
To account for subject-level neuroanatomical variance, we averaged

cortical thickness values in each region of the five multi-scale parcellations
(68, 114, 219, 448, and 1000 regions) generated by Cammoun et al.71 for
every timepoint for every subject. The parcellations were transformed to
the T1w MRI of each timepoint before averaging within regions to
minimize bias.
Deformation-based morphometry (DBM) provides an approximate

measure of local changes in brain tissue volume for a subject relative to
a standard template72. DBM values are derived from the deformation maps
generated during the non-linear registration process aligning each subject
brain to the template space. In the present study, deformation maps were
created by concatenating the non-linear warps described in Neuroimaging
data processing that (1) mapped the T1w image for each timepoint to the
relevant subject-specific template and (2) mapped the subject-specific
template to the MNI152-2009c template. Local changes in tissue volume
were then estimated from the derivative of these deformation maps,
calculated as the determinant of the Jacobian matrix of displacement. To
aid interpretability of these changes we calculated the natural log of the
Jacobian determinant, such that a value of zero indicates no volume
change compared to the MNI template, negative values indicate
tissue expansion relative to the MNI template, and positive values indicate
tissue loss relative to the MNI template.
Zeighami and colleagues initially used DBM values from the PPMI

subjects to find an ICA component map, which they refer to as a PD-ICA
map, highlighting regions of the brain with greater relative tissue loss in
Parkinson’s patients than in age-matched healthy controls11. Using this
map, they generated an “atrophy score” for each patient, which they
related to measures of PD disease severity and prognosis11,36. Unfortu-
nately, a precise calculation of this atrophy score on a different subset of
subjects from the PPMI would require the original ICA component table; in
order to approximate this score without the component table we
employed an alternative procedure originally used in36.
We downloaded the PD-ICA component map from NeuroVault

(collection 860, image ID 12551, https://identifiers.org/neurovault.
collection:86073) and used the map as a weighted mask on the DBM
images estimated for each subject, multiplying DBM values by the
component weights in the map and then summing the resulting values to
generate a single score for each time point for each subject. Reported
atrophy scores are all normalized (i.e., zero mean and unit variance) with
respect to the n = 186 patient sample.

Neuroimaging quality control
Neuroimaging data were visually inspected by two authors (RDM and CT)
using tools adapted from niworkflows (https://github.com/poldracklab/
niworkflows). Processed data from twenty individuals were jointly selected
by both raters as anchors and used to guide independent rating of the
remaining T1w structural images for all subjects74. Quality of brain
extraction, brain segmentation, and registration to the MNI152-2009c
template was assessed and rated on a scale of 0–2, where 0 indicates a
processing failure, 1 indicates a conditional pass, and 2 indicates a full pass.
Discrepancies where one rater assigned a score of 0 and the other rater
assigned a passing score (n= 11 instances) were jointly reconciled and

new scores assigned (n = 9 revised to a score of 0, n = 2 revised to a
score of 1).
Cohen’s kappa coefficient (κ) was calculated to compare the inter-rater

reliability of the final quality control scores, yielding 84.8% agreement for
segmentation and 84.5% agreement for registration ratings75. Assessing
scores for only the subject-specific template of each subject yielded
comparable agreement (85.8% for segmentation, 85.5% for registration).
The current study used subjects for whom both segmentation and
registration scores were ≥1 across both raters.

Non-neuroimaging data processing
In addition to longitudinal neuroimages, the PPMI provides clinical-
behavioral assessments, biospecimen analyses, and single-photon emis-
sion computed tomography (SPECT) dopamine active transporter (DAT)
binding data for all of its participants. Item-level measures for clinical-
behavioral assessments were combined into raw composite scores
following instructions in the “Derived Variable Definitions and Score
Calculations” guide supplied by the PPMI using the pypmi software
package (https://github.com/netneurolab/pypmi). Biospecimen data and
pre-computed region of interest metrics for SPECT data were used as
provided.

Data cleaning
The current study used five data sources: (1) MRI cortical thickness, (2) MRI
subcortical volume, (3) SPECT DAT binding ratios, (4) biological and
cerebrospinal fluid assays, and (5) clinical-behavioral assessment scores.
Prior to combining data sources we performed (i) data cleaning, (ii) outlier
removal, (iii) missing data imputation, (iv-a) batch correction, (iv-b)
covariate residualization, and (v) normalization for each modality.
Any features for which ≥20% of individuals were missing data were

discarded; subsequently, individuals missing ≥20% of the remaining
features were discarded. Putative outlier individuals were then identified
using a median absolute deviation method and discarded76. The remaining
missing data values were imputed, substituting the median value across
individuals for each feature. This procedure yielded n = 186 individuals
with PD and n = 87 healthy individuals who had data from all five sources.
A full list of the 1050 features retained for each data source after
preprocessing can be found in Supplementary Table 2.
We used ComBat to correct for site differences in neuroimaging data

modalities (i.e., cortical thickness and subcortical volume measurements;
neurocombat, https://github.com/ncullen93/neurocombat)77,78. Patient
diagnostic status, family history of PD, sex, race, handedness, and
education were included in the ComBat correction procedure.
We residualized the pre-processed data against age, sex, and age × sex

interactions in PD patients based on the relationships estimated from
healthy individuals; estimated total intracranial volume was also included
in the residualization process for cortical thickness and subcortical volume
features12. Finally, PD patient data were z-scored (centered to zero mean
and standardized to unit variance). Only PD patient data were used to
estimate means and standard deviation for z-scoring.

