
Vol.:(0123456789)1 3

Cognitive Computation 
https://doi.org/10.1007/s12559-020-09795-5

COV19‑CNNet and COV19‑ResNet: Diagnostic Inference Engines 
for Early Detection of COVID‑19

Ayturk Keles1   · Mustafa Berk Keles2 · Ali Keles1

Received: 12 July 2020 / Accepted: 16 November 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Chest CT is used in the COVID-19 diagnosis process as a significant complement to the reverse transcription polymerase 
chain reaction (RT–PCR) technique. However, it has several drawbacks, including long disinfection and ventilation times, 
excessive radiation effects, and high costs. While X-ray radiography is more useful for detecting COVID-19, it is insensi-
tive to the early stages of the disease. We have developed inference engines that will turn X-ray machines into powerful 
diagnostic tools by using deep learning technology to detect COVID-19. We named these engines COV19-CNNet and 
COV19-ResNet. The former is based on convolutional neural network architecture; the latter is on residual neural network 
(ResNet) architecture. This research is a retrospective study. The database consists of 210 COVID-19, 350 viral pneumonia, 
and 350 normal (healthy) chest X-ray (CXR) images that were created using two different data sources. This study was 
focused on the problem of multi-class classification (COVID-19, viral pneumonia, and normal), which is a rather difficult 
task for the diagnosis of COVID-19. The classification accuracy levels for COV19-ResNet and COV19-CNNet were 97.61% 
and 94.28%, respectively. The inference engines were developed from scratch using new and special deep neural networks 
without pre-trained models, unlike other studies in the field. These powerful diagnostic engines allow for the early detection 
of COVID-19 as well as distinguish it from viral pneumonia with similar radiological appearances. Thus, they can help in 
fast recovery at the early stages, prevent the COVID-19 outbreak from spreading, and contribute to reducing pressure on 
health-care systems worldwide.

Keywords  Novel coronavirus · SARS-CoV-2 · Pneumonia · CXR radiographs · Residual network · Convolutional neural 
network

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), officially known as COVID-19, is a severe acute 
respiratory syndrome disease [1, 2]. It belongs to the same 

family as the Middle East respiratory syndrome coronavi-
rus (MERS-CoV) and SARS-CoV. The occurrence of this 
disease was first reported in Wuhan, China, in December 
2019. It quickly spread to other regions in China and then 
to other countries.

The estimates on the prevalence of COVID-19 have been 
continuously updated since the initial outbreak. As of August 
24 2020, the number of confirmed cases was 23,279,683 
globally, and the number of confirmed deaths was 805,902. 
At the time of writing this paper, the five countries with the 
highest number of cases are, in order, the USA (5,612,163), 
Brazil (3,582,362), India (3,106,348), the Russian Federa-
tion (956,749), and South Africa (607,045) [3].

The RT-PCR test is not reliable enough for the early diag-
nosis and treatment of this disease [4, 5]. Additionally, a RT-
PCR test takes approximately 6 h to complete. Considering 
this, the CXR film is relevant for COVID-19 diagnosis and 
identification. If the RT-PCR or CXR result appears normal 
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but the clinical suspicion is still high, then a chest CT scan 
must be conducted.

CT helps detect possible complications that are not seen 
in CXR [6]. Radiologists play a vital role in this process by 
accurately reporting their radiological findings from both 
the CXR and CT scans. These reports provide important 
information on the absence or presence of a coronavirus 
infection. Findings that cause serious suspicion relevant to 
“COVID-19 are ground glass patterned areas, which, even 
in the initial stages, affect both lungs, in particular the lower 
lobes, and especially the posterior segments, with a funda-
mentally peripheral and subpleural distribution” [7].

COVID-19 and other pneumonia types have similar imag-
ing features, which makes it difficult to differentiate them. 
Although CT is an effective imaging method for the early 
detection and diagnosis of COVID-19, its implementation 
poses several difficulties and disadvantages. If the process is 
not conducted in a safe manner by considering the rate and 
form of the spread of COVID-19, the risk of transmitting the 
disease to health workers and other patients increases. For 
this reason, the American College of Radiology (ACR) has 
released recommendations to be followed when performing 
imaging for suspected COVID-19 infection. The ACR state-
ment states the following: “CT should be used sparingly and 
reserved for hospitalized, symptomatic patients with specific 
clinical indications for CT. Appropriate infection control 
procedures should be followed before scanning subsequent 
patients. Facilities may consider deploying portable radiog-
raphy units in ambulatory care facilities for use when chest 
X-rays are considered medically necessary. The surfaces of 
these machines can be easily cleaned, avoiding the need to 
bring patients into radiography rooms.” [8].

Additionally, the average effective dose of radiation is 
0.1 mSv for CXR, but this quantity is 70 times more for a 
chest CT. Such a high level of radiation has a significant 
negative effect on DNA, causing mutations that may lead 
to cancer [9].

On the other hand, the cost of chest CT scans is higher 
than that of CXRs. Considering the budgets that countries 
have allocated for fighting COVID-19, the imaging cost 
for CT scans for every suspected patient results in notable 
expenses.

Artificial intelligence (AI) technologies produce success-
ful results, especially in the differentiation and diagnosis 
of diseases with similar symptoms and uncertainty. Deep 
learning (DL) involves neural network models learning to 
make classifications based on images or different types of 
data sources. DL models have promising potential for prog-
nostic and diagnostic accuracy due to their competency in 
comparison to human experts. Deep neural networks use 
labels to discover hidden patterns in inputted complex data 
[10]. This technology can be used to develop real-time sys-
tems that detect different types of diseases [11, 12]. Using 

a pre-trained model for a new problem is called transfer 
learning. There are many pre-trained models in DL that are 
used to solve various problems by making simple modifi-
cations. Xception, VGG16, VGG19, ResNet, ResNetV2, 
InceptionV3, InceptionResNetV2, MobileNet, Mobile-
NetV2, DenseNet, and NASNet are well-known ImageNet 
pre-trained models. There are a limited number of DL stud-
ies on the detection of COVID-19 from CXR images, and 
models pre-trained using natural images have been used in 
these studies [6, 13–18].

Ayrton [15] used ResNet50-based deep transfer learning 
technique on a small dataset of 339 images (39 COVID-19 
positive and 300 normal) and reached a validation accuracy 
of 96.2%. Further, Wang and Wong [18] proposed a DL 
model named COVID-Net for the detection of COVID-19. 
This model has 92.4% accuracy in classifying normal, pneu-
monia, and COVID-19 classes. Hemdan et al. [14] used 50 
CXR images (25 COVID-19 and 25 normal) to build the 
COVIDX-Net framework, which includes seven different 
pre-trained models: VGG19, DenseNet121, InceptionV3, 
ResNetV2, Inception-ResNetV2, Xception, and Mobile-
NetV2. The VGG19 and DenseNet models were each found 
to have an accuracy of 90%, while the Inceptionv3 model has 
the worst classification performance at an accuracy of 50%.

Asif et al. [19] proposed a CNN model based on Incep-
tionv3 with transfer learning for the detection of COVID-19. 
The researchers used a dataset that consists of 864 COVID-
19, 1345 viral pneumonia, and 1341 normal chest X-ray 
images. Before using this dataset, they increased the number 
of images by 10 times for each class through data augmenta-
tion methods. They obtained a training accuracy of 97% and 
a validation accuracy of 93% after the completion of 4000 
epochs in the proposed model.

ImageNet pre-trained models show insufficient perfor-
mance for some tasks. Natural images and medical images 
differ significantly, and transfer learning models are mainly 
trained using datasets that contain natural images. Therefore, 
these models do not perform well when medical images are 
used as the dataset. Hence, transfer learning cannot be con-
sidered more efficient than training a network from scratch, 
as the networks learn different high-level features [20]. 
Besides, using a pre-trained model in DL applications is 
quite simple; it merely requires writing a few lines of code. 
In contrast, creating a model from scratch requires expert 
knowledge and experience in the DL field.