Data concatenation
Concatenation provides a data-driven, parameter-free approach for
integrating multimodal data, where data features from all sources are
horizontally stacked into a single sample by feature matrix. Here, we joined
patient data for all features from all data sources and converted the
resulting matrix into a patient similarity network by applying a cosine
similarity function from scikit-learn79. As spectral clustering cannot
handle negative values we scaled the values of the similarity networks
between zero and two. The scaled patient networks were subjected to
spectral clustering28,29 for a two-, three-, and four-cluster solution, and the
solutions were compared to clustering assignments generated from SNF,
described below.

Similarity network fusion
Similarity network fusion is a method for combining disparate data sources
from a group of samples into a single graph, representing the strength of
relationships between samples19. SNF constructs independent similarity
networks from each data source using a K-nearest neighbors weighted
kernel and then iteratively combines them via a non-linear message passing
protocol. The final network contains sample relationships representing
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information from all data sources and can be subjected to clustering or other
graph techniques (see Fig. 1a).
SNF belongs to a broader family of techniques of multi-view learning

algorithms (e.g., multiple kernel learning, multi-table matrix factorization).
We opted to use SNF because (1) it is an unsupervised learning technique,
(2) it is explicitly optimized to control for differing dimensionalities
amongst input data modalities19, and (3) it has been shown to be effective
at disentangling heterogeneity in psychiatric populations21,22.
We constructed similarity networks for each data source using a Python

implementation of the methods described in19 (snfpy; https://github.
com/netneurolab/snfpy). A brief description of the main steps in SNF
follows, adapted from its original presentation in19.
First, distance matrices are created from each feature matrix. We

selected squared Euclidean distance for the analyses in the main text;
however, other distance measures return comparable results (see
Supplementary Results: Alternative distance metrics”). Next, distance
matrices are converted to similarity networks using a scaled exponential
kernel:

Wði; jÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�
ρ2 ðxi ;xj Þ

2σ2 ; (1)

where ρ(xi, xj) is the Euclidean distance (or other distance metric, as
appropriate) between patients xi and xj. The value σ is calculated with:

σ ¼ μ
ρ2ðxi ;NiÞ þ ρ2ðxj ;NjÞ þ ρ2ðxi ; xjÞ

3
; (2)

where ρðxi ;NiÞ represents the average Euclidean distance between xi and
its neighbors N1..K. Both K, controlling the number of neighbors, and μ, the
scaling factor, are hyperparameters that must be pre-selected, where K 2
½1; 2; :::; j�; j 2 Z and μ 2 Rþ.
In order to fuse the supplied similarity networks each must first be

normalized. A traditional normalization performed on a similarity matrix
would be unstable due to the self-similarity along the diagonal; thus, a
modified normalization is used:

Pði; jÞ ¼
Wði;jÞ

2
P

k≠i
Wði;kÞ

; j ≠ i;

1=2; j ¼ i:

8
<
: (3)

Under the assumption that local similarities are more important or
reliable than distant ones, a more sparse weight matrix is calculated:

Sði; jÞ ¼
Wði;jÞP
k2Ni

Wði;kÞ
; j 2 Ni ;

0; otherwise:

8
<
: (4)

The two weight matrices P and S thus provide information about a given
patient’s similarity to all other patients and the patient’s K most similar
neighbors, respectively.
The similarity networks are then iteratively fused. At each iteration, the

matrices are made more similar to each other via:

PðvÞ ¼ SðvÞ ´
P

k≠vP
ðkÞ

m� 1
´ ðSðvÞÞT; v ¼ 1; 2; :::;m: (5)

After each iteration, the resulting matrices are re-normalized via the
above equations. Fusion stops when the matrices have converged or after
a pre-specified number of iterations (by default, 20).
Variation in SNF’s two parameters, K and μ, can highlight different

aspects of the input data, yielding significantly different fused networks. In
order to avoid biasing our results by selecting any specific hyperparameter
combination we opted to perform SNF with different combinations of K
and μ, using 100 unique values for each parameter (K = 5–105; μ = 0.3–10,
logspace). The resulting set of 10,000 fused networks was subjected to
consensus clustering and diffusion map embedding to generate both
categorical and continuous representations of patient pathology.
For a more in-depth examination of how variation in hyperparameters

impacted patient networks refer to “Supplementary Results: Hyperpara-
meter variation”.
In order to find a single clustering solution from the 10,000 fused

networks generated by SNF we employed a consensus approach inspired
by Bassett et al.30 and Lancichinetti and Fortunato31. First, each of the
10,000 networks was subjected to spectral clustering28,29. As spectral
clustering requires pre-specifying the desired number of clusters to be
estimated, we chose to generated separate solutions for two, three, and
four clusters each. Though it is possible there are more clusters in the

dataset, previous work on PD patient data supports 2–4 clusters as a
reasonable choice4,5.
We wanted to consider regions of the parameter space that generated