Unlike the abovementioned researchers, we developed 
two deep neural networks from scratch: COV19-CNNet 
based on CNN and COV19-ResNet based on ResNet. The 
number of required hidden layers is a significant aspect to 
be considered for obtaining good results. It changes based 
on the complexity of the dataset and the problem. There-
fore, the number of hidden layers must be well-defined in 
order to successfully train a model. We attempted to find 
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an optimal number of hidden layers to solve the COVID-19 
detection problem. We used the Python programming lan-
guage to create our deep neural networks and the computa-
tion power of a Google Colaboratory Linux server with an 
Ubuntu 16.04 operating system a Tesla K80 GPU graphics 
card to train them. The networks were trained with a data-
set that contained only CXR images (210 COVID-19, 350 
viral pneumonia, and 350 normal). The majority of previ-
ously conducted studies given in the literature have made 
use of limited datasets containing less than 100 COVID-19 
images. Due to this, we decided to employ a larger dataset 
to develop deep neural networks which demonstrate reliable 
performance. Our inference engine, COV19-ResNet, reached 
an accuracy of 100%, a precision rate of 100%, a recall rate 
of 100%, a specification of 100%, and an F1 score of 100% 
for the detection of COVID-19. However, the accuracy val-
ues obtained for normal and viral pneumonia classes were 
95.71% and 97.14%, respectively.

Methods

Patient and Dataset

The present study was a retrospective one. The database 
used consists of 210 COVID-19, 350 viral pneumonia, and 
350 normal CXR images that were created using two differ-
ent data sources. Figure 1 presents the sample CXR images 
for each class. The first data source was created by a team of 
researchers from Qatar University (Doha, Qatar) and Dhaka 
University (Dhaka, Bangladesh) along with collaborators 
from Pakistan and Malaysia. The dataset consists of 219 
COVID-19 positive, 1341 normal, and 1345 viral pneumonia 
CXR images, and it is constantly updated with new CXR 
images [21].

The second data source consists of 5863 CXR images 
(pneumonia and normal) selected from retrospective cohorts 
of patients from the Guangzhou Women and Children’s 
Medical Center [22].

Our dataset initially consisted of 910 X-ray images (PNG 
format), and we produced 90 additional COVID-19 samples 
using data augmentation methods such as horizontal/verti-
cal, rotation, and shifting. The well-known 60/20/20 rule, 
which is used as a common strategy to split data in machine 
learning, was enforced in our study; 60% of the dataset was 
assigned for training, 20% for validation, and the final 20% 
for testing.

COV19‑CNNet

A CNN is a special type of neural network that has shown 
excellent performance in computer vision competitions. This 
network gains the ability to recognize different objects after 

training on a big image dataset. This architecture works in 
a similar manner to human vision—both use correlations 
between different images. Some diseases that are difficult to 
detect by experts can be detected in seconds by the systems 
created with this algorithm. However, considerable skill and 
experience in DL is required to select suitable hyperparam-
eters, such as the learning rate, kernel sizes of convolutional 
filters, and number of layers, when creating a CNN from 
scratch for a new task. In this study, we developed a CNN-
based interference engine called COV19-CNNet, which was 
built from scratch to detect COVID-19, using our expertise 
in and experiences with DL. It consists of seven convolu-
tional layers for feature extraction and four dense layers for 
classification (Fig. 2).

The initial convolutional layers of the network tends to 
respond to basic features such as oriented lines and tex-
tures, whereas intermediate layers of the network respond 
to more complex features. By the time information reaches 
the higher layers of the network, the feature maps of these 
layers are able to extract specific findings.

Having multi-convolutional layers in the network makes it 
possible to extract useful information from images. The large 
number of parameters required is one of the biggest prob-
lems in training a deep convolutional network. This problem 
was solved for this model by using a pooling operation. Out-
puts of the convolutional layers were summarized using the 
2D max-pooling operation. Batch normalization was used 
to rescale outputs of some particle layers.

A flatten layer was used in the transition from the con-
volution layers to the four dense layers. The dense layers 
which are also known as fully connected layers help learn 
non-linear combinations of the high-level features outputted 
by the convolutional layers. The last dense layer has three 
neurons to categorize images as COVID-19, viral pneumo-
nia, and normal. It uses Softmax as an activation function.

We used specific strategies in the training phase to pre-
vent overfitting: In each step of the training process, ran-
dom unit sets in the dense layers were selected and ignored 
using the dropout technique. This is an efficient strategy that 
makes it possible to train various networks using different 
data units. Thus, if any part of the network becomes too 
sensitive to noise in the data, the other parts will compensate 
for it. The early stopping method was also used to prevent 
overfitting. Through this, the training of the model ceases 
when performance improvement is stopped on the valida-
tion dataset.