“stable” networks—that is, where small perturbations in either of the two
hyperparameters did not appreciably change the topology or resulting
clustering of the patient networks. To quantify this we assessed the
pairwise z-Rand similarity index80 of the clustering solution for each point
in hyperparameter space and its four neighbors; local z-Rand values were
calculated separately for two-, three-, and four-cluster solutions (Fig. 1c).
The resulting cluster similarity matrices were thresholded at the 95th
percentile of the values in all three matrices; clustering solutions from
regions of parameter space surviving this threshold in any of the three
matrices were retained for further analysis, resulting in 1262 × 3 = 3786
assignments. These solutions were used to generate a subject co-
assignment matrix representing the normalized probability that two
subjects were placed in the same cluster across all assignments. This “co-
assignment” matrix was thresholded by generating an average probability
from a permutation-based null model, as in30. Briefly, we permuted the
assignments for each clustering solution and regenerated the co-
assignment probability matrix; the average probability of this permuted
matrix was used as the threshold for the original. We clustered the
resulting thresholded matrix using a modularity maximization procedure
to generate a final “consensus” clustering partition, which was used in all
subgroup analyses32.

Diffusion map embedding
While clustering is appealing for its intuitive clinical applications, recent
work has shown that continuous representations of clinical dysfunction
may provide a more accurate representation of the underlying dis-
eases12,81 As an alternative to clustering, we applied diffusion embedding
to the fused PD patient network.
Diffusion map embedding is a non-linear dimensionality reduction

technique that finds a low-dimensional representation of graph struc-
tures38,39. Though closely related to other manifold learning techniques
including e.g., Laplacian-based spectral embedding, diffusion map
embedding typically uses a different normalization process that approx-
imates a Fokker–Planck diffusion equation instead of traditional laplacian
normalization82. Moreover, diffusion map embedding attempts to model a
multi-scale view of the diffusion process via a diffusion time parameter, t,
that allow for more nuanced investigations of the geometry of the input
data than are achievable via comparable techniques like spectral
embedding. In the current manuscript we used diffusion time t = 0,
which reveals the most global relationships of the input dataset38.
Prior to embedding we thresholded our fused graphs, removing edges

below the 90th percentile of weights for each individual, and computed
the cosine similarity of the resulting network83. This network was
decomposed using mapalign (https://github.com/satra/mapalign) to
generate an embedded space for each of the 10,000 patient networks.
For our analyses we only considered embeddings for those networks in

regions of parameter space deemed “stable” via the z-Rand thresholding
procedure described in Consensus clustering, resulting in 1262 embed-
dings. These embeddings were aligned using a generalized orthogonal
Procrustes analysis (rotations and reflections only) and then averaged to
generate a single patient embedding which was carried forward to all
analyses (Fig. 1d). We only considered the first N components yielding a
cumulative variance explained of ≥10%.
To examine the out-of-sample predictive utility of the dimensional

embedding framework we re-ran the SNF grid search excluding two
variables: the tremor dominant score (tremor) and the postural instability/
gait difficulty score (PIGD). Embedded dimensions were regenerated
following the same procedures depicted in Fig. 1d. We used a five-fold
cross-validation framework to assess the extent to which embeddings
predicted patient scores on the held-out clinical variables. A simple linear
regression was performed using the first five embedding dimensions as
predictors of each clinical score; betas were estimated from 80% of
the patients and applied to predict scores for the remaining 20% of the
patients. Predicted scores were correlated with actual scores, and the
average correlations across all folds were reported.

Statistical assessments
Quantitative assessments of the similarity between clustering assignments
were calculated using normalized mutual information (NMI33), a measure
ranging from 0 to 1 where higher values indicate increased overlap
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between assignments. Alternative measures (e.g., adjusted mutual
information) that correct for differing cluster numbers were not used as
NMI was only calculated between assignments with the same number of
clusters.
Modularity was used to measure the “goodness-of-fit” of clustering

assignments, and was calculated by

Q ¼
X

ij

Bijδðσi ; σjÞ; (6)

where δ() is the Kronecker delta function which returns 1 when patients i
and j belong to the same cluster and 0 otherwise. Here, Bij is a modularity
matrix whose elements are given by Bij= Aij− Pij, where Aij and Pij are the
observed and expected similarity between patients i and j. Modularity
ranges between −1 and 1, where higher values indicate increasingly well-
defined assortative clustering assignments34.
To assess whether identified clusters were discriminable we performed

separate one-way ANOVAs across groups for all data features provided to
SNF using scipy’s statistical computing module84 (model: score ~
biotype). Reported results were FDR-corrected (q < 0.05) using the
Benjamini–Hochberg procedure85 from the statsmodels modules86.
Although longitudinal data were limited for many features, clinical-
behavioral assessments were available for the majority of subjects up to
5 years post-baseline. Thus, we analyzed the impact of cluster affiliation on
longitudinal feature scores using linear mixed effects models, including
age, education, and sex as additional covariates.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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