COV19‑ResNet

Deep neural networks are useful for dealing with complex 
tasks. However, adding too many layers generally causes 
vanishing gradient problems, and the weights of the early 
layers cannot be updated by backpropagation. This can 
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be solved by adding an identity connection. The structure 
of ResNet allows the gradients to flow backward directly 

through an identity connection from the later layers to the 
initial filters. ResNet is a continuation of deep networks. It 

Dataset and Classes

Normal COVID-19 Viral pneumonia

Number of images: 300 Number of images: 219 Number of images:  300

Augmented images for COVID-19
Augmentation methods: horizontal/vertical, rotation, shifting.

COVID-19 None Rotation Degree: 60 Rotation Degree: 90 Rotation Degree: 270

all methods horizontal Shifting up/down Vertical

Number of augmented image: 90

Total number of  images: 1000

Fig. 1    Dataset and classes
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improves CNN architecture with residual learning and offers 
an effective methodology for the training of deep networks.

The given mathematical formula depicts the main idea 
behind the ResNet structure (see Fig. 3c). Function F(x) 
transforms the input data and the function “Identity,” which 
allows a direct connection from the previous layer to the 
current layer. X is the input, W is the weight, and B is the 
bias vector.

In this research, we developed a deep neural network 
from scratch entitled COV19-ResNet based on ResNet 
architecture (Fig. 3a). It takes an image (224 × 224 × 1) 
as the input. The network initially performs 7 × 7 con-
volution and 2 × 2 max-pooling functions. After these 
operations, two “resnet_block” types (Fig. 3b) are used: 
the first “resnet_block” contains one “conv_block” and 
three “identity_block,” while the second one contains 
one “conv_block” and three “identity_block.” An “iden-
tity_block” has three layers and one identity connection 
(shown as a solid arrow, shown in Fig. 3c). These consist 
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of 1 × 1, 3 × 3, and 1 × 1 convolutions. A “conv_block” 
(Fig. 3d) has three convolution layers stacked one over 
the other and one downsampling layer.

These three convolution layers are of 1 × 1, 3 × 3, and 
1 × 1 kernel sizes. The stride parameter of the 3 × 3 convolu-
tion layer is set as 2. This layer is responsible for reductions 
in the input size. The downsampling layer consists of 1 × 1 
convolution and stride 2 to prevent mismatching in size. 
Finally, the average pooling layer, a flatten layer, and three 

fully connected layers are used respectively. The detailed 
structure of the COV19-ResNet is presented in Fig. 3a.

Results

Our dataset consisted of 1000 CXR images. We organized the 
dataset into three folders (60% training, 20% test, 20% vali-
dation) containing subfolders for each image category (300 
COVID-19, 350 normal, and 350 viral pneumonia images). 
The confusion matrices of COV19-CNNet and COV19-
ResNet were calculated to investigate their performances. As 
shown in Fig. 4a, the COVID-19 and normal classes achieved 
perfect classification with the use of COV19-CNNet, whereas 
the viral pneumonia class had 12 misclassified samples 
within the 70 test samples. On the other hand, as seen in 
Fig. 4b, COVID-19 achieved the perfect classification with 

Fig. 2    COV19-CNNet architecture
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the use of COV19-ResNet; the normal class had three mis-
classified samples and the viral pneumonia class had two 
misclassified samples within the 70 test samples. According 
to these confusion matrixes, the accuracy performances for 
COV19-ResNet and COV19-CNNet are 97.61% and 94.28%, 
respectively.

The most common measures of performance in diag-
nosis are accuracy, precision, recall, specificity, and 
F1 score [23]. Table 1 shows a comparison of our two 
inference engines in terms of these performance meas-
ures. The formulas of the performance measures are as 
follows:

Fig. 3    a COV19-ResNet architecture, b Resnet_Block, c Identity_block, and d Conv_Block

Table 1    The performance 
measures of COV19-CNNet and 
COV19-ResNet on test data

Class Accuracy Precision Recall/Sensi-
tivity

Specificity F1-score

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

COVID-19 100.00 100.00 98.36 100.00 100.00 100.00 99.28 100.00 99.17 100.00
Normal 100.00 95.71 86.42 97.10 100.00 95.71 91.53 98.46 92.72 96.40
Viral Pneumonia 82.86 97.14 100.00 95.80 83.00 97.14 100.00 97.69 90.71 96.47
Average 94.28 97.61 94.93 97.63 94.33 97.61 96.94 98.72 94.20 97.62
M1: COV19-CNNet; M2: COV19-ResNet
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(6)Accuracy = (TP + TN)∕(TP + FN + TN + FP)

(7)Sensitivity = TP∕(TP + FN)

(8)Specificity = TN∕(TN + FP)

(9)Presicion = TP∕(TP + FP)

Fig. 4    Confusion matrix of a COV19-CNNet and b COV19-ResNet

Fig. 5    Training-testing curves 
of accuracy and loss for 
a–b COV19-CNNet and c–d 
COV19-ResNet
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TP, TN, FN, and FP represent the number of true posi-
tives, true negatives, false negatives, and false positives, 
respectively.

(10)Recall = TP∕(TP + FN)

(11)
F1score = 2 × (presicion × recall)∕(presicion + recall)

The training-validation accuracy and loss values of 
COV19-CNNet and COV19-ResNet in each epoch are 
shown in Fig. 5. In each model, the early stopping tech-
nique with different patience values and validation loss 
are monitored to prevent overfitting. During training, 
the best weights are stored. When the training phase is 
stopped, the best weights are loaded to the model.

Table 2    DL applications on detecting COVID-19 from chest X-ray images

Literature Data set without augmentation DL tool Accuracy Specificity Sensitivity F1 score

Loey et al. [16] 3 Classes
N/C/P
69/79/79

ALexnet 85.19 - 85.19 85.19
Googlenet 81.48 - 81.48 81.46
Resnet18 81.48 - 81.48 84.66

Apostolopoulos and Mpesiana 
[13]

3 classes
Dataset_1
N/C/BP
504/224/700

VGG19 93.48 98.75 92.85
MobileNet (v2) 92.85 97.09 99.10
Inception 92.85 99.70* 12.94*
Xception 92.85 99.99* 0.08*
Inception ResNet v2 92.85 99.83* 0.01*

3 classes
Dataset_2 N/C/BP+VP
504/224/714

MobileNet (v2) 94.72 96.46 98.66 -

Ucar and Korkmaz [6] 3 classes
N/C/P
1583/76/4290

SqueezeNet with raw dataset 76.37 79.93 - 98.25

3 classes
N/C/P
1536/1536/1536

SqueezeNet with augmented 
dataset

98.26 99.13 - 98.25

Ozturk et al. [17] 3 Classes
N/C/P
500/127/500

Darknet 87.02 92.18 85.35 87

Proposed study 3 Classes
N/C/VP
350/210/350

COV19-CNNet 94.28 96.94 94.33 94.20
COV19-ResNet 97.61 98.72 97.61 97.62

N: Normal (healthy)
C: COVID-19
NC: Non-COVID-19

P: Pneumonia
VP: Viral pneumonia
BP: Bacterial pneumonia

Fig. 6    Comparison of chest 
radiological images: a X-ray 
and b CT thorax images
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Discussion

DL is an AI technology that has been applied successfully 
in the medical field due to its high capability of feature 
extraction from images [5, 24]. Some of these applica-
tions differentiate the types of viral pneumonia or detect 
the presence of pneumonia from CXR images [16, 25]. 
They are also used in the detection of breast cancer [26], 
brain tumor segmentation [27], brain abnormalities [28], 
and Alzheimer’s disease as well as in the diagnosis and 
classification of skin lesions [29, 30].

It is necessary to detect COVID-19 in suspected 
patients as early as possible and a proper treatment pro-
cess initiated. CXR and CT scans are commonly used for 
detecting COVID-19 [6, 13, 31, 32]. However, according 
to the American College of Radiology (ACR), CT scans 
should not be used to screen or as the first-line imaging 
to diagnose COVID-19, and CT has several drawbacks, 
which were mentioned in the introduction section. There-
fore, X-ray imaging is the preferred method for diagnosis, 
and it plays a vital role in clinical care and epidemiological 
researches [33]. X-ray imaging is a more accessible, faster, 
cheaper, easier to disinfect, more portable, and less harm-
ful method than CT, but the sensitivity of CXR is lower 
than that of CT [33]. In the early stages of COVID-19, 
medical images usually show negative radiological signs. 
However, it is seen that DL makes a huge contribution to 
COVID-19 detection by removing this disadvantage when 
the studies in Table 2 are examined carefully. The accuracy 
performance in the binary classification task for normal 
and COVID-19 samples was quite satisfactory. However, 
pneumonia caused by COVID-19 is actually a subset of 
pneumonia; the two have similar features and are difficult 
to differentiate from each other. Thus, the success of the 
classifier in the multi-class classification problem is low 
as compared with the binary class.

Apostolopoulos and Mpesiana [13] used two different 
datasets. They used MobileNet (v2) and reached an accuracy 
rate of 97.40% for the binary class and 92.85% for multi-
class. However, they encountered meaningless sensitivity 
and specificity values for Inception, Xception, and Inception 
ResNet v2 models because of imbalances in the data. These 
values are denoted using asterisks (*) in Table 2. In this 
study, we used only 90 augmented samples for overcoming 
the problem of imbalanced data. Thus, our inference engines 
have accuracy, sensitivity, specificity, and F1 score values 
of over 90%.

Loey et al. [16] used a limited number of X-ray images 
in their study. Their dataset consisted of four categories and 
a total of 307 images (79 COVID-19, 69 normal, and 79 
pneumonia). They were used in the deep transfer learning 
CNN models such as Alexnet, ResNet18, and GoogLeNet. 

In addition to this, they utilized a Generative Adversarial 
Network (GAN) to overcome the overfitting problem. They 
increased the number of dataset images to 30 times than 
that of the original dataset. The number of images in the 
dataset reached 8100 images after using the GAN network. 
They tested these pre-trained models for a different num-
ber of categories. They used 10% from the original dataset 
in the testing phase and 20% of the total generated images 
in the validation phase. The validation and testing accura-
cies of all pre-trained models for binary classification were 
nearly 100%. ResNet18 was the best pre-trained model for 
three-class and four-class classification. In the three-class 
classification, its validation and test accuracy were 99.6% 
and 81.5%, respectively. In the four-class classification, its 
validation and test accuracy were 99.6% and 66.7%, respec-
tively. However, significant differences between the test and 
validation accuracies were observed; the validation accura-
cies were found to be higher than the test accuracies. Thus, 
it should be kept in mind that the data used in this study 
is highly augmented and the validation samples were com-
posed of the same. In our study, we augmented COVID-19 
images to be only 0.5 times larger than the raw images to bal-
ance the three categories. However, we used only raw images 
during the testing phase. We found the validation (94%) and 
test accuracy (94%) values of the COV19-CNNet model to 
be close to each other. Likewise, the COV19-ResNet model 
was also found to have close values of validation (97%) and 
test accuracy (98%).

Ozturk et al. [17] used the Darknet classifier, which forms 
a real-time object detection system named YOLO (you only 
look once) [34]. Their proposed model was evaluated using 
the five-fold cross-validation procedure for both the binary 
and multi-classification problem. The Dark-CovidNet model 
achieved accuracy levels of 98.08% and 87.02% for binary 
and multi-classification, respectively.

Ucar and Korkmaz [6] used the pre-trained 
SqueezeNet model for the diagnosis of COVID-19. They 
used the dataset (1583 normal, 4290 pneumonia, and 76 
COVID-19 CXR images) in two different ways: raw and 
augmented. The offline augmentation model used by 
them enhanced the COVID-19 class approximately 20 
times. Thus, they reached 1536 images for the COVID-
19 class and tried to balance the dataset by fixing this 
number of samples for all classes. They used 80% of 
the dataset for training, 10% for validation, and 10% 
for testing. The classification accuracy levels obtained 
by them for the raw dataset and augmented data were 
76.37% and 98.26%, respectively. Working with highly 
augmented data increased the accuracy value, but this 
value decreased in the actual dataset. 76 images were 
used in their study, whereas 210 COVID-19 CXR images 
were used in ours.
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The SqueezeNet model [6] has an accuracy of 100%, a 
precision rate of 99.35%, a recall rate of 100%, a specifi-
cation of 96.67%, and an F1 score of 99.67% for COVID-
19, while the values of all these metrics are 100% in our 
COV19-ResNet engine. In addition, the accuracy values 
of the SqueezeNet model for normal and viral pneumonia 
are 98.04% and 96.73%, respectively. The COV19-ResNet 
accuracy values for normal and viral pneumonia are 95.71% 
and 97.14%, respectively. The COV19-CNNet accuracy lev-
els for COVID-19, normal, and viral pneumonia are 100%, 
100%, and 82.86%, respectively. In light of these findings, 
it is evident that our COV19-ResNet model performs bet-
ter than the SqueezeNet model in classifying COVID-19 
and viral pneumonia. Additionally, the best classifier for the 
normal class among the three models is our COV19-CNNet 
engine, which has an accuracy rate of 100%.

ImageNet pre-trained models are not sufficient for 
classifying medical images as they are trained using 
natural images. Medical and natural images are differ-
ent in many aspects. Therefore, we developed inference 
engines with new and special deep neural networks that 
were trained from scratch. We focused on the problem of 
multi-class classification in this study, a rather difficult 
task for the diagnosis of COVID-19. Table 2 presents the 
performances of the pre-trained models [6, 13, 16, 17] 
and the diagnostic inference engines we developed for 
this difficult task. Different combinations were obtained 
from different datasets, and the data was augmented 
using special functions. We chose the samples that were 
close together in the classes to avoid hypersensitivity 
against a certain class. To this end, we increased the 
augmentation methods as well as the number of COVID-
19 images (90 samples). In fact, it is more appropriate to 
use a large dataset for deep neural network training from 
scratch in the medical field. However, it is difficult to 
create large datasets, especially with respect to emerg-
ing diseases such as COVID-19. This makes training 
deep neural networks from scratch relatively more dif-
ficult than transfer learning. It should also be noted that, 
besides the abovementioned ones, there are several other 
studies on detecting COVID-19 using CXRs; however, 
they are not peer-reviewed articles. As a result, these 
studies have not been included in Table 2.

Conclusion

X-ray images can be used to develop an effective diag-
nostic tool with DL technologies for detecting COVID-19 
and viral pneumonia. COV19-CNNet and COV19-ResNet 
were developed with special architectures from scratch 
without using a pre-trained DL model. These inference 
engines were trained using CXR images and created with 

an optimum number of hidden layers and parameters. 
Both engines can accurately detect COVID-19 cases, but 
COV19-ResNet has a higher accuracy rate.

The disadvantage of the CXR imaging modality is that 
it shows negative radiological signs in the early stages 
of COVID-19. However, the inference engines we devel-
oped with DL technology can detect COVID-19 patients 
at an early stage. For instance, the CT and CXR images 
shown in Fig. 6 belong to a patient in the early stage of 
COVID-19 [35]. The ground-glass opacities in the right 
lower lobe of the CT image (red arrows) (Fig. 6b) are 
not visible in the CXR image (Fig. 6a). Nevertheless, 
using the CXR image, our diagnostic inference engines 
diagnosed this patient as having COVID-19 with 100% 
accuracy at an early stage. Early diagnosis makes a sig-
nificant contribution to the treatment and quarantine 
process, ensuring that the primary treatment of chronic 
patients at high risk can be initiated. Thus, intensive care 
units and other health resources can be used in a more 
efficient manner.

Several studies have shown us that DL has the poten-
tial to be applied in the diagnosis and treatment of dis-
eases. Considering this, DL models trained with large 
medical datasets need to be developed in the future. 
These models can then be used to solve various prob-
lems by being integrated successfully into many devices, 
including medical imaging tools.

This study, alongside other studies in this area, indi-
cates that AI-aided research can make sizeable contribu-
tions to fight the coronavirus outbreak. All data about 
COVID-19 should be shared without any restrictions 
around the world so that this information can be actively 
used in similar studies. Additionally, the developed AI-
aided systems need to be tested in health institutions. 
However, it should not be overlooked that doctors show 
resistance regarding the use of AI-aided systems in 
the diagnosis and treatment process. It is necessary to 
emphasize that these systems are powerful tools that can 
support doctors in the diagnosis and treatment of dis-
eases. We developed and tested two diagnostic inference 
engines based on CNN and the architecture of ResNet 
in this study. We plan to develop a radiological system 
equipped with comprehensive features and use these 
intelligent inference engines as a part of it.
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